Geostationary Earth Radiation Budget (GERB): status update and user-friendly access to GERB data using Python

Pierre de Buyl, Edward Baudrez, Christine Aebi, Nicolas Clerbaux, Johan Moreels, Jacqueline E. Russell

1Royal Meteorological Institute of Belgium
2Imperial College London

EUMETSAT 2023 Conference
The GERB instrument

- Geostationary Earth Radiation Budget 2,1,3,4 aboard Meteosat Second Generation 1,2,3,4
- Broadband radiometer (0.32\(\mu\)m to 4\(\mu\)m and 0.32\(\mu\)m to 30\(\mu\)m)
- Field-of-view as SEVIRI
- 50km x 50km resolution at nadir
- 15 minutes refresh rate for “HR” product
The GERB project

Consortium organization

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Country</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperial College (IC)</td>
<td>UK</td>
<td>Science lead, calibration, aerosol</td>
</tr>
<tr>
<td>Rutherford Appleton Laboratory (RAL)</td>
<td>UK</td>
<td>Instrument operation, “GGSPS”(^1), data up to L1</td>
</tr>
<tr>
<td>Royal Meteorological Institute of Belgium (RMIB)</td>
<td>BE</td>
<td>Geolocation and L2 products</td>
</tr>
</tbody>
</table>

\(^1\) GERB Ground Segment Processing System
GERB instruments since 2004

Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>GERB 2</th>
<th>GERB 2 IODC</th>
<th>GERB 1</th>
<th>GERB 1 IODC</th>
<th>GERB 3</th>
<th>GERB 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- GERB 1 operating over Indian Ocean
- GERB 3 operating at 0 degree
- GERB 4 off since February 2023
GERB instruments since 2004

Timeline

Current status

- GERB 1 operating over Indian Ocean
- GERB 3 operating at 0 degree
- GERB 4 off since February 2023
Data availability

- GERB 2 - GERB 1: CEDA https://data.ceda.ac.uk/badc/gerb/

- Also in CM SAF: TOA Radiation from GERB/SEVIRI ed. 2.0
 https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=TOA_GERB_V002

- Obs4MIPS
 https://data.ceda.ac.uk/neodc/obs4MIPS/ImperialCollege/GERB-HR-ED01-1-0

- 40 days of NRT data for GERB 3: https://gerb.oma.be/
Data products

GERB data products

- **NANRG** Non Averaged Non Rectified Geolocated (50km)
- **ARG** Average, Rectified, Geolocated
- **HR** High Resolution (9km)
- **BARG** Binned Averaged Rectified Geolocated

- Radiances from GERB / Cloud information from SEVIRI
GERB data products

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NANRG</td>
<td>Non Averaged Non Rectified Geolocated (50km)</td>
</tr>
<tr>
<td>ARG</td>
<td>Average, Rectified, Geolocated</td>
</tr>
<tr>
<td>HR</td>
<td>High Resolution (9km)</td>
</tr>
<tr>
<td>BARG</td>
<td>Binned Averaged Rectified Geolocated</td>
</tr>
</tbody>
</table>

- Radiances from GERB / Cloud information from SEVIRI

GERB-like data product

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR</td>
<td>High Resolution (9km)</td>
</tr>
</tbody>
</table>

- Radiances from SEVIRI
GERB CERES colocation

Method

- CERES Single Scanner Footprint (SSF) fluxes (Aqua - MODIS - FM3)
- Colocation with GERB HR product

GERB 2,1,3

<table>
<thead>
<tr>
<th></th>
<th>SW</th>
<th>LW</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2</td>
<td>1.05</td>
<td>0.97</td>
</tr>
<tr>
<td>G1</td>
<td>1.07</td>
<td>0.97</td>
</tr>
<tr>
<td>G3</td>
<td>1.01</td>
<td>0.98</td>
</tr>
</tbody>
</table>
GERB CERES colocation

Method
- CERES Single Scanner Footprint (SSF) fluxes (Aqua - MODIS - FM3)
- Colocation with GERB HR product

<table>
<thead>
<tr>
<th>GERB 2,1,3</th>
<th>SW</th>
<th>LW</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2</td>
<td>1.05</td>
<td>0.97</td>
</tr>
<tr>
<td>G1</td>
<td>1.07</td>
<td>0.97</td>
</tr>
<tr>
<td>G3</td>
<td>1.01</td>
<td>0.98</td>
</tr>
</tbody>
</table>

SW fluxes $<\text{G/C}> = 1.141$

LW fluxes $<\text{G/C}> = 0.973$
GERB L2 HDF5 files

- Flat structure
- Content
 - Radiometry: [Solar, Thermal] \times [Radiance, Flux]
 - Scene Identification: Cloud, Scene Type, Angular model
 - Angles: Viewing Zenith Angle, Solar Zenith Angle, Relative Azimuth Angle
- Points of attention:
 - Floating point data is discretized: Need for multiplication by “quantization factor”.
 - “NaN” does not exist in HDF5 \rightarrow check the “error value” in the documentation.

Check the RMIB GERB Products User Guide
GERB L2 HDF5 files

- Flat structure
- Content
 - Radiometry: [Solar, Thermal] × [Radiance, Flux]
 - Scene Identification: Cloud, Scene Type, Angular model
 - Angles: Viewing Zenith Angle, Solar Zenith Angle, Relative Azimuth Angle
- Points of attention:
 - Floating point data is discretized: Need for multiplication by “quantization factor”.
 - “NaN” does not exist in HDF5 → check the “error value” in the documentation.

Check the RMIB GERB Products User Guide
Using Python

- Convenient solution: add a “reader” to the Satpy library
 https://satpy.readthedocs.io/
- Satpy supports, among others: MSG SEVIRI, MFG MVIRI, Himawari AHI, GOES ABI, AVHRR, MODIS, VIIRS
- Satpy facilitates geolocation, resampling, image generation, etc.
Using Python

- Convenient solution: add a “reader” to the Satpy
 https://satpy.readthedocs.io/ library
- Satpy supports, among others: MSG SEVIRI, MFG MVIRI, Himawari AHI, GOES ABI, AVHRR, MODIS, VIIRS
- Of course, Satpy supports MTG FCI
- Satpy facilitates geolocation, resampling, image generation, etc.
Convenient solution: add a “reader” to the Satpy library
https://satpy.readthedocs.io/

Satpy supports, among others: MSG SEVIRI, MFG MVIRI, Himawari AHI, GOES ABI, AVHRR, MODIS, VIIRS

Of course, Satpy supports MTG FCI

Satpy facilitates geolocation, resampling, image generation, etc.

Check the “Satpy reader” link https://gerb.oma.be/
import satpy

scene = satpy.Scene(reader="gerb_l2_hr_h5",
filenames=['G1_SEV2_L20_HR_SOL_TH_20120621_101500_ED01.hdf'])

scene.load(['Thermal Flux', 'Solar Flux'])
Python code

```python
import satpy
scene = satpy.Scene(reader="gerb_l2_hr_h5",
filenames=['G1_SEV2_L20_HR_SOL_TH_20120621_101500_ED01.hdf'])

scene.load(['Thermal Flux', 'Solar Flux'])
```

Data

The data in this example is from the GERB 1 record available at
https://data.ceda.ac.uk/badc/gerb/
Python code for plotting

crs = scene['Thermal Flux'].attrs['area'].to_cartopy_crs()
ax = plt.axes(projection=crs); ax.coastlines();
ax.gridlines(); ax.set_global()
plt.imshow(local_scene['Thermal Flux'], transform=crs,
extent=crs.bounds, origin='upper', cmap=plt.cm.hot)

Python code to access the data array

print(scene['Solar Flux'].data.mean().compute(),
scene['Thermal Flux'].data.mean().compute())
Python code for plotting

crs = scene[‘Thermal Flux’].attrs[‘area’].to_cartopy_crs()
ax = plt.axes(projection=crs); ax.coastlines();
ax.gridlines(); ax.set_global()
plt.imshow(local_scene[‘Thermal Flux’], transform=crs,
extent=crs.bounds, origin=’upper’, cmap=plt.cm.hot)

Python code to access the data array

print(scene[‘Solar Flux’].data.mean().compute(),
scene[‘Thermal Flux’].data.mean().compute())
Example scene: 2012-06-21 10:15

GERB Thermal Flux [W/m²]

GERB Solar Flux [W/m²]
Example scene: region “maspalomas” 2012-06-21 10:15

GERB Thermal Flux [W/m²]

GERB Solar Flux [W/m²]
Example scene: region “maspalomas” 2023-08-01 – 2023-08-09

GERB-like HR product
Solar (SW) & Thermal (LW) Radiance

Comments
- **Preliminary** based on simulated MTG data
- Same field of view as GERB → direct radiance comparison
GERB until 2030?

Outlook

- Postprocessing and QC of G4 dataset
- G3 mirror side calibration ongoing
- Hope for continuation beyond 2024 → concurrent operation with MTG-I1

Data - contact
- Test the data for yourself
- Contact: pierre.debuyl@meteo.be or team email gerb-me@meteo.be

Thanks for your attention
GERB until 2030?

Outlook
- Postprocessing and QC of G4 dataset
- G3 mirror side calibration ongoing
- Hope for continuation beyond 2024 → concurrent operation with MTG-I1

Data - contact
- Test the data for yourself
- Contact: pierre.debuyl@meteo.be or team email gerb-me@meteo.be
GERB until 2030?

Outlook

- Postprocessing and QC of G4 dataset
- G3 mirror side calibration ongoing
- Hope for continuation beyond 2024 → concurrent operation with MTG-I1

Data - contact

- Test the data for yourself
- Contact: pierre.debuyl@meteo.be or team email gerb-me@meteo.be
- Thanks for your attention