Geostationary Earth Radiation Budget (GERB): status update and user-friendly access to GERB data using Python

Koninklijk Meteorologisch Instituut Institut Royal Météorologique Königliches Meteorologisches Institut Royal Meteorological Institute

Pierre de Buyl, Edward Baudrez, Christine Aebi, Nicolas Clerbaux, Johan Moreels, Jacqueline E. Russell

¹Royal Meteorological Institute of Belgium

²Imperial College London

EUMETSAT 2023 Conference

The GERB instrument

- Geostationary Earth Radiation Budget 2,1,3,4 aboard Meteosat Second Generation 1,2,3,4
- Broadband radiometer (0.32µm to 4µm and 0.32µm to 30µm)
- Field-of-view as SEVIRI
- 50km x 50km resolution at nadir
- ► 15 minutes refresh rate for "HR" product

Consortium organization

Laboratory	Country	Role
Imperial College (IC)	UK	Science lead, calibration, aerosol
Rutherford Appleton Laboratory (RAL)	UK	Instrument operation, "GGSPS" ¹ , data up to L1
Royal Meteorological Institute of Belgium (RMIB)	BE	Geolocation and L2 products

¹GERB Ground Segment Processing System

GERB instruments since 2004

Timeline

	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
GERB 2																				
GERB 2 IODC																				
GERB 1																				
GERB 1 IODC																				
GERB 3																				
GERB 4																				

GERB instruments since 2004

Timeline

	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
GERB 2																				
GERB 2 IODC																				
GERB 1																				
GERB 1 IODC																				
GERB 3																				
GERB 4																				

Current status

- GERB 1 operating over Indian Ocean
- GERB 3 operating at 0 degree
- GERB 4 off since february 2023

Data availability

- GERB 2 GERB 1: CEDA https://data.ceda.ac.uk/badc/gerb/
- Also in CM SAF: TOA Radiation from GERB/SEVIRI ed. 2.0 https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=TOA_GERB_V002

Obs4MIPS

https://data.ceda.ac.uk/neodc/obs4MIPs/ImperialCollege/GERB-HR-ED01-1-0

40 days of NRT data for GERB 3: https://gerb.oma.be/

GERB data products

NANRG Non Averaged Non Rectified Geolocated (50km)

ARG Average, Rectified, Geolocated

HR High Resolution (9km)

BARG Binned Averaged Rectified Geolocated

Radiances from GERB / Cloud information from SEVIRI

GERB data products

NANRG Non Averaged Non Rectified Geolocated (50km)

ARG Average, Rectified, Geolocated

HR High Resolution (9km)

BARG Binned Averaged Rectified Geolocated

Radiances from GERB / Cloud information from SEVIRI

GERB-like data product

HR High Resolution (9km)

Radiances from SEVIRI

GERB CERES colocation

Method

- CERES Single Scanner Footprint (SSF) fluxes (Aqua - MODIS - FM3)
- Colocation with GERB HR product

GERB CERES colocation

Method

- CERES Single Scanner Footprint (SSF) fluxes (Aqua - MODIS - FM3)
- Colocation with GERB HR product

GER	RB 2,1	L,3		
		SW	LW	
	G2	1.05	0.97	
	G1	1.07	0.97	
	G3	1.01	0.98	

GERB L2 HDF5 files

Flat structure

- Content
 - ► Radiometry: [Solar, Thermal] × [Radiance, Flux]
 - Scene Identification: Cloud, Scene Type, Angular model
 - Angles: Viewing Zenith Angle, Solar Zenith Angle, Relative Azimuth Angle

Points of attention:

- Floating point data is discretized: Need for multiplication by "quantization factor".
- ▶ "NaN" does not exist in HDF5 \rightarrow check the "error value" in the documentation.

GERB L2 HDF5 files

Flat structure

- Content
 - ► Radiometry: [Solar, Thermal] × [Radiance, Flux]
 - Scene Identification: Cloud, Scene Type, Angular model
 - Angles: Viewing Zenith Angle, Solar Zenith Angle, Relative Azimuth Angle
- Points of attention:
 - Floating point data is discretized: Need for multiplication by "quantization factor".
 - \blacktriangleright "NaN" does not exist in HDF5 \rightarrow check the "error value" in the documentation.

Check the RMIB GERB Products User Guide

https://gerb.oma.be/Documents/userguide.pdf

- Convenient solution: add a "reader" to the Satpy https://satpy.readthedocs.io/library
- Satpy supports, among others: MSG SEVIRI, MFG MVIRI, Himawari AHI, GOES ABI, AVHRR, MODIS, VIIRS
- Satpy facilitates geolocation, resampling, image generation, etc.

- Convenient solution: add a "reader" to the Satpy https://satpy.readthedocs.io/library
- Satpy supports, among others: MSG SEVIRI, MFG MVIRI, Himawari AHI, GOES ABI, AVHRR, MODIS, VIIRS
- Of course, Satpy supports MTG FCI
- Satpy facilitates geolocation, resampling, image generation, etc.

- Convenient solution: add a "reader" to the Satpy https://satpy.readthedocs.io/library
- Satpy supports, among others: MSG SEVIRI, MFG MVIRI, Himawari AHI, GOES ABI, AVHRR, MODIS, VIIRS
- Of course, Satpy supports MTG FCI
- Satpy facilitates geolocation, resampling, image generation, etc.

Check the "Satpy reader" link https://gerb.oma.be/

Reading an image

Python code

```
import satpy
scene = satpy.Scene(reader="gerb_l2_hr_h5",\
filenames=["G1_SEV2_L20_HR_SOL_TH_20120621_101500_ED01.hdf"])
scene.load(['Thermal Flux', 'Solar Flux'])
```


Reading an image

Python code

```
import satpy
scene = satpy.Scene(reader="gerb_l2_hr_h5",\
filenames=["G1_SEV2_L20_HR_SOL_TH_20120621_101500_ED01.hdf"])
```

scene.load(['Thermal Flux', 'Solar Flux'])

Data

The data in this example is from the GERB 1 record available at https://data.ceda.ac.uk/badc/gerb/

Python code for plotting

crs = scene['Thermal Flux'].attrs['area'].to_cartopy_crs()
ax = plt.axes(projection=crs); ax.coastlines();
ax.gridlines(); ax.set_global()
plt.imshow(local_scene['Thermal Flux'], transform=crs,\
extent=crs.bounds, origin='upper', cmap=plt.cm.hot)

Python code for plotting

crs = scene['Thermal Flux'].attrs['area'].to_cartopy_crs()
ax = plt.axes(projection=crs); ax.coastlines();
ax.gridlines(); ax.set_global()
plt.imshow(local_scene['Thermal Flux'], transform=crs,\
extent=crs.bounds, origin='upper', cmap=plt.cm.hot)

Python code to access the data array

print(scene['Solar Flux'].data.mean().compute(),\
scene['Thermal Flux'].data.mean().compute())

Example scene: 2012-06-21 10:15

GERB Thermal Flux [W/m²]

GERB Solar Flux [W/m²]

100	150	200	250	300	350	

Example scene: region "maspalomas" 2012-06-21 10:15

GERB Thermal Flux [W/m²]

GERB Solar Flux [W/m²]

Example scene: region "maspalomas" 2023-08-01 - 2023-08-09

GERB HR product

Example scene: region "maspalomas" 2023-08-01 - 2023-08-09

GERB-like HR product

Solar (SW) & Thermal (LW) Radiance

Comments

- Preliminary based on simulated MTG data
- Same field of view as GERB → direct radiance comparison

Outlook

- Postprocessing and QC of G4 dataset
- G3 mirror side calibration ongoing
- ► Hope for continuation beyond 2024 → concurrent operation with MTG-I1

Outlook

- Postprocessing and QC of G4 dataset
- G3 mirror side calibration ongoing
- Hope for continuation beyond 2024 ightarrow concurrent operation with MTG-I1

Data - contact

- Test the data for yourself
- Contact: pierre.debuyl@meteo.be or team email gerb-me@meteo.be

Outlook

- Postprocessing and QC of G4 dataset
- G3 mirror side calibration ongoing
- Hope for continuation beyond 2024 ightarrow concurrent operation with MTG-I1

Data - contact

- Test the data for yourself
- Contact: pierre.debuyl@meteo.be or team email gerb-me@meteo.be
- Thanks for your attention