Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens, Edward Baudrez, Nicolas Clerbaux, Ilse Decoster, Steven Dewitte, Alessandro Ipe, Almudena Velazquez

Royal Meteorological Institute of Belgium (RMIB)
Climate Monitoring SAF (CM-SAF)
Geostationary Earth Radiation Budget Team (GERB)

ESSC Remote Sensing workshop, VUB (Brussels)
2010/11/25
Outline

Introduction

GERB
 Instrument
 Products

Aerosol Detection
 Motivation
 Algorithm Presentation
 Ocean Reflectance
 Land Minimum Reflectance
 AOD Retrieval
 Validation
 Examples

Aerosol Radiative Forcing

Conclusions
Main interest GERB team at RMIB.
SERVIRI

Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction

GERB Instrument

Products

Aerosol Detection

Aerosol Radiative Forcing

Conclusions

- Spinning Enhanced Visible and Infrared Imager.
- Main instrument aboard MSG satellite (2004-...).
- Spectral properties:
 - 12 narrow-band channels
 - chosen for specific detection purposes.
- Temporal resolution: 15 minutes interval
- Spatial resolution: 3km × 3km at nadir (1km HRVIS)
Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction

GERB Instrument Products

Aerosol Detection Aerosol Radiative Forcing

Conclusions

➤ Geostationary Earth Radiation Budget instrument.
➤ Announcement of opportunity instrument on MSG.

➤ Spectral properties:
 ➤ 2 broad-band channels
 ➤ Short wave: 0.32 - 4 μm
 ➤ → solar channel
 ➤ Total: 4 - 30 μm
 ➤ Longwave: by subtraction
 ➤ → thermal channel
 ➤ Temporal resolution: 15 minutes interval
 ➤ Spatial resolution: 44.5km × 39.3km at nadir (NS × EW)
 → Upsampling using SEVIRI: 9km × 9km
Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction
GERB Instrument Products
Aerosol Detection Aerosol Radiative Forcing Conclusions

GERB High Resolution Example

Reflected solar radiation.

20070809 07:15 20070809 14:15

Emitted thermal radiation.
Top Of Atmosphere Products (TOA)

- We provide three TOA products (CM-SAF) from 2004 on:
 - Total Incoming Solar radiation (TIS).
 - Total Reflected Solar radiation (TRS).
 - Total Emitted Thermal radiation (TET).
- Daily mean, monthly mean diurnal cycle and monthly mean.
- To get these (and much more):
 - http://www.cmsaf.eu
 - http://cmsaf.oma.be
Total Incoming Solar Radiation (TIS)

- Computed from TSI (Total Solar Irradiance)

\[TSI = \frac{TIS \cos(\theta_{\text{sol}})}{d^2} \]

where,
- \(d \) = distance pixel sun (astronomical units).
- \(\theta_{\text{sol}} \) = solar zenith angle
- TSI measured over 3 decades:
Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction
GERB
Instrument
Products
Aerosol Detection
Aerosol Radiative Forcing
Conclusions

Example TIS

TOA Incoming Solar (TIS) [W/m²]
Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction

GERB Instrument Products

Aerosol Detection

Aerosol Radiative Forcing

Conclusions

TRS and TET

- Obtained from GERB instrument
 - GERB field of view.
 - ADM to correct for angles.
 - Spatial upsampling.

+ CERES experiment → polar region.

+ SEVIRI
 - If no GERB data available.
 → narrow to broadband conversion: GERB-like data.
 - The future: no GERB instrument on MTG.
 - And the past: no GERB instrument on MFG.
Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction

GERB

Instrument

Products

Aerosol Detection

Aerosol Radiative Forcing

Conclusions
Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction
GERB
Instrument
Products
Aerosol Detection
Aerosol Radiative Forcing
Conclusions
Example with Netto Irradiance at TOA
Motivation

Tropospheric aerosol particles originate from:

- Urban/industrial activities.
- Biomass burning associated with land use processes.
- Wind-blown dust.
- Natural sources.

Global observations from space required due to:

- Short lifetime (a few days).
- High spatial variability in aerosol optical and radiative properties.
Motivation (bis)

Major uncertainty in predicting climate change due to:
- **Direct radiative forcing** → radiation is scattered or absorbed by the aerosols.
- **Indirect radiative forcing** → influence on cloud microphysics.
- Modify concentration of climate-influencing constituents such as greenhouse gases through heterogeneous chemistry.
Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction

GERB

Aerosol Detection

Motivation

Algorithm

Presentation

Ocean Reflectance

Land Minimum Reflectance

AOD Retrieval

Validation

Examples

Aerosol Radiative Forcing

Conclusions

Input

- SEVIRI level 1.5 images at wavelengths 600, 800 and 1600 nm.
- CM SAF cloud mask, based on NWC SAF software.
 planned replacement for current inadequate cloudmask.
- Cloud shadows also need to be implemented.
Reflectance (Rescaled BRDF)

- Single scatter approximation → separation
 \[\mathcal{R}(\lambda, \mu_i, \mu_o) = \mathcal{R}_{surface} + \mathcal{R}_{rayleigh} + \mathcal{R}_{aerosol} \]

- The aerosol reflectance is given by,
 \[\mathcal{R}_{aerosol} = \frac{\tau \tilde{\omega} P(\theta)}{4 \cos(\omega_i) \cos(\omega_o)} \]

 where,
 - \(\tau \) = aerosol optical depth (AOD).
 - \(\tilde{\omega} \) = aerosol single scatter albedo.
 - \(P(\theta) \) = aerosol phase function.

- \(\mathcal{R}_{rayleigh} \) is calculated using RTE.
Ocean Reflectance

- \(R_{surface} \leftarrow \) a fixed value chosen according to statistics on marine reflectance synthesis.

→ works far away from sun glint region, where:
 - \(R_{surface} \) peaks.
 - Depends on wind speed.

- Upgrade to LUT from Cox-Munk surface model planned.
Land Minimum Reflectance

\(R_{\text{surface}}\) calculated assuming

- \(R_{\text{surface}}\) constant over sufficiently long period (15d).
- \(\tau\) (AOD) reaches its background value in this period.
- \(R(\lambda = 600\,\text{nm})\) increases with increasing AOD.

→ only true when \(R_{\text{surface}}\) is small (dark surface).

Background aerosol day = day in the period under consideration when

\[R(\lambda = 600\,\text{nm}) - R_{\text{rayleigh}}(\lambda = 600\,\text{nm}) \]

reaches its minimum.
The surface reflectance (for all λ) is then given by:

$$R_{surface} = \tilde{R} - \tilde{R}_{rayleigh} - \tilde{R}_{aerosol}$$

where,

- the RHS is taken on the background day.
- $\tilde{R}_{aerosol}$ = aerosol background reflectance
 fixed background value for AOD = 0.03
AOD Retrieval

- R_{surface} is now known.
- Retrieval performed for 6 different aerosol classes:
 - Derived from an analysis of AERONET retrieval.
 - Maritime model WMO, moderately absorbing, continental WMO, urban-industrial, smoke and spherical dust.
 - All are spherical and some are too similar.
 - Introduction of different (non-spherical) aerosol models.
- AOD is calculated from a best fit using the 3 solar channels with simulated reflectances using LUT.
Based on comparison with AERONET observations.

July 2006: > 200 co-registrations with Cabauw.

slope = 0.96 intercept = 0.02.
Observation Temporal Changes in Aerosol Load

- Dust event Dakar with AOD varying from >2.0 till 0.3 in 7 days.

- Same trends AERONET and SEVIRI.
- SEVIRI tends to underestimate the aerosol load.

→ Background day: assumed AOD = 0.03 + high AOD during the reference period ⇒ systematic bias.
Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction

GERB

Aerosol Detection

Motivation
Algorithm
Presentation
Ocean Reflectance
Land Minimum Reflectance
AOD Retrieval
Validation
Examples

Aerosol Radiative Forcing

Conclusions

Dust storm across Central and West Africa

08/03/2004 Aqua Satellite
Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction
GERB
Aerosol Detection
Motivation
Algorithm
Presentation
Ocean Reflectance
Land Minimum Reflectance
AOD Retrieval
Validation
Examples
Aerosol Radiative Forcing
Conclusions

Example AOD (08/03/2004)
Methodology

With low AOD there is a linear relation between (clear sky) radiative forcing and AOD.

LLoeb, Norman G., Seiji Kato, 2002)
Methodology (bis)

- Use this relation to calculate slope and intercept in a TRS (or TET) - AOD graph.
- Slope: radiative forcing corresponding with give AOD.
Conclusions

- GERB: provides many interesting products (both direct and derived).
- Aerosols algorithm: constant background AOD of 0.03 unrealistic in high AOD periods.
 → Use different algorithm to improve estimation of background AOD.
- Aerosol retrieval works only when $R_{surface}$ is small (dark surface).
 → Use different algorithm for bright surfaces (desert).
- We can combine our products to calculate aerosol radiative forcing.