
TOA Radiation GERB dataset – 2nd edition

Development Status

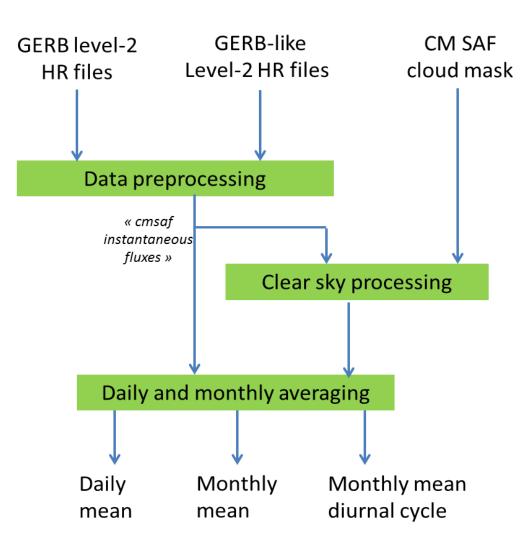
TRS : Top-Of-Atmosphere (TOA) Reflected Solar

- TET : TOA Emitted Thermal (aka OLR)
- TIS : TOA Incoming Solar (derived from the Total Solar Irradiance TSI)

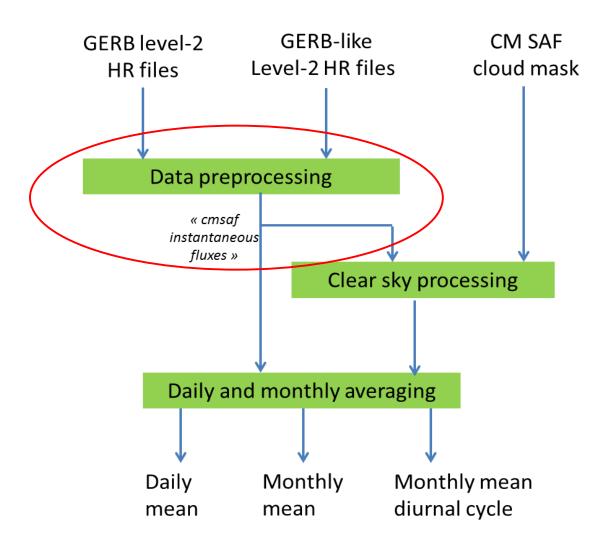
TOA Radiation Portfolio in CM SAF

type	products	Temp. cover	Grid / area	Inst.	status
EDR	TRS (CM-112) TET (CM-114) TIS (CM-116, discont.)	Feb. 2004 onward (NRT)	sinus. eq. area (45km)²	GERB, SEVIRI, CERES	operation nal
GERB dataset ed01	TRS (CM-13) TET (CM-115)	Feb. 2004 – Jan. 2011	sinus. eq. area (45km)²	GERB, SEVIRI, CERES	Released in 2013
GERB dataset ed02	CM-21301 :TRS all sky CM-21321 : TRS clear sky CM-21331 : TET all sky CM-21351 : TET clear sky	Feb. 2004 – Jan. 2014	Geo grid 3x3 SEVIRI pixels (9km subsat)	GERB, SEVIRI	RR 2.5 (summer 2014) PCR : Q2 2015 DRR: Q4 2015
MVIRI/SEVIRI/ GERB dataset ed01	CM-23301 :TRS all sky CM-23331 :TET all sky	Feb. 1982 – Jan. 2014	Regular lat-lon 0.05° resolution	MVIRI, SEVIRI	RR 2.6 PCR : Q2 2015 DRR: Q4 2015

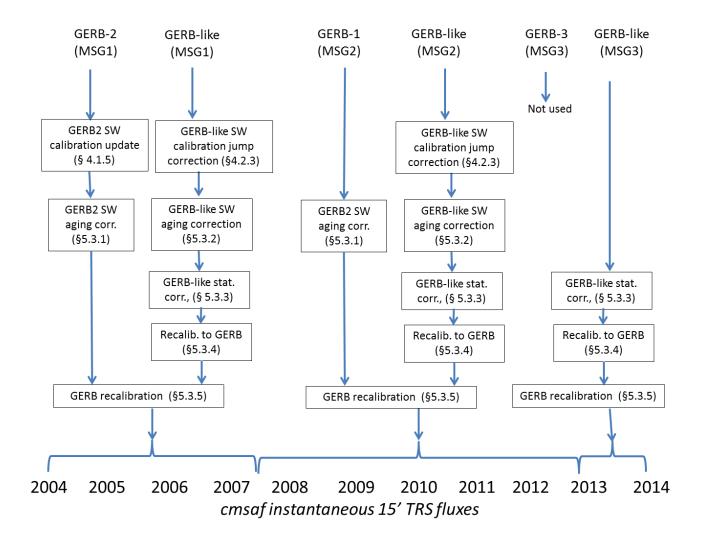
For all products : Monthly mean, daily mean, monthly mean diurnal cycle


Requirement review – accuracy

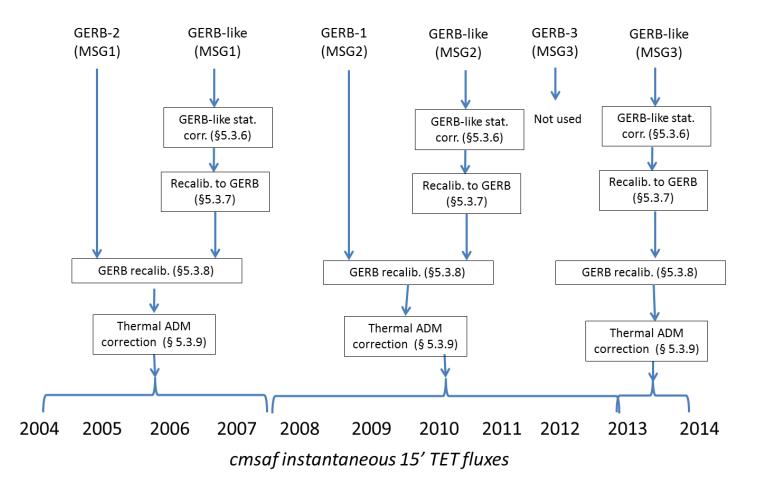
Products	Threshold	Target	Optimal	CDOP-1 accuracy.	CERES accuracy.	remarks	
TRS all sky MM	8 W/m²	4 W/m²	2 W/m²	3.0 W/m²	4.2 W/m²		
TRS clearsky MM	,	,	,		,	Requirements referring to error:	
TRS allsky DM	16 W/m²	8 W/m²	4 W/m²	5.5 W/m²	7.8 W/m²	- at 1 standard deviation	
TRS clearsky DM	,	,	,		,	(RMS error)	
TRS allsky MMDC	16 W/m²	8 W/m²	4 W/m²	12.8W/m²	16.7 W/m²	- at 1° x 1° scale	
TRS clearsky MMDC	,	,	,	,	,		
TET allsky MM	4 W/m²	2 W/m²	1 W/m²	2.0 W/m ²	2.0 W/m²	- taking only VZA<60°	
TET clearsky MM	,	,	,		,,	- not including bias due to	
TET allsky DM	8 W/m²	4 W/m²	2 W/m²	3.6 W/m²	1.9 W/m²	the GERB absolute calibration.	
TET clearsky DM	0 11,111	,	,	,	,		
TET all sky MMDC	8 W/m²	4 W/m²	2 W/m²	3.1 W/m²	3.1 W/m²		
TET clearsky MMDC	0.1711	,.	2/.	3.1 W/m	3.1 W/m		


Requirement review – stability

Products	threshold	target	optimal	remarks
TRS all sky MM	N/A	2 W/m²/dec	0.3 W/m²/dec	
TRS clearsky MM	N/A	2 W/m /uec	0.5 W/III / dec	 at 1° x 1° scale taking only VZA<60°
TET all sky MM	N/A	2 W/m²/dec	0.3 W/m²/dec	
TET clearsky MM	IN/A		0.5 w/m-/dec	


Processing flowchart

Processing flowchart



Preprocessing – flowchart for TRS

Note : not shown is the use of backup MSG satellite in case of failures, decontamination, ...

Preprocessing – flowchart TET

GERB SW channel aging correction

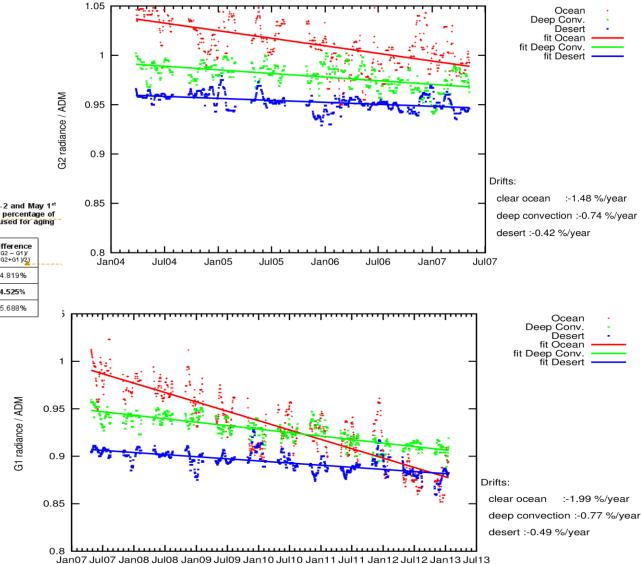
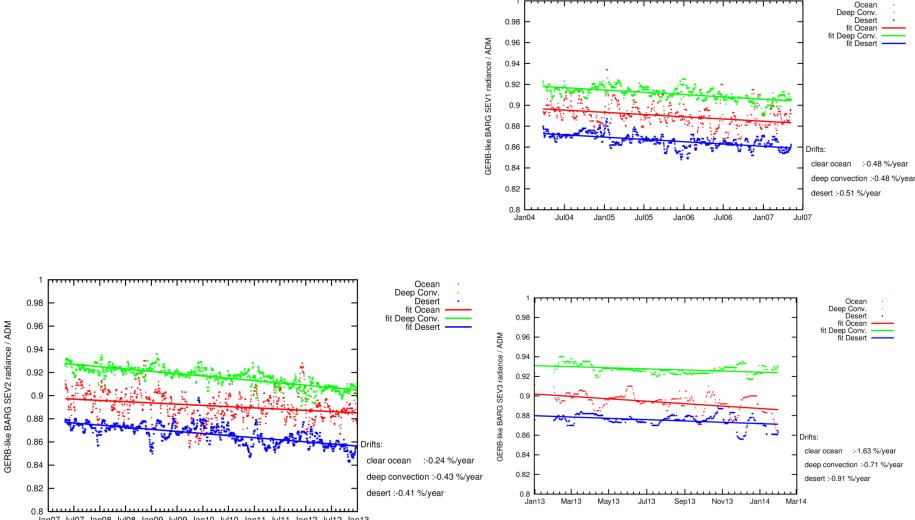
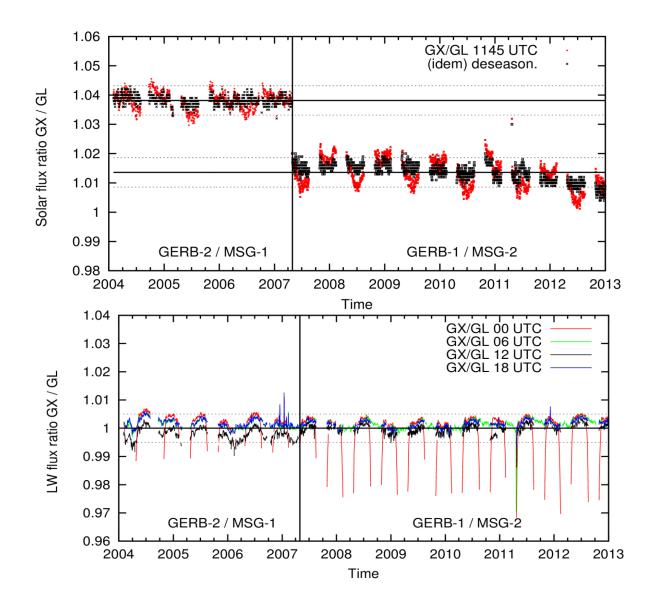
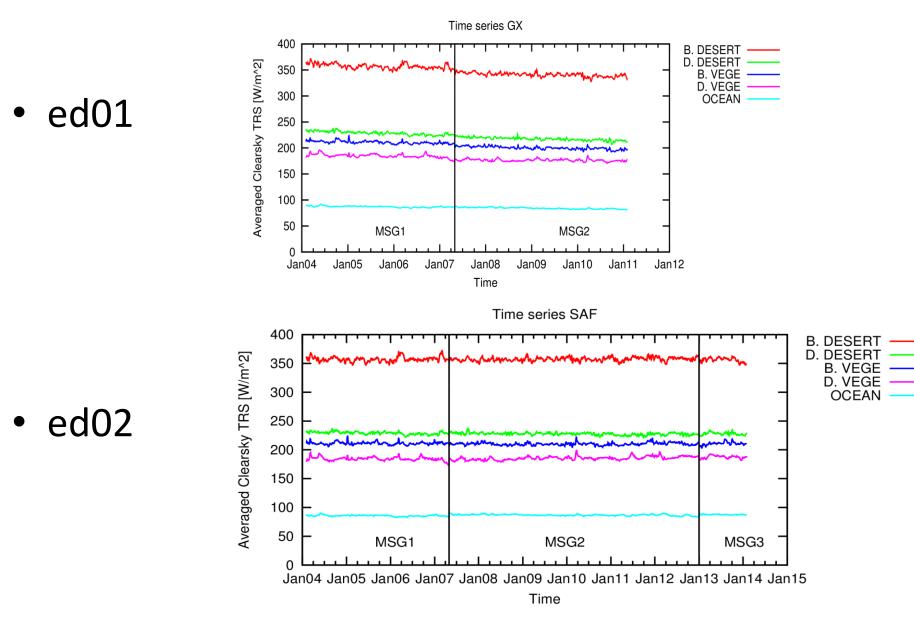



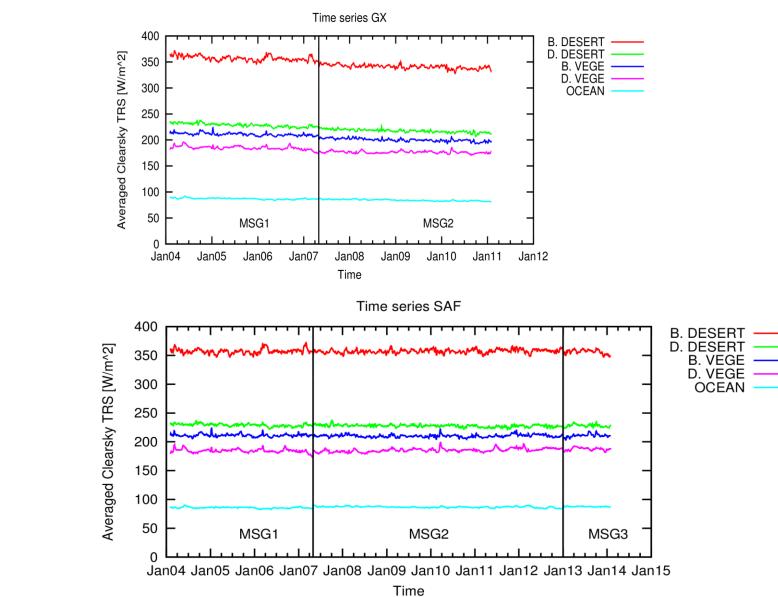
Table 7 : Aging and ratio to the model extrapolated on Feb. 1^{et} 2004 for GERB-2 and May 1^{et} 2007 for GERB-1. The last column gives the differences of level expressed as a percentage of the average of the 2 instruments. The DCC results are highlighted as they are used for aging correction in the CM SAF datasets.

Scene type	G2 aging (ක)	G1 aging (යා	G2 ratio @ t₀ = 20040201	G1 ratio @ t₀=20070501	Difference (G2 – G1)/ ((G2+G1)/2)
Ocean	-1.48 %/year	-1.99 %/year	1.0391	0.9902	4.819%
DCC	-0.74 %/year	-0.77%/year	0.9920	0.9481	4.525%
desert	-0.42 %/year	-0.49%/year	0.9601	0.9070	5.688%

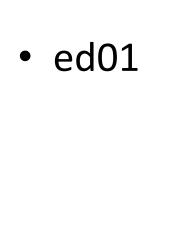

GERB-like TRS fluxes aging

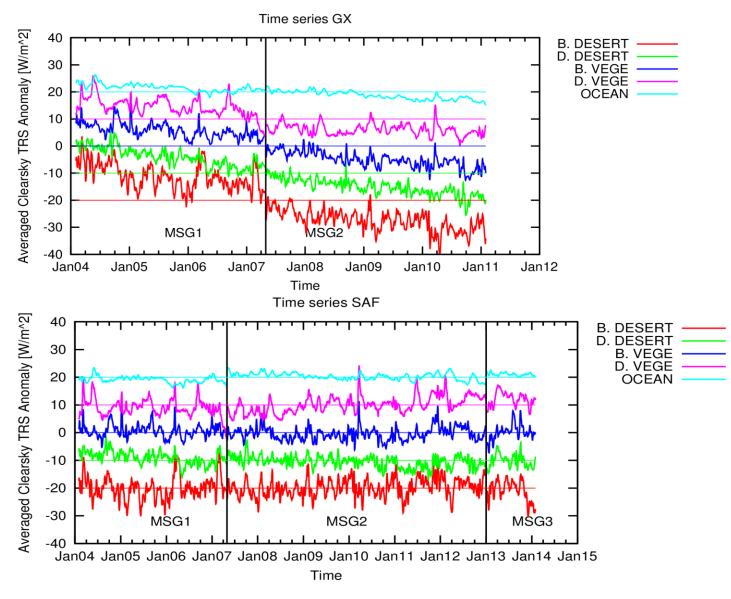

Jan07 Jul07 Jan08 Jul08 Jan09 Jul09 Jan10 Jul10 Jan11 Jul11 Jan12 Jul12 Jan13

Mixing GERB and GERB-like

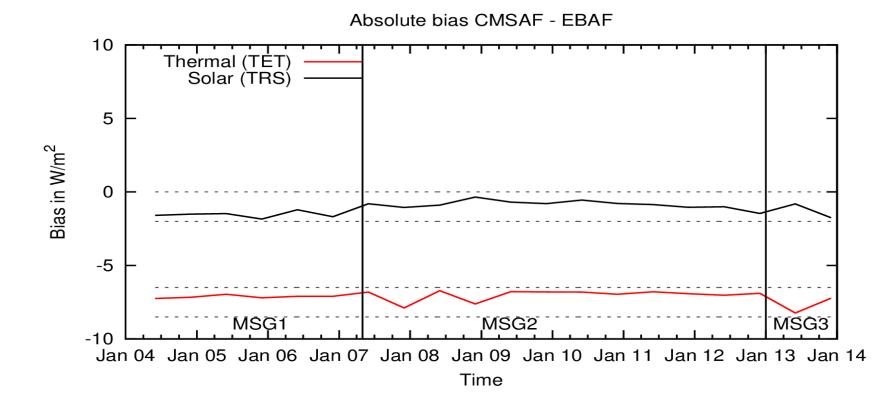

Once GERB and GERBlike corrected for aging → simple factor to scale the GERB-like to the GERB level

Validation on averaged TRS clear sky fluxes


Validation of the aging correction : averaged TRS clear sky fluxes


• ed01

• ed02


Validation of the aging correction clear sky images (full FOV)

ed02

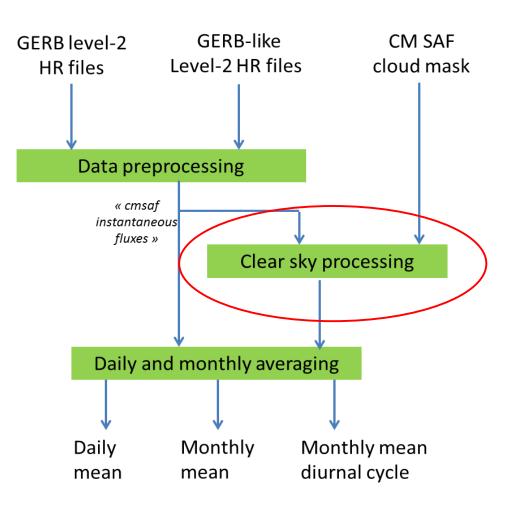
Validation aging correction: comparison with CERES EBAF (all sky)

Note : dashed lines are 2 W/m²/decade target stability

Reviewer's comments about pre-processing

- Concerns that the GERB aging/recalibration could be inconsistent with a future GERB ED02 (traceability problem) and suggest to wait availability of ED02.

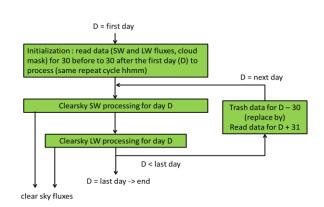
 \rightarrow Not possible with a data release in CDOP-2

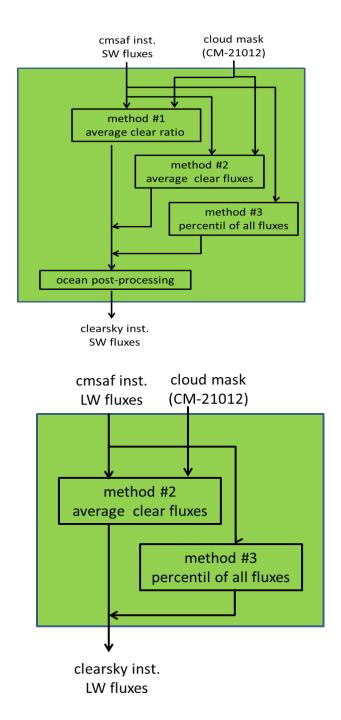

- Suggest that the GERB-like could be further improved within CM SAF and better handled in a full reprocessing.

 \rightarrow Indeed, this will be considered for CDOP-3

- Suggest not to cover MSG-3 era (stop dataset on Dec. 31st 2012).

 \rightarrow We don't have evidence of problem affecting the GERB-like of MSG-3. Propose to postpone a decision to the DRR.


Processing part 2/3 : clear sky processing



clear sky processing

Method:

- at HR pixel level (9km),
- at repeat cycle level (hhmm),
- look for the N closest in time clear observations (based on CM-21012),
- method 1 : averaged of ratios of the TRS flux wrt to CERES TRMM clear surface fluxes.
- method 2 : averaged of the clear sky fluxes
- method 3 : percentil of all the fluxes

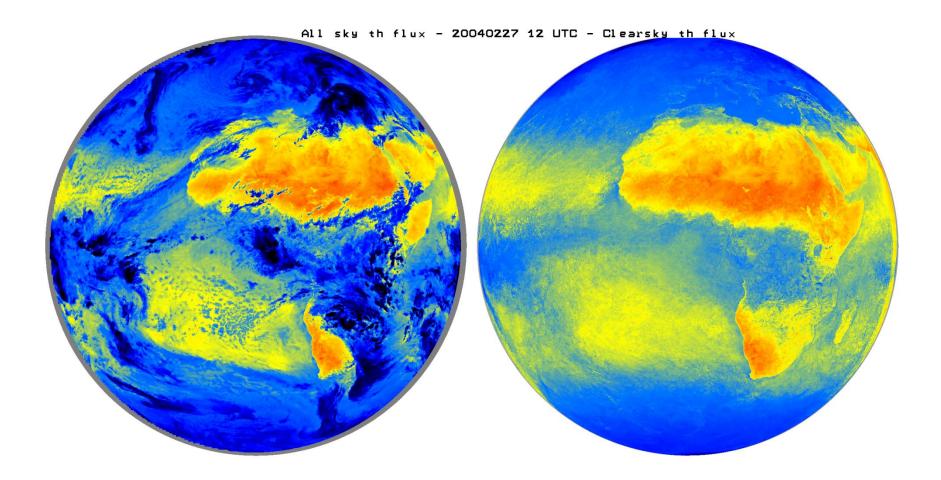
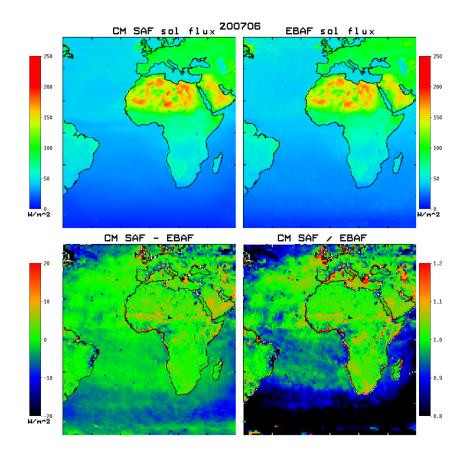


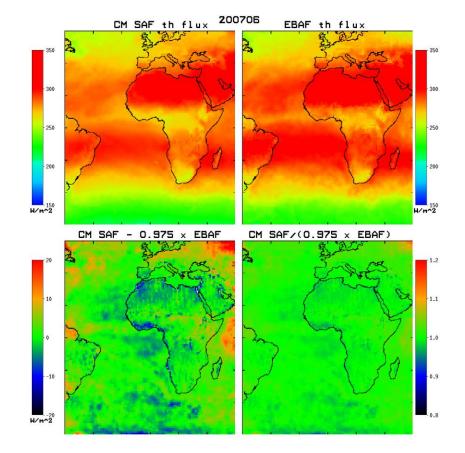
Illustration TRS clear sky processing

All sky sol flux - 20040228 12 UTC - Clearsky sol flux

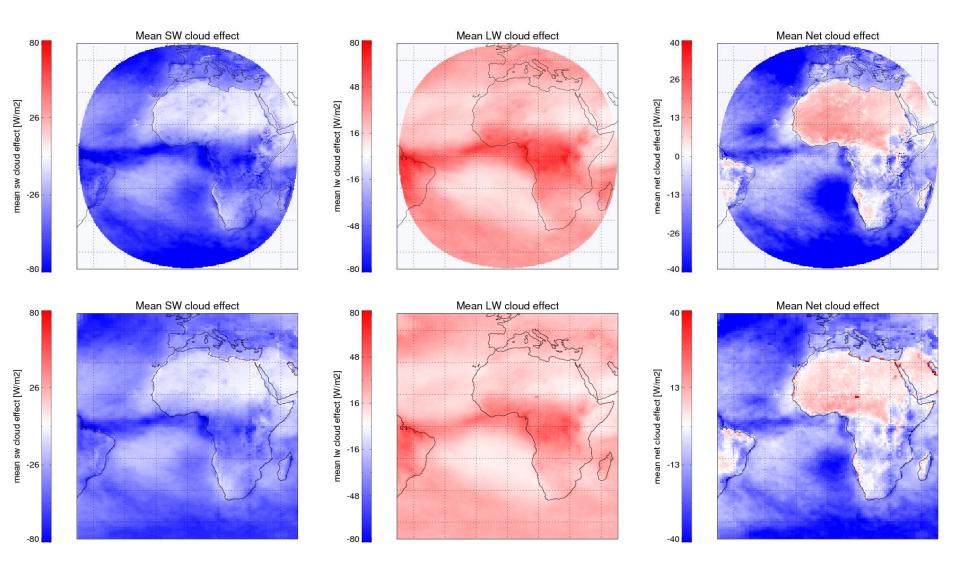
Illustration TET clear sky processing

Optimum number of observations to be averaged?


TRS :

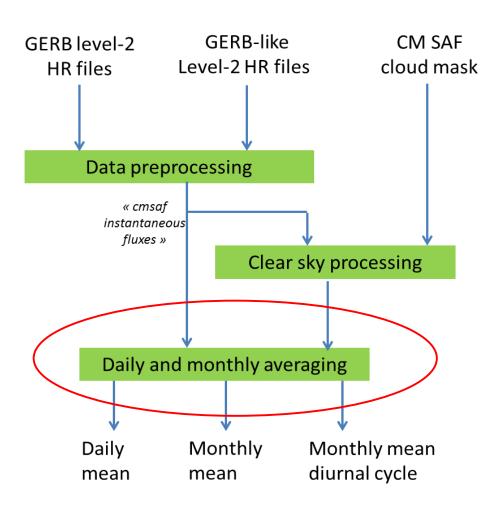

bias	RMS	RMS corrected
-1.287772	10.059398	9.976629
-0.754753	8.739850	8.707200
-0.694078	8.575695	8.547561
-0.605873	8.378229	8.356293
-0.581573	8.425612	8.405516
-0.508390	8.413248	8.397874
-0.458638	8.425915	8.413423
-0.489276	8.339220	8.324855
-0.442231	8.373984	8.362299
	-1.287772 -0.754753 -0.694078 -0.605873 -0.581573 -0.508390 -0.458638 -0.489276	-1.287772 10.059398 -0.754753 8.739850 -0.694078 8.575695 -0.605873 8.378229 -0.581573 8.425612 -0.508390 8.413248 -0.458638 8.425915 -0.489276 8.339220

TET

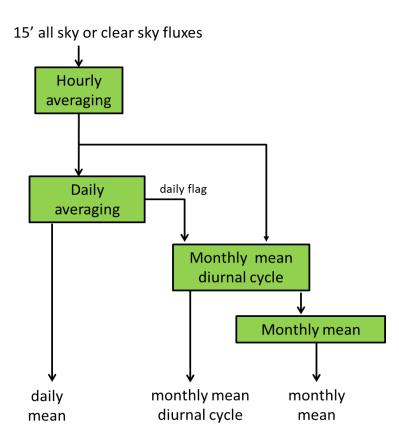

Ν	bias	RM	S RM	1S corrected
1	bias =	-2.174323	8.300489	rms_corected = 8.010646
2	bias =	-1.148953	6.817482	rms_corected = 6.719968
3	bias =	-1.080976	7.027991	rms_corected = 6.944361
4	bias =	-0.816596	6.954168	rms_corected = 6.906057
5	bias =	-0.786153	7.158953	rms_corected = 7.115657
6	bias =	-0.619915	7.017090	rms_corected = 6.989653
7	bias =	-0.675800	7.118992	rms_corected = 7.086843
8	bias =	-0.650571	7.121980	rms_corected = 7.092204
9	bias =	-0.765046	7.248840	rms_corected = 7.208356

Comparison with EBAF

Comparison of CRE with CERES (courtesy Martin Stengel, DWD)


Review of clear sky algorithm

- Algorithm description not clear in the ATBD
 - \rightarrow ATBD will be improved.
- Strongly recommend ED02 GERB fluxes as better input (e.g. clear ocean ADM will depend on the aerosol content).
 - → Yes, for ocean but the land fluxes would be the same in ED01 and ED02. It is still possible in CM SAF to recompute the clear ocean fluxes from the radiance using the Loeb et al. method (was already done for DAF product)
- Seems that this is not what the GERB team is thinking appropriate for GERB users.


ightarrow effect of cross-month contamination will be quantified

- Justification of not working at 3km judged not convincing.
 - \rightarrow ATBD will be improved.

Processing part 3/3 : daily and monthly averaging

Daily and monthly averaging

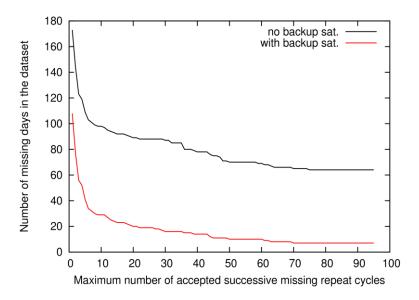


Table 15: Effect of successive missing repeat cycle on daily mean TRS and TET.

Number of successive	TR S mean	TRS mean	TRS	TET mean	TET mean	TET
missing re-	Bias	abs. bias	RMS	Bias	abs.bias	RMS
peat cycles	W/mª	W/mª	W/mª	W/m⁼	W/m⁼	W/mª
3	-0.0155	0.0372	0.5220	-0.0005	0.0005	0.1991
6	-0.0787	0.1790	1.3863	0.0008	0.0008	0.5008
9	-0.2295	0.4605	2.5884	0.0017	0.0017	0.8680
12	-0.5115	0.9630	4.1190	0.0049	0.0049	1.2865
15	-0.9686	1.6298	5.9550	0.0086	0.0086	1.7490
18	-1.5665	2.5190	8.0909	0.0239	0.0239	2.2697
21	-2.3092	3.6872	10.4854	0.0457	0.0457	2.8475

Review of the averaging algorithm

 Seems to be a mis-understanding of the acceptable number of successive missing repeat cycles / interpolation method

 \rightarrow ATBD will be improved.

•- Recommend use model (alb(SZA), half-sine) to interpolate missing flux. Currently linear interpolation of TOA solar albedo and TOA thermal flux.

 \rightarrow Ok, but would need a scene identification for the model selection.

- Concerns about the consistency of the averaged clear sky and all sky.

 \rightarrow Do the reviewer suggests to "simulate" the missing data in the clear sky fluxes stream?