Surface Soil Moisture: toward a new combined dataset
to maximize the use of satellite data

Contact: william.moutier@meteo.be

Introduction

The Surface Soil moisture (SSM) being an essential climat variable, it is fundamental to get homogeneous long term time series and catch both long and natural or human induced short-scale trends of SSM to improve predictions of the climate trajectory. The objective of this study is to take advantage of different approaches deriving the SSM by using the more appropriate dataset according the land cover. For this purpose, 3 datasets were used: the European Spatial Agency Climate Change Initiative (ESA-CCI) SSM ([1]), the ECMWF’s fifth reanalysis (ERA-5; [2]) and a recent method from Ghilain et al., in prep ([3]) deriving the SSM from the land surface temperature data estimated thanks to thermal infrared sensors aboard geostationary satellites.

Soil Moisture product : New combined approach

REGIONAL PRODUCT SELECTION

Leaf Area Index (LAI)

- Clustering (kmeans) using the LAI / Climate informations
- Associate each cluster to a specific product according to the statistic
- Identify the best product according to the station

GAP FILLING APPROACH

Comparison with scaled In-Situ SM and identification of valid stations (R > 0.6 and MAD < 0.2)

- 52 selected

Typical example of potential application

Greater example of potential application

New CM SAF TDCR 1983–2020

- Sensible & Latent heat fluxes
- Hourly, daily and monthly data
- Meteosat FOV / ~5km of resolution

Why the new combined product?

2. Maximize the use of satellite data which could prevent dependence of model output.

References

Acknowledgement: This research is funded by EU/ETESAT (SAF/CM/DWD/CDOFS/CosA) and PRODEX [400023961] “Belgian contribution to the Satellite Application facility on Climate Monitoring (B-CMSAF)”.