Spectral ageing model for the Meteosat First Generation visible band

I. Decoster, N. Clerbaux

Vrije Universiteit Brussel
Royal Meteorological Institute of Belgium

March 2014
Outline

Introduction

Main accomplishments
 Spectral ageing model
 Meteosat-7
 Full Meteosat First Generation
 Pre-launch characterisation problem of Meteosat-7 visible spectral response curve

Unpublished work
 Sensitivity study of spectral ageing model
 Regional validation for full MFG

Conclusions

Future prospects
Introduction – Meteosat First Generation

- Meteosat Visible and Infrared Imager (MVIRI)
 - 6 instruments (02/1982 – 07/2006)
Introduction – Meteosat First Generation

- Meteosat Visible and Infrared Imager (MVIRI)
 - 6 instruments (02/1982 – 07/2006)
 - Temporal frequency of 30 minutes
Introduction – Meteosat First Generation

- Meteosat Visible and Infrared Imager (MVIRI)
 - 6 instruments (02/1982 – 07/2006)
 - Temporal frequency of 30 minutes
 - Visible channel (0.3 – 1.2 µm)
Introduction – Meteosat First Generation

- Meteosat Visible and Infrared Imager (MVIRI)
 - 6 instruments (02/1982 – 07/2006)
 - Temporal frequency of 30 minutes
 - Visible channel (0.3 – 1.2 µm)
- VIS MVIRI data in CM SAF
 - Surface incoming radiation
Introduction – Meteosat First Generation

- Meteosat Visible and Infrared Imager (MVIRI)
 - 6 instruments (02/1982 – 07/2006)
 - Temporal frequency of 30 minutes
 - Visible channel (0.3 – 1.2 µm)
- VIS MVIRI data in CM SAF
 - Surface incoming radiation
 - Cloud albedo
Introduction – Meteosat First Generation

- Meteosat Visible and Infrared Imager (MVIRI)
 - 6 instruments (02/1982 – 07/2006)
 - Temporal frequency of 30 minutes
 - Visible channel (0.3 – 1.2 µm)

- VIS MVIRI data in CM SAF
 - Surface incoming radiation
 - Cloud albedo
 - Fractional cloud cover
Introduction – Meteosat First Generation

- **Meteosat Visible and Infrared Imager (MVIRI)**
 - 6 instruments (02/1982 – 07/2006)
 - Temporal frequency of 30 minutes
 - Visible channel (0.3 – 1.2 µm)

- **VIS MVIRI data in CM SAF**
 - Surface incoming radiation
 - Cloud albedo
 - Fractional cloud cover
 - GERB-like TOA radiation
Introduction – Meteosat First Generation

- Meteosat Visible and Infrared Imager (MVIRI)
 - 6 instruments (02/1982 – 07/2006)
 - Temporal frequency of 30 minutes
 - Visible channel (0.3 – 1.2 µm)

- VIS MVIRI data in CM SAF
 - Surface incoming radiation
 - Cloud albedo
 - Fractional cloud cover
 - GERB-like TOA radiation
 - Aerosol optical depth

![Normalized spectral response chart](chart.png)
Introduction – In-flight degradation

Figure: VIS calibration coefficients for Meteosat-7 (Govaerts et al. 2004).
Introduction – In-flight degradation

Figure: VIS calibration coefficients for Meteosat-7 (Govaerts et al. 2004).

- Wavelength dependent in-flight change of the spectral response, strongest in short wavelengths:
 spectral degradation instead of grey
Introduction – In-flight degradation

Figure: VIS calibration coefficients for Meteosat-7 (Govaerts et al. 2004).

- Wavelength dependent in-flight change of the spectral response, strongest in short wavelengths: **spectral** degradation instead of grey
- Saturation of the drift
Outline

Introduction

Main accomplishments
 Spectral ageing model
 Meteosat-7
 Full Meteosat First Generation
 Pre-launch characterisation problem of Meteosat-7 visible spectral response curve

Unpublished work
 Sensitivity study of spectral ageing model
 Regional validation for full MFG

Conclusions

Future prospects
(1) Spectral ageing model – image processing

- 1200 UTC images: converted from DC to reflectance
(1) Spectral ageing model – image processing

- 1200 UTC images: converted from DC to reflectance
- Target selection from reflectance images
 - convective cloud selection
(1) Spectral ageing model – image processing

- 1200 UTC images: converted from DC to reflectance
- Target selection from reflectance images
 - convective cloud selection
 - clear-sky selection
1200 UTC images: converted from DC to reflectance

Target selection from reflectance images
- convective cloud selection
- clear-sky selection

Generating time series
- unfiltering the reflectance through cloud/clear-sky simulations
(1) Spectral ageing model – image processing

- 1200 UTC images: converted from DC to reflectance
- Target selection from reflectance images
 - convective cloud selection
 - clear-sky selection
- Generating time series
 - unfiltering the reflectance through cloud/clear-sky simulations
 - surface reflectance anisotropy corrected through CERES TRMM angular dependency models
1200 UTC images: converted from DC to reflectance
• Target selection from reflectance images
 ◦ convective cloud selection
 ◦ clear-sky selection
• Generating time series
 ◦ unfiltering the reflectance through cloud/clear-sky simulations
 ◦ surface reflectance anisotropy corrected through CERES TRMM angular dependency models
 ◦ seasonal correction
(1) Spectral ageing model – image processing

- 1200 UTC images: converted from DC to reflectance
- Target selection from reflectance images
 - convective cloud selection
 - clear-sky selection
- Generating time series
 - unfiltering the reflectance through cloud/clear-sky simulations
 - surface reflectance anisotropy corrected through CERES TRMM angular dependency models
 - seasonal correction
 - scene type averaging

![Reflectance ratio](image)
(1) Spectral ageing model – mathematical formula

- Semi-empirical model of spectral response curve \(\phi(\lambda, t) \)
 \[
 \phi(\lambda, t) = \phi(\lambda, 0) \left(e^{-\alpha t} + \beta (1 - e^{-\alpha t}) \right) (1 + \gamma t (\lambda - \lambda_0))
 \]
(1) Spectral ageing model – mathematical formula

- Semi-empirical model of spectral response curve $\phi(\lambda, t)$
 $$\phi(\lambda, t) = \phi(\lambda, 0) (e^{-\alpha t} + \beta (1 - e^{-\alpha t})) (1 + \gamma t (\lambda - \lambda_0))$$
(1) Spectral ageing model – mathematical formula

- Semi-empirical model of spectral response curve $\phi(\lambda, t)$
 \[\phi(\lambda, t) = \phi(\lambda, 0) \left(e^{-\alpha t} + \beta (1 - e^{-\alpha t}) \right) \left(1 + \gamma t (\lambda - \lambda_0) \right) \]

- Grey degradation: $e^{-\alpha t} + \beta (1 - e^{-\alpha t})$
 - α rate of grey degradation
 - β sensitivity of degraded mirror
Spectral ageing model – mathematical formula

- Semi-empirical model of spectral response curve \(\phi(\lambda, t) \)
 \[
 \phi(\lambda, t) = \phi(\lambda, 0) \left(e^{-\alpha t} + \beta (1 - e^{-\alpha t}) \right) (1 + \gamma t (\lambda - \lambda_0))
 \]

- Grey degradation: \(e^{-\alpha t} + \beta (1 - e^{-\alpha t}) \)
 - \(\alpha \) rate of grey degradation
 - \(\beta \) sensitivity of degraded mirror

- Physical explanation
 - Spatial division on the mirror
(1) Spectral ageing model – mathematical formula

- Semi-empirical model of spectral response curve \(\phi(\lambda, t) \)
 \[
 \phi(\lambda, t) = \phi(\lambda, 0) \left(e^{-\alpha t} + \beta (1 - e^{-\alpha t}) \right) (1 + \gamma t (\lambda - \lambda_0))
 \]

- Grey degradation: \(e^{-\alpha t} + \beta (1 - e^{-\alpha t}) \)
 - \(\alpha \) rate of grey degradation
 - \(\beta \) sensitivity of degraded mirror

- Physical explanation
 - Spatial division on the mirror
 - Cumulation of contamination
(1) **Spectral ageing model – mathematical formula**

- Semi-empirical model of spectral response curve \(\phi(\lambda, t) \)

 \[
 \phi(\lambda, t) = \phi(\lambda, 0) \left(e^{-\alpha t} + \beta \left(1 - e^{-\alpha t} \right) \right) \left(1 + \gamma t (\lambda - \lambda_0) \right)
 \]

- Grey degradation: \(e^{-\alpha t} + \beta \left(1 - e^{-\alpha t} \right) \)
 - \(\alpha \) rate of grey degradation
 - \(\beta \) sensitivity of degraded mirror

- Physical explanation
 - Spatial division on the mirror
 - Cumulation of contamination

 \[
 \phi(\lambda, t) \sim e^{-\tau z_0 (1 - e^{-\epsilon t})}
 \]
(1) Spectral ageing model – mathematical formula

- Semi-empirical model of spectral response curve $\phi(\lambda, t)$
 \[
 \phi(\lambda, t) = \phi(\lambda, 0) \left(e^{-\alpha t} + \beta \left(1 - e^{-\alpha t}\right) \right) \left(1 + \gamma t (\lambda - \lambda_0) \right)
 \]

- Grey degradation: $e^{-\alpha t} + \beta \left(1 - e^{-\alpha t}\right)$
 - α rate of grey degradation
 - β sensitivity of degraded mirror

- Physical explanation
 - Spatial division on the mirror
 - Cumulation of contamination
 \[
 (\phi(\lambda, t) \sim e^{-\tau z_0 (1 - e^{-\epsilon t})})
 \]

- Spectral degradation: $1 + \gamma t (\lambda - \lambda_0)$
 - γ rate of spectral degradation
Outline

Introduction

Main accomplishments
- Spectral ageing model
- Meteosat-7
 - Full Meteosat First Generation
 - Pre-launch characterisation problem of Meteosat-7 visible spectral response curve

Unpublished work
- Sensitivity study of spectral ageing model
- Regional validation for full MFG

Conclusions

Future prospects
(2) Meteosat-7 – spectral ageing correction

- Parameter fitting
 - Minimisation of the cost function using the Powell method

- Regional validation
 - Unfiltering with all-sky simulations
 - Yearly averages per 100×100 pixels
 - All-sky images (06/98–06/06): $\sigma = 1.1\%$ yr$^{-1}$
 - All-sky images (01/99–12/05): $\sigma = 0.6\%$ yr$^{-1}$
 - Clear-sky images (06/98–06/06): $\sigma = 0.4\%$ yr$^{-1}$
 - Clear-sky images (01/99–12/05): $\sigma = 0.3\%$ yr$^{-1}$

- Apply linear calibration increase

Published in March 2013
(2) Meteosat-7 – spectral ageing correction

- Parameter fitting
 - Minimisation of the cost function using the Powell method
 - Error estimation of parameters through 30 subsets of 100 targets

![Graph showing reflectance ratio r over time for different types of surfaces: Clouds, Ocean, Dark vegetation, Bright vegetation, Dark desert, Bright desert. The graph indicates the reflectance ratio for Meteosat-7 with parameters α=0.000357, β=0.760112, γ=0.000126. The data spans from 1999/01 to 2005/01.]
(2) Meteosat-7 – spectral ageing correction

- Parameter fitting
 - Minimisation of the cost function using the Powell method
 - Error estimation of parameters through 30 subsets of 100 targets

- Regional validation
 - Unfiltering with all-sky simulations

- Apply linear calibration increase

- Published in March 2013
(2) Meteosat-7 – spectral ageing correction

- **Parameter fitting**
 - Minimisation of the cost function using the Powell method
 - Error estimation of parameters through 30 subsets of 100 targets

- **Regional validation**
 - Unfiltering with all-sky simulations
 - Yearly averages per 100×100 pixels

Published in March 2013
(2) Meteosat-7 – spectral ageing correction

- Parameter fitting
 - Minimisation of the cost function using the Powell method
 - Error estimation of parameters through 30 subsets of 100 targets

- Regional validation
 - Unfiltering with all-sky simulations
 - Yearly averages per 100×100 pixels
 - All-sky images (06/98–06/06): $\sigma = 1.1\% yr^{-1}$
 - Clear-sky images (06/98–06/06): $\sigma = 0.4\% yr^{-1}$
 - Clear-sky images (01/99–12/05): $\sigma = 0.3\% yr^{-1}$

Published in March 2013
(2) Meteosat-7 – spectral ageing correction

- Parameter fitting
 - Minimisation of the cost function using the Powell method
 - Error estimation of parameters through 30 subsets of 100 targets

- Regional validation
 - Unfiltering with all-sky simulations
 - Yearly averages per 100×100 pixels
 - All-sky images (06/98–06/06): $\sigma = 1.1\% \text{yr}^{-1}$
 - All-sky images (01/99–12/05): $\sigma = 0.6\% \text{yr}^{-1}$
(2) Meteosat-7 – spectral ageing correction

- Parameter fitting
 - Minimisation of the cost function using the Powell method
 - Error estimation of parameters through 30 subsets of 100 targets

- Regional validation
 - Unfiltering with all-sky simulations
 - Yearly averages per 100×100 pixels
 - All-sky images (06/98–06/06): $\sigma = 1.1\%\text{yr}^{-1}$
 - All-sky images (01/99–12/05): $\sigma = 0.6\%\text{yr}^{-1}$
 - Clear-sky images (06/98–06/06): $\sigma = 0.4\%\text{yr}^{-1}$
(2) Meteosat-7 – spectral ageing correction

- **Parameter fitting**
 - Minimisation of the cost function using the Powell method
 - Error estimation of parameters through 30 subsets of 100 targets

- **Regional validation**
 - Unfiltering with all-sky simulations
 - Yearly averages per 100×100 pixels
 - All-sky images (06/98–06/06): $\sigma = 1.1\% \text{yr}^{-1}$
 - All-sky images (01/99–12/05): $\sigma = 0.6\% \text{yr}^{-1}$
 - Clear-sky images (06/98–06/06): $\sigma = 0.4\% \text{yr}^{-1}$
 - Clear-sky images (01/99–12/05): $\sigma = 0.3\% \text{yr}^{-1}$
(2) Meteosat-7 – spectral ageing correction

- **Parameter fitting**
 - Minimisation of the cost function using the Powell method
 - Error estimation of parameters through 30 subsets of 100 targets

- **Regional validation**
 - Unfiltering with all-sky simulations
 - Yearly averages per 100×100 pixels
 - All-sky images (06/98–06/06): $\sigma = 1.1\% \text{yr}^{-1}$
 - All-sky images (01/99–12/05): $\sigma = 0.6\% \text{yr}^{-1}$
 - Clear-sky images (06/98–06/06): $\sigma = 0.4\% \text{yr}^{-1}$
 - Clear-sky images (01/99–12/05): $\sigma = 0.3\% \text{yr}^{-1}$

- **Apply linear calibration increase**
Meteosat-7 – spectral ageing correction

- Parameter fitting
 - Minimisation of the cost function using the Powell method
 - Error estimation of parameters through 30 subsets of 100 targets
- Regional validation
 - Unfiltering with all-sky simulations
 - Yearly averages per 100×100 pixels
 - All-sky images (06/98–06/06): $\sigma = 1.1\%\text{yr}^{-1}$
 - All-sky images (01/99–12/05): $\sigma = 0.6\%\text{yr}^{-1}$
 - Clear-sky images (06/98–06/06): $\sigma = 0.4\%\text{yr}^{-1}$
 - Clear-sky images (01/99–12/05): $\sigma = 0.3\%\text{yr}^{-1}$
- Apply linear calibration increase
- Published in March 2013
Outline

Introduction

Main accomplishments
 Spectral ageing model
 Meteosat-7
 Full Meteosat First Generation
 Pre-launch characterisation problem of Meteosat-7 visible spectral response curve

Unpublished work
 Sensitivity study of spectral ageing model
 Regional validation for full MFG

Conclusions

Future prospects
(3) Full MFG – spectral ageing correction

- Problems in original time series
(3) Full MFG – spectral ageing correction

- Problems in original time series
 - volcanic eruptions corrected through least-squares fitting with GACP AOD dataset
(3) Full MFG – spectral ageing correction

- Problems in original time series
 - volcanic eruptions corrected through least-squares fitting with GACP AOD dataset
 - 6-bit digitisation

![Graph showing reflectance ratio over time]

<table>
<thead>
<tr>
<th>Time</th>
<th>Reflectance ratio r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983/01</td>
<td>0.6</td>
</tr>
<tr>
<td>1987/01</td>
<td>0.7</td>
</tr>
<tr>
<td>1991/01</td>
<td>0.8</td>
</tr>
<tr>
<td>1995/01</td>
<td>0.9</td>
</tr>
<tr>
<td>1999/01</td>
<td>1.0</td>
</tr>
<tr>
<td>2003/01</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Legend:
- Full MFG (with seasonal correction)
- Meteosat-2
- Meteosat-3
- Meteosat-4
- Meteosat-5
- Meteosat-6
- Meteosat-7
- Clouds
- Ocean
- Dark Vegetation
- Bright Vegetation
- Dark Desert
- Bright Desert
3) Full MFG – spectral ageing correction

- Problems in original time series
 - volcanic eruptions corrected through least-squares fitting with GACP AOD dataset
 - 6-bit digitisation
 - saturation
(3) Full MFG – spectral ageing correction

- Problems in original time series
 - volcanic eruptions corrected through least-squares fitting with GACP AOD dataset
 - 6-bit digitisation
 - saturation
- Used ADC/XADC and IODC to improve model parameters
(3) Full MFG – spectral ageing correction

- Problems in original time series
 - volcanic eruptions corrected through least-squares fitting with GACP AOD dataset
 - 6-bit digitisation
 - saturation
- Used ADC/XADC and IODC to improve model parameters
- Ageing correction
 - parameter fitting through minimisation
(3) Full MFG – spectral ageing correction

- Problems in original time series
 - volcanic eruptions corrected through least-squares fitting with GACP AOD dataset
 - 6-bit digitisation
 - saturation

- Used ADC/XADC and IODC to improve model parameters

- Ageing correction
 - parameter fitting through minimisation
 - normalisation with respect to Meteosat-7 bright desert
(3) Full MFG – spectral ageing correction

- Problems in original time series
 - volcanic eruptions corrected through least-squares fitting with GACP AOD dataset
 - 6-bit digitisation
 - saturation

- Used ADC/XADC and IODC to improve model parameters

- Ageing correction
 - parameter fitting through minimisation
 - normalisation with respect to Meteosat-7 bright desert

- Long-term stability

<table>
<thead>
<tr>
<th>Surface type</th>
<th>Met-4 – 7 (17 yrs)</th>
<th>Met-2 – 7 (24 yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clouds</td>
<td>0.0123</td>
<td>0.0239</td>
</tr>
<tr>
<td>Ocean</td>
<td>0.0167</td>
<td>0.0611</td>
</tr>
<tr>
<td>Dark vegetation</td>
<td>0.0140</td>
<td>0.0437</td>
</tr>
<tr>
<td>Bright vegetation</td>
<td>0.0120</td>
<td>0.0266</td>
</tr>
<tr>
<td>Dark desert</td>
<td>0.0142</td>
<td>0.0230</td>
</tr>
<tr>
<td>Bright desert</td>
<td>0.0098</td>
<td>0.0099</td>
</tr>
</tbody>
</table>
Problems in original time series
- volcanic eruptions corrected through least-squares fitting with GACP AOD dataset
- 6-bit digitisation
- saturation

Used ADC/XADC and IODC to improve model parameters

Ageing correction
- parameter fitting through minimisation
- normalisation with respect to Meteosat-7 bright desert

Long-term stability

Published in March 2014
Outline

Introduction

Main accomplishments
 Spectral ageing model
 Meteosat-7
 Full Meteosat First Generation
 Pre-launch characterisation problem of Meteosat-7 visible spectral response curve

Unpublished work
 Sensitivity study of spectral ageing model
 Regional validation for full MFG

Conclusions

Future prospects
(4) Pre-launch characterisation problem

- Using the SEVIRI HRV data of Meteosat-8 in the overlap period 2004–2006
 - Successor channel of MVIRI VIS
 - Comparable spectral response curves

![Normalized flux vs Wavelength](image)

\[\phi_{\text{Met8}}(\lambda, 0) \quad \phi_{\text{Met7}}(\lambda, 0) \]

Normalized flux
Wavelength (µm)

- Published in August 2013
(4) Pre-launch characterisation problem

- Using the SEVIRI HRV data of Meteosat-8 in the overlap period 2004–2006
 - Successor channel of MVIRI VIS
 - Comparable spectral response curves

- Cloudy and clear-sky target selection in limited FOV

- Validation of spectral ageing model
 - Improvement using Meteosat-8 HRV curve from 4.5% to 2.1% RMS
 - Total error $\sim 1.4\%$

- Published in August 2013
(4) Pre-launch characterisation problem

- Using the SEVIRI HRV data of Meteosat-8 in the overlap period 2004–2006
 - Successor channel of MVIRI VIS
 - Comparable spectral response curves
- Cloudy and clear-sky target selection in limited FOV
- Relative intercept differences
Pre-launch characterisation problem

- Using the SEVIRI HRV data of Meteosat-8 in the overlap period 2004–2006
 - Successor channel of MVIRI VIS
 - Comparable spectral response curves
- Cloudy and clear-sky target selection in limited FOV
- Relative intercept differences
 - Validation of spectral ageing model
Pre-launch characterisation problem

- Using the SEVIRI HRV data of Meteosat-8 in the overlap period 2004–2006
 - Successor channel of MVIRI VIS
 - Comparable spectral response curves
- Cloudy and clear-sky target selection in limited FOV
- Relative intercept differences
 - Validation of spectral ageing model
 - Improvement using Meteosat-8 HRV curve from 4.5% to 2.1% RMS

Reflectance ratio r

<table>
<thead>
<tr>
<th></th>
<th>2004/05</th>
<th>2004/11</th>
<th>2005/05</th>
<th>2005/11</th>
<th>2006/05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clouds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark vegetation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bright vegetation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark desert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bright desert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Meteosat-7 (Spectral ageing -- Met-7 spec response)

<table>
<thead>
<tr>
<th></th>
<th>2004/05</th>
<th>2004/11</th>
<th>2005/05</th>
<th>2005/11</th>
<th>2006/05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clouds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark vegetation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bright vegetation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark desert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bright desert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Meteosat-8 (Spectral ageing -- Met-8 spec response)

<table>
<thead>
<tr>
<th></th>
<th>2004/05</th>
<th>2004/11</th>
<th>2005/05</th>
<th>2005/11</th>
<th>2006/05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clouds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark vegetation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bright vegetation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark desert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bright desert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(4) Pre-launch characterisation problem

- Using the SEVIRI HRV data of Meteosat-8 in the overlap period 2004–2006
 - Successor channel of MVIRI VIS
 - Comparable spectral response curves

- Cloudy and clear-sky target selection in limited FOV

- Relative intercept differences
 - Validation of spectral ageing model
 - Improvement using Meteosat-8 HRV curve from 4.5% to 2.1% RMS
 - Total error $\sim 1.4\%$
Pre-launch characterisation problem

- Using the SEVIRI HRV data of Meteosat-8 in the overlap period 2004–2006
 - Successor channel of MVIRI VIS
 - Comparable spectral response curves
- Cloudy and clear-sky target selection in limited FOV
- Relative intercept differences
 - Validation of spectral ageing model
 - Improvement using Meteosat-8 HRV curve from 4.5% to 2.1% RMS
 - Total error \(\sim 1.4\% \)
- Published in August 2013
Outline

Introduction

Main accomplishments
 - Spectral ageing model
 - Meteosat-7
 - Full Meteosat First Generation
 - Pre-launch characterisation problem of Meteosat-7 visible spectral response curve

Unpublished work
 - Sensitivity study of spectral ageing model
 - Regional validation for full MFG

Conclusions

Future prospects
Sensitivity study – ΔECV

- Simulate degraded radiances after 8 year using both spectral and linear modeled spectral response curves

- Decrease in difference with self-calibration

It is worth to consider the spectral ageing model for most ECVs
(U-1) Sensitivity study – ΔECV

- Simulate degraded radiances after 8 year using both spectral and linear modeled spectral response curves
- Compute difference for several Essential Climate Variables

![Graph showing spectral response over wavelength with two curves: one for SSCC degraded after 8 years and another for spectrally degraded after 8 years.](image)
Sensitivity study – ΔECV

- Simulate degraded radiances after 8 year using both spectral and linear modeled spectral response curves
- Compute difference for several Essential Climate Variables
 - Aerosol optical depth over ocean
 - $\Rightarrow \sim$ background aerosols
 - Land surface albedo
 - $\sim 5\%$ over vegetation
 - Cloud optical depth
 - $\sim 10\%$ over ocean
 - TOA outgoing VIS BB-radiation
 - $\sim 4\%$ over vegetation

- Decrease in difference with self-calibration
 - It is worth to consider the spectral ageing model for most ECVs
Sensitivity study – ΔECV

- Simulate degraded radiances after 8 year using both spectral and linear modeled spectral response curves
- Compute difference for several Essential Climate Variables
 - Aerosol optical depth over ocean
 - \Rightarrow background aerosols
 - Land surface albedo
 - \Rightarrow 5% over vegetation

\[\Delta A_{\text{Vegetation}} \]

- Decrease in difference with self-calibration
 - It is worth to consider the spectral ageing model for most ECVs
(U-1) Sensitivity study – ΔECV

- Simulate degraded radiances after 8 year using both spectral and linear modeled spectral response curves
- Compute difference for several Essential Climate Variables
 - Aerosol optical depth over ocean ⇒ ∼ background aerosols
 - Land surface albedo ⇒ 5% over vegetation
 - Cloud optical depth ⇒ 10% over ocean

- Decrease in difference with self-calibration ⇒ It is worth to consider the spectral ageing model for most ECVs
(U-1) Sensitivity study – ΔECV

- Simulate degraded radiances after 8 year using both spectral and linear modeled spectral response curves
- Compute difference for several Essential Climate Variables
 - Aerosol optical depth over ocean ➞ \sim background aerosols
 - Land surface albedo ➞ 5% over vegetation
 - Cloud optical depth ➞ 10% over ocean
 - TOA outgoing VIS BB-radiation ➞ 4% over vegetation

\[\Delta L_{BB} \text{ (W m}^{-2}\text{ sr}^{-1}) \]

\begin{tikzpicture}[scale=0.7]
 \begin{axis}[
 xlabel={Broadband radiance L_{BB} (W m$^{-2}$ sr$^{-1}$)},
 ylabel=ΔL_{BB} (W m$^{-2}$ sr$^{-1}$),
 xmin=-4, xmax=300,
 ymin=-4, ymax=1,
 xtick={-4,-3,-2,-1,0,1,50,100,150,200,250,300},
 ytick={-4,-3,-2,-1,0,1,50,100,150,200,250,300},
 xmajorgrids, ymajorgrids,
 legend style={at={(0.5,0.05)},anchor=south},
 legend cell align=left,
 legend entries={Vegetation}
 \end{axis}
\end{tikzpicture}
(U-1) Sensitivity study – ΔECV

- Simulate degraded radiances after 8 year using both spectral and linear modeled spectral response curves
- Compute difference for several Essential Climate Variables
 - Aerosol optical depth over ocean
 - \sim background aerosols
 - Land surface albedo
 - 5% over vegetation
 - Cloud optical depth
 - 10% over ocean
 - TOA outgoing VIS BB-radiation
 - 4% over vegetation
- Decrease in difference with self-calibration
(U-1) Sensitivity study – ΔECV

- Simulate degraded radiances after 8 year using both spectral and linear modeled spectral response curves
- Compute difference for several Essential Climate Variables
 - Aerosol optical depth over ocean
 $\Rightarrow \sim$ background aerosols
 - Land surface albedo
 \Rightarrow 5% over vegetation
 - Cloud optical depth
 \Rightarrow 10% over ocean
 - TOA outgoing VIS BB-radiation
 \Rightarrow 4% over vegetation
- Decrease in difference with self-calibration
 \Rightarrow It is worth to consider the spectral ageing model for most ECVs
Outline

Introduction

Main accomplishments
 Spectral ageing model
 Meteosat-7
 Full Meteosat First Generation
 Pre-launch characterisation problem of Meteosat-7 visible spectral response curve

Unpublished work
 Sensitivity study of spectral ageing model
 Regional validation for full MFG

Conclusions

Future prospects
(U-2) Full MFG Regional validation

- All-sky images Meteosat-2 – 7
 \[\sigma = 0.7\% \text{yr}^{-1} \]
(U-2) Full MFG Regional validation

- All-sky images Meteosat-2 – 7
 \[\sigma = 0.7\%\text{yr}^{-1} \]
- Clear-sky images Meteosat-2 – 7
 \[\sigma = 1.7\%\text{yr}^{-1} \]
(U-2) Full MFG Regional validation

- All-sky images Meteosat-2 – 7
 \[\sigma = 0.7\% yr^{-1} \]
- Clear-sky images Meteosat-2 – 7
 \[\sigma = 1.7\% yr^{-1} \]
- All-sky images Meteosat-4 – 7
 \[\sigma = 0.5\% yr^{-1} \]
(U-2) Full MFG Regional validation

- All-sky images Meteosat-2 – 7
 \[\sigma = 0.7\%\text{yr}^{-1}\]
- Clear-sky images Meteosat-2 – 7
 \[\sigma = 1.7\%\text{yr}^{-1}\]
- All-sky images Meteosat-4 – 7
 \[\sigma = 0.5\%\text{yr}^{-1}\]
- Clear-sky images Meteosat-4 – 7
 \[\sigma = 0.6\%\text{yr}^{-1}\]
Outline

Introduction

Main accomplishments
- Spectral ageing model
- Meteosat-7
- Full Meteosat First Generation
- Pre-launch characterisation problem of Meteosat-7 visible spectral response curve

Unpublished work
- Sensitivity study of spectral ageing model
- Regional validation for full MFG

Conclusions

Future prospects
Conclusions

- A spectral ageing model was created, applied and validated for the full MFG database
Conclusions

• A spectral ageing model was created, applied and validated for the full MFG database
• Proven pre-launch characterisation problem of Meteosat-7 VIS spectral response curve
Conclusions

- A spectral ageing model was created, applied and validated for the full MFG database
- Proven pre-launch characterisation problem of Meteosat-7 VIS spectral response curve
- ECV sensitivity study between spectral and linear degradation
Conclusions

• A spectral ageing model was created, applied and validated for the full MFG database
• Proven pre-launch characterisation problem of Meteosat-7 VIS spectral response curve
• ECV sensitivity study between spectral and linear degradation
• Achievements and accompanying problems were presented:
 ◦ scientific papers in peer-reviewed journals
 ◦ oral presentations at international conferences and meetings
 ◦ personal communication and visit with EUMETSAT team working on calibration of MVIRI VIS channel
Outline

Introduction

Main accomplishments
- Spectral ageing model
- Meteosat-7
- Full Meteosat First Generation
- Pre-launch characterisation problem of Meteosat-7 visible spectral response curve

Unpublished work
- Sensitivity study of spectral ageing model
- Regional validation for full MFG

Conclusions

Future prospects
Future prospects – Correcting spectral response curve

- Problems with Meteosat-2 and -3
 - 6-bit digitisation: decrease offset slightly
 - characterisation issue of spectral response curve: replace or mathematically adjust the spectral response curves

- Use of Sciamachy to correct spectral response curve of Meteosat-5, -6, and -7
 - use spectra of Sciamachy and observations from MVIRI to derive spectral response curve
 - based on current response curve or starting from gaussian curve
 - need co-angular data (limited!)
Future prospects – Correcting spectral response curve

- Problems with Meteosat-2 and -3
 - 6-bit digitisation: decrease offset slightly
 - characterisation issue of spectral response curve: replace or mathematically adjust the spectral response curves

- Use of Sciamachy to correct spectral response curve of Meteosat-5, -6, and -7
 - use spectra of Sciamachy and observations from MVIRI to derive spectral response curve
 - based on current response curve or starting from gaussian curve
 - need co-angular data (limited!)
Future prospects – Providing spectral ageing model

- Generate GERB-like dataset
 - ageing corrected TOA fluxes
 - GERB SW channel used for empirical unfiltering
 - required by the Climate Monitoring SAF
Future prospects – Providing spectral ageing model

- Generate GERB-like dataset
 - ageing corrected TOA fluxes
 - GERB SW channel used for empirical unfiltering
 - required by the Climate Monitoring SAF
- Correct the original images
 - ageing corrected DC or reflectances
 - theoretical unfiltering to a reference spectral response curve (e.g. Meteosat-7 at launch)
Future prospects – Providing spectral ageing model

- Generate GERB-like dataset
 - ageing corrected TOA fluxes
 - GERB SW channel used for empirical unfiltering
 - required by the Climate Monitoring SAF
- Correct the original images
 - ageing corrected DC or reflectances
 - theoretical unfiltering to a reference spectral response curve (e.g. Meteosat-7 at launch)
- Mathematical formula and parameters
 - useful for LUTs of AOD, COD, ...
Thank you