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1 Motivations

The Geostationary Earth Radiation Budget (GERB) processing currently relies on a scene identification ap-
plied to the Spinning Enhanced Visible and InfraRed Imagers (SEVIRI) for the estimation of the top–of–the–
atmosphere (TOA) solar fluxes on a near realtime basis from the GERB broadband radiometers. More specif-
ically, this scheme delivers a cloud mask based on the visible SEVIRI channels to properly select the angular
dependency models (ADMs) for the radiance–to–flux conversion. It results that such product is unavailable
during nighttime. Therefore, we have decided to develop a cloud detection algorithm solely based on thermal
SEVIRI measurements. Its associated thermal cloud mask will be available under all observing conditions in-
cluding sunglint and will allow to perform studies on clouds and aerosols radiative forcing over any time period.

2 Strategy

Major cloud detection algorithms based on the multispectral threshold technique in the thermal wavelengths
rely on ancillary data. For example, the Nowcasting Satellite Application Facility (NWCSAF) [1] as well as
the EUMETSAT CLoud Mask (CLM) [3] need numerical weather prediction (NWP) model fields to correctly
discriminate clearsky from cloudy scenes. These fields include surface temperatures, air temperatures at various
altitudes as well as the total water vapor content of the atmosphere. While these data are not mandatory for the
NWCSAF software, its accuracy is significantly decreased when there are missing since climatologies are then
used.

Such multispectral threshold approach for the GERB processing is discarded for several reasons:

1. GERB products would not anymore allow a fully independent validation of GCMs,
2. the latter would rely on an external data source which could be unavailable, thus resulting in delayed process-

ing (near-realtime constraint),
3. the quality of these ancillary data could not be guaranteed over long time period due to NWP software updates,

and therefore bias could be introduced in the thermal cloud mask (release of consistent product datasets),
4. the overhead in terms of implementation complexity would be prohibitive.

Instead, we decided to develop a simple but robust method which can be independently applied to the 3 thermal
SEVIRI channels: 8.7, 10.8 and 12 µm. The suggested method is considering time–series of 60 days mea-
surements at the same time of day and at the pixel–level. Therefore we are maintaining the native spatial (3
km at nadir) and temporal (15 minutes) samplings of SEVIRI. This selected approach implicitly considers that
clearsky conditions will at least occur once over this 60 days time period.

Several factors are known to affect these channels’ associated brightness temperatures (BTs) (equivalent black
body temperatures): surface emissivity, atmospheric profiles and cloudiness. Changes of surface emissivity due
to precipitation or vegetation and atmospheric states result in a significant variability of the BT over cloud–free
pixels. Therefore, it is obvious that the sensitivity of the developed cloud detection scheme will be impacted.
While thick clouds characterized by low cloud top temperatures can be detected due to the drastic drop of their
BT compared to clearsky conditions, thin (cirrus) as well as low (stratocumulus) clouds are not significantly
modifying the clearsky BT signal and therefore could be misidentified as clearsky.

3 Algorithm

As mentioned above, we are considering a 60 days time–series of BTs for each pixel and infrared channel at a
given time of day. These 60 values can usually be classified into 3 groups with decreasing BT:

• clearsky,
• thin or warm (low) clouds,
• thick cold clouds.

This classification is achieved by means of a modified k–means unsupervised clustering algorithm [2] as de-
scribed below:

1. Let i = 0 and initialize the 3 clusters’ centers C(i)
k (k = 0, 1, 2),

2. Classify all 60 BTs according to their ”nearest” cluster’s center C(i)
k ,

3. Recompute the 3 clusters’ centers C(i+1)
k ,

4. Let i = i + 1 and repeat from step 2 until C(i)
k and C(i+1)

k does not change more than 0.01 K.

The modification lies in the distance d used for the assignment of each sample BT(n) (n = 1, . . . , 60) to a spe-
cific class Ck. We make the assumption that within each class, all samples are distributed according to a normal
distribution N(µk, σk). Thus, the distance is given by the Bayesian discriminant function

d(BT(n), Ck) =
(BT(n)− µk)

2

2σ2
k

+ log σ2
k

if we assume that the prior probability to belong to each class is identical.

∆ [K] for March 15 at 0:00 GMT

However, the k–means clustering
method suffers from a major drawback
since its results depend on the clus-
ters’ initialization C(0)

k [2]. To cir-
cumvent such issue, we are attempting
to find the best first guess estimate of
the clearsky cluster’s width ∆ allow-
ing to initialize C(0)

k . This is achieved
by considering 10 years (from 1991 to
2001) of skin surface temperatures Ts
from the ECMWF ReAnalysis project
(ERA–40) [4] which are available ev-
ery 6 hours on a 0.25◦ × 0.25◦ grid.
We are assuming that the surface tem-
perature is the major factor of variation
of the BTs measured by the satellite
and thus neglecting the contribution of
the atmosphere. These data once re-
projected into the SEVIRI field–of–
view are used to compute for every
pixel on a 3–hourly basis t ∆(d, t) =

T(max)
s − T(min)

s at a given date d from the previous 60–days Ts time–series. Then, a climatology of ∆ for
every pixel can be estimated by taking the monthly percentile at 95 % of these 10 years of instantaneous ∆(d, t)
values. The initialization scheme of the clusters C(0)

k then follows:

1. For C(0)
2 (clearsky): µ

(0)
2 = BT(max)− 1

2∆ and σ
(0)
2 = ∆/3.25,

2. For C(0)
1 (thin or warm clouds): µ

(0)
1 = µ

(0)
2 − ∆ and σ

(0)
2 = ∆/3.25,

3. For C(0)
0 (thick cold clouds): µ

(0)
0 = BT(min) and σ

(0)
2 = ∆/3.25.

However, if C(0)
0 and C(0)

1 are not at least separated by ∆, then the clustering is only performed on the 2 upper
clusters. If the initialization fails with 2 clusters, then the times–series is assumed to be entirely clearsky.

4 Preliminary results

In the following figures, we have plotted the resulting cloud mask when our method is applied to the SEVIRI 8.7
µm channel. One may note that our modified k–means clustering is successfully detecting low contrasted clouds
in terms of brightness temperatures over the Atlantic Ocean. Moreover, convective cloud fields near the Equator
are also correctly identified by our scheme. However, further quantitative comparisons with another cloud mask
are required.

Cloud mask based on the 8.7 µm band (left) where black is for clearsky, gray is for low contrasted clouds,
white is for high contrasted clouds and associated BTs [K] (right) for March 11 2007 at 0:00 GMT

5 Preliminary comparisons

As mentioned in section 2, two cloud masks are routinely derived from SEVIRI imagery. While the product from
NWCSAF can be considered as one of the most accurate cloud detection scheme, the EUMETSAT CLM was
primarily designed for robustness. Nevertheless, both are using NWP fields in their numerous threshold tests
as well as visible and NIR channels during daytime. Thus, in the following, we are considering the NWCSAF
cloud mask as the truth and comparing both the CLM and GERB products to it. Since the CLM is not delivering
results at viewing zenith angles above 75◦, we are restricting GERB comparisons to pixels below this limit.

Depending on the surface type and its associated emissivity, it is obvious that the classification is improved for
SEVIRI IR channels exhibiting the highest contrast between clearsky and cloud objects. This is illustrated in the
following table.

ocean vegetation desert
8.7 µm 86.12 ± 0.45 87.50 ± 0.90 93.13 ± 1.66
10.8 µm 85.95 ± 0.46 88.47 ± 0.72 94.30 ± 1.23
12.0 µm 84.46 ± 0.53 89.12 ± 0.61 94.88 ± 0.96

Averages of the weighted daily means according to the number of night pixels of the hourly pixels’ agreement
(in percent) between the NWCSAF CMa and the GERB IR cloud masks for August 11–17 2007 for the 3 IR

channels and geotypes. The uncertainties are given at 2σ.

Thus, simply by combining the classification from the SEVIRI 8.7 and 12.0 µm channels respectively for ocean
and land surfaces, we can improve the single channel results as demonstrated in the following table.

Cloud mask Geotype
ocean vegetation desert all

MPEF CLM 85.73 88.70 91.19 87.20
GERB IR 86.12 89.12 94.88 88.02
GERB IR+ 89.97 90.67 96.02 90.94

Cloud mask Geotype
ocean vegetation desert all

MPEF CLM 84.93 88.97 90.73 86.70
GERB IR 84.51 86.20 94.00 86.17

GERB IR+ 89.01 88.33 94.87 89.60
Weighted means according to the number of night (left) and all (right) pixels of the hourly pixels’ agreement (in
percent) of the MPEF CLM, GERB IR cloud masks with respect to the NWCSAF CMa cloud mask for August
11–17 2007. GERB IR+ designates the GERB IR cloud mask supplemented with the NWCSAF CMa spatial

texture filter.

Since no spatial textural filtering is performed within the GERB IR cloud detection algorithm compared to the
2 other schemes, we also have calculated the agreement with an ”augmented” GERB IR method by performing
the NWCSAF CMa spatial filtering as post–processing (denoted in table by ”GERB IR+”). As expected, the
”augmented” GERB IR method always performs better than without the spatial filter. It can be noted that the
MPEF CLM systematically exhibits a lower agreement than the standard GERB IR cloud detection over all
geotypes for nighttime conditions.

Nevertheless, low water clouds (stratocumulus) are usually misidentified due to low BT contrast (≈ 1 K). The
use of the 3.7 µm channel through BT differences with the 10.8 and 12.0 µm channels (NWCSAF–like) should
be investigated.
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