

The climate monitoring SAF TOA radiation products

Nicolas Clerbaux, Alessandro Ipe, Patrick Vandermeulen, Almudena Velazquez, Edward Baudrez, Stijn Nevens, Ilse Decoster, Steven Dewitte, Manon Urbain

Content:

- Brief introduction to Climate Monitoring Satellite Application
 Facility (CM SAF) illustrations of available products/datasets
- CM SAF GERB/SEVIRI TOA radiation dataset (edition 1)
- Developments toward an edition-2
- Summary

What is CM SAF?

- Climate products from (weather) satellites
- Part of EUM ground segment
- Products target the energy and water cycles
- 3 types of products:
 - EDR = Environmental Data Record
 - ICDR = Interim Climate Data Record
 - TCDR = Thematic Climate Data Record
- Global/regional products
- Polar and geo satellites
- User's oriented programme: help desk, web user interface, data ordering system, users training events, ...
- Operational: annual quality ass. Review, operation reviews, ...
- Guidance from a steering group, visiting scientist programme, ...

http://www.cmsaf.eu

also

CM SAF will have a "booth" at the Climate Symposium next week.

CM SAF datasets delivery schedule

Surface albedo in the Arctic

SAL-MA FROM POES 01.04.2009 00:00 UTC | min:4.6 | max:94.7 | mean:53.0 | stdev:20.8

Monthly mean, 15x15 km², 200904 SAL is based on the FMI retrieval algorithm, here applied to AVHRR.

Surface albedo in the Arctic

SAL-MA FROM POES 01.06.2009 00:00 UTC | min:3.1 | max:97.7 | mean:32.3 | stdev:22.9

Monthly mean 200906 Enables the monitoring of the Arctic melting season.

Clouds diurnal cycle Meteosat Seconde Generation

ATOVS

Advanced TIROS-N Operational Vertical Sounder

- Utilises AAPP and IAPP to derive water vapour and temperature profiles from ATOVS observations from NOAA-15, -16, -18 and -19 and MetOp satellites.
- Swath-based output of IAPP is quality controlled, vertically integrated and averaged into 5 atm. layers.
- A Kriging routine (Lindau+Schulz, 2004) is applied to provide:
 - global products on equal area (90 km)² grid (left), standard deviations (right),
 - daily and monthly averages.

Example for October 2004

TOA radiation EDRs

TIS: TOA Incoming Solar

TRS: TOA Reflected Solar

TET: TOA Emitted Thermal

- Monthly mean
- Daily mean
- Monthly mean diurnal cycle

- Not homogeneous time series
- Produced in NRT since 2004

CDR of Surface Radiation products

Solar surface radiation (SIS) (1983-2010)

- e.g. application for Photovoltaic systems
- Accuracy: 10 W/m², high spatial-temporal resolution

CM-SAF vs BSRN, Anomaly of SIS

Comparison vs. Baseline Surface Radiation Network (BSRN)

Global CDR AVHRR GAC cloud properties

Cloud Fractional Coverage (CFC)

- First global CM SAF AVHRR GAC cloud data sets
- temporal coverage 1982 to 2009

Released

Animation of monthly mean cloud fraction for July (2001 - 2009)

Global CDR AVHRR GAC Surface Solar Radiation

280 260

240

220 200

140 120

Global Surface solar radiation 5-year mean (top)

20 year monthly mean of July in Europe (right)

Released

Hamburg Ocean-Atmosphere Parameters and fluxes from Satellite data (HOAPS) TCDR

- Thematic Climate Data Records from HOAPS released as HOAPS v3.2. Covered time period from 1987 until 2008 using observations from F08, F10, F11, F13, F14 and F15
- Parameters are: near surface wind speed, near surface humidity, precipitation, latent heat flux, evaporation, freshwater flux, ...
- Products available as monthly means and 6-hourly composites on a regular lat-lon grid at 0.5 degree resolution, products also available on native SSM/I resolution on request

CM SAF GERB/SEVIRI TOA radiation dataset : edition-1

- Released in 2013
- Feb. 2004- Jan. 2011
- All sky TRS and TET
- SEA grid 45km
- In NetCDF CF conv.
- Monthly Mean (MM),
 Daily Mean (DM) and
 Monthly Mean
 Diurnal Cycle (MMDC
 = M1hour)

Illustration of Monthly Mean (MM)

Illustration: TOA radiation daily means

Illustration: TOA radiation monthly mean diurnal cycle

CM SAF GERB/SEVIRI TOA rad. dataset validation

Estimated uncertainty at 1-sigma:

	TRS	TET
Monthly mean	4.0 W/m ²	3.4 W/m²
Daily mean	6.2 W/m ²	4.6 W/m ²
MM diurnal cycle	14.5 W/m ²	4.3 W/m ²

(See Validation Report)

Validation: stability of the MM products

TRS MM validation: intercomparison with CERES

RMS difference with CERES EBAF ~ 3 W/m²

TET MM validation: intercomparison with CERES

RMS difference with CERES EBAF ~ 2 W/m²

Toward CM SAF GERB/SEVIRI dataset ed02 Improvements wrt ed01

Edition-1 (released in 2013)

Edition-2 (to be released mid-2015)

- GERB with masked sun-glint and terminator
- Feb. 2004 Jan. 2011
- SEA (45km)² grid
- Allsky TRS and TET
- No aging correction
- Recalibration to GERB-1 level
- Only operational satellite

- Improved GERB data at input (filled HR files)
- Feb. 2004 Jan. 2014
- GERB HR geo grid (9km² sub-sat)
- Allsky and clearsky TRS and TET
- GERB and SEVIRI SW aging corrections
- Recalibration to average of GERB-1 and GERB-2 level (TBC with GERB instrument principal scientist)
- Also use data from the backup MSG satellites in case of decontamination/failure

Edition-2 processing overview

GERB / GERB-like data preprocessing - SW

GERB-like

GERB-3

GERB-like

GERB-1

GERB-2

GERB-like

GERB / GERB-like data preprocessing - LW

SW aging correction

- Based on clear desert region or DCC (TBC)
- Linear temp. drift (desert):

	GERB	GERB-like
MSG1	- 0.696	-0.51 %
(GERB2)	% /year	/year
MSG2	-0.643%	-0.46%
(GERB1)	/year	/year

Overall level correction:

	GERB	GERB-like
MSG1	0.9776	1.0379
MSG2	1.0235	1.0309

Residual drift / anomalies

F	ed01	full	MSG1	MSG2
	ocean	-0.76 % / year	-0.81 % / year	-0.91 % / year
	dark	-0.81 %	-0.82 %	-0.26 %
	vege.	/ year	/ year	/ year
	bright	-0.90 %	-0.64 %	-0.71 %
	vege.	/ yea	/ year	/ year
	dark	-0.90 %	-0.91 %	-0.74 %
	desert	/ year	/ year	/ year
	bright	-0.81 %	-0.56 %	-0.52 %
	desert	/ year	/ year	/ year

ed02	full	MSG1	MSG2
ocean	-0.12 %	-0.47 %	-0.41 %
	/ year	/ year	/ year
dark	-0.02 %	-0.46 %	0.41 % /
vege.	/ year	/ year	year
bright vege.	-0.23 %	-0.21 %	-0.05 %
	/ year	/ year	/ year
dark	-0.31 %	-0.55 %	-0.28 %
desert	/ year	/ year	/ year
bright	-0.11 %	-0.04 %	0.02 % /
desert	/ year	/ year	year

Clearsky processing

- General method: average the closest in time N (=5) clear sky observations for the same repeat cycle of the day
- Based on CM SAF cloud mask (CM-21012)
- Reject "dust events" (IR flagging) i.e. AOD ~> 0.4
- Fresh snow processing (N=1)
- Post-processing for ocean

Example of comparison with CERES EBAF 2.7r

No aerosol ADM for GERB? Or different aerosol processing in the clearsky products?

Summary

- Several datasets/products available in CM SAF (http://www.cmsaf.eu)
- A first edition of the GERB/SEVIRI TOA radiation dataset is available
- The 2nd edition is expected to reduce most of the known problems with the dataset (e.g. aging) and also extend the validations and documentation.
- This 2nd edition will also provide clear sky fluxes e.g. for cloud forcing studies
- Preliminary (pre-released) data can be made available for beta-testing

Thank you!

Validation of the daily mean products: TRS accuracy

Accuracy $\sim 5 \text{ W/m}^2 \quad (\sim 5\%)$

Validation of the daily mean products: TET accuracy

Accuracy $\sim 4 \text{ W/m}^2 \quad (\sim 2 \%)$

Validation of the monthly mean diurnal cycle

"Diurnal cycle" from CERES

Summary of the validation $(1 \sigma uncertainty)$

	TRS	TET
Monthly mean	4.0 W/m ²	3.4 W/m²
Daily mean	6.2 W/m²	4.6 W/m²
MM diurnal cycle	14.5 W/m²	4.3 W/m²

Solar Irradiation at Surface (SIS)

Cloud Index 1.7.2005, 11 h UTC

TOA radiation dataset: edition-2

GERB/SEVIRI ed01 dataset

- Released in 2013
- 2004-2010
- All sky TRS and TET
- MM , DM , MMDC
- SEA grid 45km

GERB/SEVIRI ed02 dataset

- In development, release foreseen 2015
- 2004-2012
- Allsky and clearsky TRS and TET
- MM , DM, MMDC
- GEO grid 9km

MVIRI/GERB/SEVIRI ed02 dataset

- In development, release foreseen 2015
- 1982-2014
- Allsky TRS and TET
- MM, DM, MMDC
- Lat-lon grid 0.05°

- All datasets in NetCDF CF convention
- Synergy between products

Illustration: TOA radiation monthly means

