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Abstract

The Geostationary Earth Radiation Budget (GERB) instrument was launched during the 2002

summer together with the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on board of the

Meteosat Second Generation (MSG) satellite. This broadband radiometer will aim to deliver near

real-time estimates of the top of the atmosphere (TOA) radiative fluxes at high temporal resolution

thanks to the geostationary orbit. To infer these fluxes, a radiance-to-flux conversion needs to be

performed on measured radiances. Since we plan to carry out such a conversion by using the angular

dependency models (ADMs) developed from the Clouds and the Earth’s Radiant Energy System

(CERES) experiment, the GERB ground segment will have to rely on some scene identification on

SEVIRI data which mimic as close as possible the one from CERES in order to select the proper

ADM. In this paper, we briefly present the method we used to retrieve cloud optical depth and cloud

fraction on footprints made of several imager pixels. We then compare the retrieval of both features

on the same targets using nearly time-simultaneous Meteosat-7 imager and CERES Single Satellite

Footprint data. The targets are defined as CERES radiometer footprints. We investigate the possible

discrepancies between the two datasets according to surface type and cloud phase and, if they exist,

suggest some strategies to homogenize GERB retrievals based on CERES ones.
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1. Introduction

To derive the most accurate top of the atmosphere (TOA) solar fluxes from the

measured Geostationary Earth Radiation Budget (GERB) (Harries and Crommelynck,

1999; Dewitte et al., 2000) broadband radiances, the Royal Meteorological Institute of

Belgium (RMIB) is planning to use the new angular dependency models (ADMs) from the

Clouds and the Earth’s Radiant Energy System (CERES) experiment (Loeb et al., 2003).

They are due to replace and outperform the accuracy of the previous Earth Radiation

Budget Experiment (ERBE) models (Suttles et al., 1988). To reach the highest level of

confidence in the derived fluxes from the radiance-to-flux angular conversion, it is needed

to select and use the corresponding ADM that would be applied by CERES to the

measured scene types of each GERB footprint’s pixel. This requires the performance of a

scene identification (SI) which gives similar results (i.e. features values) than those used to

stratify the CERES ADMs. More precisely, it is crucial to remove any systematic bias

between these two SI schemes.

As the GERB experiment aims to deliver products on a near realtime basis (i.e. within 4

hours after the acquisition time), the overall RMIB GERB Processing (RGP) should not

take more than the time period between two GERB/SEVIRI series of images (i.e. 15

minutes). In order to cope with this major time constraint, such a SI scheme for GERB is

committed to remain simple and only extract the smallest needed set of features. It turns

out that the minimal set required to select the more relevant ADM is defined by the cloud

fraction, the cloud phase, the cloud optical depth and the surface type for each GERB

pixel, or more specifically the mean of the feature values of all the Spinning Enhanced

Visible and InfraRed Imager (SEVIRI) pixels (resolution of 3 km at nadir) within this

GERB footprint’s pixel. The use of CERES ADMs in connection with measured footprints

of similar spatial resolution than those used to build these ADMs (i.e. about 10 km at

nadir, Wielicki et al., 1996) certainly avoids any new error source in the radiance-to-flux

conversion which could arise from distinct spatial extends of GERB and CERES

footprints. Hence, in the following, the term GERB pixel or footprint will not refer to

the native spatial resolution of the instrument (50 km at nadir), but to a pixel’s size of

about 10 km. To reach such a resolution the GERB broadband measured radiances are

being interpolated by some data fusion algorithm with the help of the SEVIRI multispec-

tral imager on board of the Meteosat Second Generation (MSG) satellite (Schmetz et al.,

2002). Briefly, the high spectral accuracy of GERB is combined with the high spatial

resolution of SEVIRI. This is achieved by correcting the broadband radiance estimations

from the 11 SEVIRI spectral channels with GERB measurements and by interpolating

these correction coefficients to footprints of 3� 3 SEVIRI pixels (Gonzalez et al., 2000).

In this paper, we shall focus on the determination of the cloud optical depth and cloud

fraction. We will present a fast cloud optical depth retrieval algorithm which is not based

on an iterative scheme as it is the case for the CERES experiment. Instead, it only uses

visible narrowband radiances from an imager to estimate the cloud optical depth.

Moreover, it does not require to priorly flag cloudy pixels by some cloud detection

scheme (generally based on threshold tests applied to imager narrowband measurements).

However, look-up tables computed using a radiative transfer (RT) model are still needed in

order to link the measured quantities to cloud optical depth, but an innovative way to
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parameterize them will be given. The cloud fraction estimation is based on cloudy imager

pixels detection within some defined footprint (typically of the size of GERB pixel); the

cloudy test being simply a threshold on their associated cloud optical depth. Then, we will

illustrate both retrieval schemes by applying them to Meteosat-7 (MS-7) visible images.

We will show comparisons of the RGP retrieved cloud optical depth and cloud fraction

from Meteosat-7 simulated footprints and CERES associated features’ values. We will

then suggest some correction schemes on GERB cloud optical depth and provide the

optimal threshold for cloudy/non-cloudy pixels which mimic as close as possible the

CERES cloud optical depth and cloud fraction estimates. Finally, we will propose some

strategies for more in-depth future comparisons of CERES and SEVIRI cloud properties

retrievals.
2. Cloud properties retrieval algorithms

2.1. Cloud optical depth

Cloud optical depth retrieval scheme is usually part of a larger cloud properties

inference algorithm which is based on multi-wavelength radiance measurements. Such

algorithms can generally be divided into two classes: (a) those using RT calculations

combined with a threshold test to detect cloudy pixels and (b) those relying on some

clustering techniques in the multidimensional radiance space constituted by several bands.

However, due to problems inherent to clustering techniques, the majority of cloud remote

sensing studies is based on comparisons with RT computations. Nevertheless, clustering

schemes are specifically aimed to deal with only partially cloudy pixels, i.e. low spatial

resolution measurements, as shown in Arking and Childs (1985).

Threshold techniques treat each pixel independently and assume that they can be

considered as either completely cloudy or clear. According to the SEVIRI spatial

resolution of 3 km (at nadir), this independent pixel approximation (IPA) can be

considered as valid in our case. However, it is worth pointing out that correction schemes

exist in order to cope with 3-dimensional cloud structures and their associated horizontal

transport of radiation which cannot be anymore neglected at higher spatial resolutions, as it

is illustrated in Wyser et al. (2002). IPA algorithms rely on the fact that the reflection

function of clouds at a non-absorbing narrowband in the visible part of the electromagnetic

spectrum is primarily dependent on the cloud optical depth. These schemes can further be

divided into two groups: (1) those making use of asymptotic relations for the reflection and

transmission functions of optically thick layers (sk9) as shown in King (1987) and (2)

those using a large set of precomputed values of the reflection function according to

various scene viewing geometries and cloud optical depths, s, as for example in Nakajima

and King (1990).

From the previous considerations, it turns out that the simplest algorithm which can still

allow the broadest range of applicability for cloud optical depth retrievals is based on

simulated radiances from RT models properly convoluted with the visible narrowband

filters of the imager under consideration. For simplicity we have simulated the outgoing

radiances L(h0, h, u) [W m� 2 sr� 1] for a small set of ideal scene types, i.e. pure ground
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surfaces with spectrally uniform Lambertian albedos and two cloud conditions (water or

ice) with fixed parameters (altitude and particle size). The scene observing conditions are

defined relatively to the local normal to the ground surface, where h0 is the Sun’s zenith

angle, h, is the satellite’s zenith angle and, u, is the relative azimuth angle defined as the

angle between the principal plane (made by the Sun, the surface and its local normal) and

the satellite-surface-normal plane (u = 0 corresponds to forward scattering). We selected

for this work the STREAMER (Key and Schweiger, 1998) RT code. The definitions of the

scenes simulated by the RT code, as well as its input parameters, are given in Table 1. We

used for planetary boundary layer standard atmospheric profile the mid-latitude summer

properties and we set the aerosol optical model to maritime for ocean and rural for land,

both with background tropospheric and stratospheric vertical profiles and finally we used a

50 km visibility. Gaseous absorption and Rayleigh scattering were also included. The

cloud optical depths, s, given at 0.65 Am are chosen according to a pseudo-logarithmic

scale. The optically opaque cloudy condition, s = 128, we used is identical to the one

chosen in the CERES experiment, as well as the particle shape for ice clouds. Note that we

are only considering single uniform cloud layers in these computations. Moreover, the

reflectance model of the ground surfaces used is Lambertian as it is also the case for a

majority of algorithms found in the literature (Arking and Childs, 1985; King, 1987;

Nakajima and King, 1990; Rossow and Garder, 1993; Nakajima and Nakajima, 1995) and

in particular for CERES.

The common approach found in the literature is, first, to apply a cloud detection scheme

using threshold tests on multispectral measurements as, for example, the APOLLO

algorithm (Saunders, 1986). Then, for so flagged cloudy pixels, RT computed radiances

are used directly as look-up tables to extract the cloud optical depth according to the scene

viewing geometry and the measured visible narrowband values (see for example Rossow

and Garder, 1993). Instead, we proceed differently. As shown in Nakajima and Nakajima

(1995), there is an empirical law between the visible radiance (thus reflectance) and the

cloud optical depth which is nearly insensitive to the cloud particle size re for visible
Table 1

Scene parameters used as inputs for the STREAMER code simulations where a is the broadband surface albedo, z

is the bottom cloud altitude, h is the cloud geometrical thickness, re the cloud particle mean effective radius and, s
the cloud optical depth at 0.65 Am

a 0! 0.8 by 0.05 steps

Aerosols maritime rural

background tropos. and stratos. prof.

Std prof. mid-latitude summer

h0 [j] 0! 90 by 5j steps

h [j] 0! 90 by 5j steps

u [j] 0! 180 by 10j steps

Cloud phase water ice

z [km] 3 9

h [km] 3 1

Cloud particle Shape spheric hexagonal

re [Am] 8 70

s 0, {10� 2, 10� 1, 1, 10}� {1, 2, 4, 7}, 100, 128
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wavelengths. By introducing the mean cloud amount (or cloud coverage index), C, defined

as (Cano et al., 1986)

Cðh0; h;u; a; phase; sÞ ¼
Lðh0; h;u; a; phase; sÞ � Lðh0; h;u; a; s ¼ 0Þ

Lðh0; h;u; phase; s ¼ 128Þ � Lðh0; h;u; a; s ¼ 0Þ ;

which can be equivalently expressed in terms of bidirectional reflectance distribution

function (BRDF) q as

Cðh0; h;u; a; phase; sÞ ¼
qðh0; h;u; a; phase; sÞ � qðh0; h;u; a; s ¼ 0Þ

qðh0; h; u; phase; s ¼ 128Þ � qðh0; h;u; a; s ¼ 0Þ ;

ð1Þ

where s = 0, represents clear-sky conditions above the ground surface, s = 128, denotes the
opposite boundary limit associated with optically opaque cloudy conditions leading to

simulated radiance fields insensitive to surface albedo. This law is rescaled with C values

ranging from 0 to 1. This empirical law is easily built from our RT simulated data. The

most noticeable fact when plotting C according to the cloud optical depth is its similar

shape for all scene viewing geometries (see Fig. 1). Note that the curve is not saturated at

C = 1 when s = 128. This relies on the fact that the reflection function of the optically

opaque clouds generated by the RT code is still increasing with the cloud optical depth.

Nevertheless, it can be shown that saturation is reached for sc 400. However, to remain

in accordance with the CERES retrievals, we have set s = 128 as the highest possible cloud
optical depth value which can be given by our algorithm.

Due to this characteristic shape we parameterize this relation by using a modified

sigmoı̈d function of the logarithm of the optical depth,2 i.e. C = f(log s), where f is defined
as

f ðlogsÞ ¼ A

Bþ 10�ðlog s�log s0Þ=v
;

and relates on four parameters (A, B, s0>0 and v p 0). Note that, in the latter expression,

the dependency of C and of the four parameters with the scene viewing geometry (h0,h, u),
surface albedo a and cloud phase is implicitly assumed. Some basic algebra leads us to the

compact form

C ¼ A

Bþ s0
s

� �1=v
ð2Þ

These four parameters can then be adjusted in order to get the closest match between

the empirical curve and our modified sigmoı̈d through a least square fit on the RT data.

Practically, the Powell multidimensional fitting method (Press et al., 1992) is used. Finally,

we end up with a set of four parameters for each scene viewing geometry, surface albedo
2 It must be noted that the sigmoı̈d function of the optical depth only satisfies the boundary value problem of

C= 0 for s= 0 asymptotically.



Fig. 1. Mean cloud amount C versus cloud optical depth s empirical curves for (a) ocean surface albedo (a= 0.05)
under water cloud and (b) land surface albedo (a= 0.4) under ice cloud using the STREAMER RT code. The plain

curve is associated to h0 = 10j, h= 60j and u= 0j, while the dashed curve is for h0 = 45j, h= 15j and u= 180j.
The stars (1) represent the optically opaque cloudy conditions (s= 128) above the surfaces.
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and cloud phase instead of twice (C and s) the number of optical depth values (here and

according to Table 1 this number is equal to 15). Moreover, the relation between C and s
can be seen as an implicit non-linear interpolation on the discrete s and C values computed

by the RT code. We can directly see the benefit of the simple formulation of our fitting

function. Indeed, Eq. (2) can explicitly be solved for the cloud optical depth, leading us to

s ¼ s0Cv

ðA� BCÞv ; ð3Þ

with the mathematical constraints of Eq. (2) (v p 0, s0>0) and setting the retrieved s value
to 128 when CzA/B (saturation condition).

Thus, our cloud optical depth retrieval algorithm immediately follows. For each imager

pixel:

(1) We estimate its cloud phase from the 0.67 and 1.6 Am SEVIRI channels according to

Jolivet and Feijt (2003),

(2) According to the clear-sky reflectance estimated as in Ipe et al. (2003) and the pixel’s

viewing geometry (h0, h, u), we search the associated broadband surface albedo ã
corresponding to the closest match between the RT clear-sky imager simulated

reflectances q(h0, h, u, ã, s = 0) and this estimated clear-sky value,

(3) We compute its associated mean cloud amount value, C using Eq. (1), where the

optically opaque cloudy reflectance, q(h0, h, u, ã, phase, s= 128) is from RT

simulation according to the pixel’s viewing geometry (h0, h, u) and broadband surface

albedo ã found in the previous step,

(4) We compute its associated cloud optical depth value using Eq. (3) and the four fitted

parameters for the associated pixel’s viewing geometry, broadband surface albedo ã
and cloud phase.



2.2. Cloud fraction

The cloud fraction or cloud cover f is always defined on some footprint (i.e. a set of

pixels) and simply consists in the computation of the relative fraction of cloudy pixels

within that footprint. Major cloud detection algorithms found in literature are based on

threshold decision tests related to multispectral radiance measurements for each pixel (see

for example Rossow and Garder, 1993 or Saunders, 1986). Moreover, such a cloudy/non-

cloudy test is generally applied before any cloud properties retrieval scheme. For GERB,

we adopt a different approach. The cloud screening scheme requires that the cloud optical

depth retrieval scheme described above has been priorly applied. The pixel is then flagged

as cloudy if s>sthres, where sthres is a constant threshold value (see Section 4). As

mentioned in Section 1, we are planning to deliver TOA broadband fluxes at an increased

spatial resolution of 10 km at nadir compared to the lower native GERB resolution.

Therefore, due to the spatial resolution of SEVIRI, the footprint size on which cloud

fraction needs to be estimated is 3� 3 SEVIRI pixels.

A. Ipe et al. / Atmospheric Research 72 (2004) 17–37 23
3. Data description

To uncover possible discrepancies between GERB and CERES cloud properties

retrieval methods and suggest some correction schemes, we compare the cloud optical

depth and cloud fraction predicted by both instruments’ algorithms. However, during the

commissioning period of MSG, SEVIRI measurements will not be available on an

operational basis (i.e. real-time dissemination through receiving station). Therefore, the

RGP will be tested with Meteosat-7 as the imager. Nevertheless, application of the GERB

SI scheme on MS-7 visible narrowband data and comparisons with CERES will prove

useful for the validation of our adopted methodology for cloud optical properties

retrievals.

Due to the lack of a 1.6 Am channel on MS-7, the cloud phase algorithm cannot be

directly transposed to this imager. Note that we could use a cloud phase discrimination

method based on brightness temperatures estimated from the MS-7 11.5 Am thermal

channel, but this would require a further validation step. Therefore, as such a scheme

would certainly not be used for SEVIRI due to its uncertainties compared to its CERES

counterpart, we will rely on the determination of the cloud phase given in the CERES

products.

Considering the relatively broad visible channel of MS-7 extending up to 1.0 Am
compared to the narrower 0.6 and 0.8 Am SEVIRI bands (see Fig. 2), we are expecting an

increase in the amount of radiation absorbed with respect to the cloud particle size as

illustrated in Jolivet and Feijt (2003) for the SEVIRI 1.6 Am channel. Therefore, it will

certainly introduce some scattering in GERB retrievals due to our adopted methodology

(RT computed radiances were made with a fixed effective particle size for each cloud

phase). Rayleigh and aerosol scattering as well as surface albedo tend to increase clear-sky

measurements made in this wider visible channel, thus leading to a decrease in sensitivity

of the radiance towards cloud optical depth. However, for SEVIRI, our cloud identification

scheme will be applied for ocean on 0.8 Am data for minimal sensitivity regarding the



Fig. 2. Meteosat-7 and SEVIRI visible narrowband spectral responses.
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surface albedo, Rayleigh and aerosol scattering. For other surface types the 0.6 Am channel

will be considered in order to minimize the contribution of the surface albedo in the signal.

Since CERES ADMs were built from the Tropical Rainfall Measuring Mission

(TRMM) satellite measurements using the Visible InfraRed Scanner (VIRS) imager, we

shall use the CERES Single Satellite Footprint (SSF) TOA/Surface Fluxes and Clouds

products which are generated on an hourly basis. Indeed, this dataset was used for the

ADMs production (Loeb et al., 2003). As the operational phase of MS-7 started in the

beginning of June 1998, we used for our comparisons 5000� 5000 MS-7 visible images

(about 2.25 km at nadir) from the Meteorological Archive and Retrieval Facility (MARF)

of EUMETSAT and CERES SSF data from June 1998 to the end of August 1999 (15

months). Due to an anomaly of the CERES radiometer at the end of August 1998, we

priorly use SSF VIRS Edition 2A and VIRS-only Edition 2 a posteriori. However, this

change of data has no influence on the cloud parameters retrieval since CERES algorithms

are only relying on VIRS data which were still available after the discovery of the

anomaly.

To ensure measurements over similar scenes by both satellites (cloud motion due to the

wind), our comparisons only take into account CERES footprints and related MS-7 pixels

measured within 5 min around CERES acquisition time. Moreover, in order to limit

sensitivity of our retrievals to parallax effects and 3-dimensional cloud structures, we only

select for our comparisons CERES footprints that have a maximum tilt angle of 5j
between the vectors joining the ground surface to each satellite. By this way, we select

close scene viewing geometries for both instruments. In addition, only CERES footprints

which are completely characterized by the VIRS imager are considered (i.e. the imager

coverage within each footprint is 100%). Then, for each selected CERES footprint, we

compute the mean cloud optical depth and cloud fraction over an equivalent GERB

footprint made up of the 5� 5 MS-7 nearest pixels to the geographical center of the
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CERES footprint. As previously mentioned, we rely on the CERES SI scheme for the

cloud phase determination. However, as this feature is an average over the CERES

footprint, we do not have access to its associated values at the imager pixel-scale.

Therefore, we only consider footprints with pure water or ice clouds according to CERES.

Finally, to be able to easily bin our results according to the surface type, we further refine

our selection of CERES footprints to those characterized by homogeneous geotypes.
4. Comparisons of GERB and CERES cloud properties

As we have seen, the mean cloud optical depth and cloud fraction within each GERB

footprint are both linked to the chosen threshold sthres used to distinguish between cloudy

and non-cloudy imager pixels. It can be shown that variations of this parameter mainly

affect low cloud optical depth retrievals while high s values are nearly insensitive.

Requiring that the value of this parameter is taken in order that, in average on the studied

footprints, the cloud fractions computed by the CERES algorithm are nearly identical to

those computed by our scheme guarantees that we detect in average the same amount of

cloud coverage than CERES. Practically, we find that a value of sthres = 0.85 matches our

requirement regarding the mean cloud coverages for both instruments as it is shown in

Fig. 3.

To be consistent with the CERES methodology and thus to be able to perform

meaningful comparisons between CERES and GERB results, we should convolve the

cloud optical properties from imager pixels within GERB footprints with the dynamical

CERES point spread function (PSF) as it is done for the retrievals in CERES SSF data.

However, due to the increase of programming complexity and computing time, we have
Fig. 3. Difference between CERES and GERB mean fractional cloud cover versus sthres.
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discarded these calculations. Nevertheless, it is expected that such an approximation is not

introducing any systematical bias but only random errors.

4.1. Cloud optical depth

The average of cloud optical depth over the equivalent GERB footprint is performed by

a natural logarithmic mean on cloudy pixels based on the threshold value sthres. The range
of possible s values is spreading across three decades, while ln s is varying almost linearly.

This methodology is also adopted in the CERES products. Moreover, to avoid any bias

when comparing the cloud optical depths, we only take into account CERES footprints

having a single cloud layer as flagged so by the CERES SI scheme and corresponding to

totally overcast cloudy conditions within the CERES field-of-view (FOV).

Despite the huge set of data used, the selection criteria on the cloud layers, ground

surfaces and instruments tilt angle applied for the cloud optical depth comparisons only

produce a limited set of pairs of values sC and sG (see Table 2). This table lists the different

populations according to their CERES surface type and cloud phase. The most noticeable

fact is the limited measurements above desert surface compared to others. This is not so

surprising since deserts are known to be dry areas, and thus with very low occurrences of

clouds (which are the media for precipitation).

The comparisons between CERES and GERB cloud optical depth retrieval schemes are

illustrated in Fig. 4. For each panel in this figure we chose to plot the natural logarithm of

the retrieved s values in order to display small and large s with the same order of

magnitude. This comparison accounts for collocated footprints associated to nearly time-

simultaneous measurements and similar viewing geometries of both imagers. The most

noticeable result from these scatterplots is the good agreement between the two retrieval

schemes. The correlation coefficients are 0.894 for ocean with water clouds, 0.946 for

ocean with ice clouds, 0.874 for vegetation with water clouds, 0.924 for vegetation with

ice clouds and 0.886 for desert with ice clouds, but only 0.576 for water clouds above

desert (see Fig. 4(e)). This can be explained by the fact that the associated dataset

population is badly distributed and thus not statistically significant. The same conclusion

reaches to the validity of the linear least square fit for that case. Regarding ice clouds

cases, there is a larger scatter of the plots compared to the water phase cases as illustrated

by the v2 values of the linear fits (as for example 0.094 versus 0.106 for ocean). A possible

explanation of this effect could be related to the broader distribution of the ice particle

effective radii re for ice clouds than for water clouds (see Fig. 5). One can argue that using
Table 2

Population of GERB and CERES cloud optical depth pairs according to their associated CERES surface type and

cloud phase

Water Ice Total

Ocean 12646 3645 16291

Vegetation 768 1770 2538

Desert 116 187 303

Total 13530 5602 19132

Only pure footprints according to the CERES mean cloud phase with homogene surface are considered.
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visible radiance measurements, the impact of the ice particle size distribution on the cloud

optical depth retrievals should normally be less than the one we show. In fact, we strongly

question our assumption regarding the insensitivity of visible radiance to cloud particle

size when using MS-7 due to its broad visible channel (see Fig. 2) which extends at least

partly in the near-infrared region. Moreover, this could also explain the deviation of the

linear least square fits relative to the ideal case line.
Fig. 4. Natural logarithm of cloud optical depth retrieval pairs (ln sC, ln sG) from collocated CERES and GERB

footprints according to the different considered surfaces and cloud phases. Plain line represents the ideal case

sG = sC while dashed line illustrates a robust linear least square fit with respect to outliers (Huber, 1964).



Fig. 4 (continued ).
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As mentioned previously, the implementation of a scene identification within the RGP

is used to select the proper CERES ADMs for the broadband radiance-to-flux conversions.

These ADMs are defined over some ranges of cloud optical depth (Loeb et al., 2003).

Hence, the crucial constraint of our retrieval scheme is to select in average the same ADM

as the CERES software would (i.e. having a confusion matrix between the two

classifications as close as possible diagonal). Such a confusion matrix is shown in Table

3 for ocean and ice cloud footprints.3 As we could expect from the correlation between

ln sC and ln sG (Fig. 4(b)) retrievals are located around its diagonal while spreading away

with increasing cloud optical depth ranges. However, due to the deviation from the ideal

line of the least square fit, the sub-matrices associated to extreme cloud optical depth

values are not symmetric with all their diagonal elements above any other corresponding

row- or column-elements (diagonal dominance). If such requirements were fulfilled,

GERB cloud optical depth retrieval scheme would lead on average to a similar selection

of ADMs as CERES would (diagonal dominance) and misselections of upper and lower

ADMs would occur at similar frequencies (symmetric matrix). However, these previous

results suggest the need to develop some correction strategy in order to adjust GERB

retrievals to CERES ones. Such a scheme will be developed later in this paper.

4.2. Cloud fraction

To avoid any bias when comparing the cloud fraction, we only take into account

CERES footprints having a single cloud layer as flagged so by the CERES SI scheme

(there is no restriction on cloud coverage). The population of footprints matching this
3 Confusion matrices for Fig. 4(a), (c)– (f) will not be shown to spare space.



Fig. 5. Normalized histograms of the CERES cloud effective particle size for the selected footprints used in the

cloud optical depth comparisons.
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criterion is given in Table 4 according to the surface type and cloud phase. Due to the fact

that we did not perform CERES PSF convolution of our retrievals on SEVIRI pixels

within GERB footprints, GERB cloud fraction values are only part of the discrete set made

of the multiples of 1/(5� 5) = 0.04, while they are continuously varying for CERES. To be

able to perform meaningful comparisons, we have plotted in Fig. 6 both cloud fractional
Table 3

Confusion matrix (in percent) resulting from the comparisons of CERES ADMs cloud optical depth

classifications according to CERES (columns) and GERB (rows) retrievals for ocean and ice cloud footprints

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.00

2 0.91 0.08

3 4.77 10.32 1.37 0.03

4 0.03 2.85 9.33 1.32 0.27 0.08 0.03

5 2.39 4.14 1.67 0.69 0.19 0.03 0.05 0.03

6 0.44 1.95 2.66 1.43 0.44 0.27 0.22 0.22 0.11 0.05 0.11 0.49

7 0.33 0.88 1.59 1.62 1.15 0.52 0.27 0.25 0.08 0.14 0.41

8 0.14 0.96 1.37 1.23 0.82 1.18 0.25 0.55 0.25 0.60

9 0.05 0.16 0.60 0.85 1.07 1.26 0.93 0.66 0.19 0.49

10 0.05 0.14 0.44 0.55 0.99 0.71 0.91 0.36 0.66

11 0.03 0.03 0.22 0.77 1.23 1.45 1.59 0.91 1.48

12 0.05 0.14 0.33 0.93 1.04 0.71 2.11

13 0.03 0.08 0.36 0.74 0.69 2.83

14 0.05 0.36 0.16 2.50

15 0.03 0.05 0.03 0.25 0.19 3.98

The bold numbers on the diagonal are for cases where the ADMs selected using CERES and GERB cloud optical

depth retrievals are identical. ADM class numbers are for the following ranges of cloud optical depth (Loeb et al.,

2003): 1=(0–0.01), 2=(0.01–1), 3=(1–2.5), 4=(2.5–5), 5=(5–7.5), 6=(7.5–10), 7=(10–12.5), 8=(12.5–15),

9=(15–17.5), 10=(17.5–20), 11=(20–25), 12=(25–30), 13=(30–40), 14=(40–50) and 15=(>50).



Table 4

Population of GERB and CERES cloud optical depth pairs according to their associated CERES surface type and

cloud phase

Water Ice Total

Ocean 40599 4439 45038

Vegetation 4055 2008 6063

Desert 1507 430 1937

Total 46161 6877 53038

Only pure footprints according to the CERES mean cloud phase with homogene surface are considered.
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cover retrievals for ocean footprints. These results have been binned in squared regions

according to a bin width of 0.04. It can be noted that there is a good agreement for clear-

sky and overcast footprints between both schemes and that these cases are a major

contribution to the total population of selected footprints (notice the logarithmic scale of

the colorbars in the graphs). Moreover, according to the gray band joining these extreme

cloudy conditions in Fig. 6(a), there is also a correlation for intermediate cloud fraction

values.

However, results are also more scatter than for the cloud optical depth. It can be

explained by two joint contributions. A horizontal scatter is due to the fact that CERES

retrievals are convoluted with its dynamical PSF which is stretching around 72 VIRS

pixels (Smith, 1994) and thus taking into account a larger footprint than the expected 5� 5

VIRS pixels when estimating cloud fraction. This is clearly illustrated in Fig. 6 where

fG = 0 and fG = 1 while fCa(0� 1). While sthres has only a limited impact on the low cloud

optical depth retrievals, it is a highly sensitive parameter for cloud fraction estimation

(which is totally relying on the cloudy/non-cloudy test). On the opposite, CERES

methodology based on multispectral radiance threshold tests is not directly depending

on the retrieved cloud optical depths. This can therefore result in cloudy footprints for

which the mean cloud optical depth is below than the GERB chosen threshold. This

contributes to the horizontal scatter and also to its vertical component as shown in the

figure where fC = 1 while fGa(0� 1). But we can question the validity of such low CERES

cloud optical depth retrievals with regards, for example, to the sensitivity in the estimation

of the surface albedo.

As the CERES ADMs are also stratified according to some ranges of the cloud fraction

(Loeb et al., 2003), the confusion matrix for ocean and water cloud footprints is given in

Table 5.4 From this table, it can be noted that while about 34% of the footprints are

identified as totally overcast by CERES, it reaches up to 45% for GERB. Moreover,

GERB is also overestimating the number of footprints in the clear-sky class (15%)

compared to CERES (0.42%). In fact, it can be noticed that the majority of these GERB

retrievals are classified in CERES class 2. This is certainly due to the range used to defined

classes 1, 2, 12 and 13 on extremes cloud fraction values and to the convolution of CERES

retrievals which tend to spread their values compared to GERB results as well as probable

CERES cloud optical depths which are below our chosen threshold. As previously

mentioned, a possible solution to correctly compare CERES and GERB cloud fractional
4 Confusion matrices for other surfaces and phase will not be shown to spare space.



Fig. 6. Cloud fraction retrieval pairs ( fC, fG) from collocated CERES and GERB ocean footprints according to

both cloud phases. Plain line represents the ideal case fG = fC where both retrieval schemes provide identical

values.
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Table 5

Confusion matrix (in percent) resulting from the comparisons of CERES ADMs cloud fraction classifications

according to CERES (columns) and GERB (rows) retrievals for ocean and water cloud footprints

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 Sum

1 0.40 10.51 2.41 0.97 0.42 0.21 0.14 0.07 0.05 0.04 0.04 0.03 0.11 15.41

2 0.01 1.86 1.41 0.93 0.62 0.24 0.16 0.09 0.05 0.02 0.01 0.01 0.09 5.50

3 0.68 0.96 0.76 0.59 0.34 0.20 0.13 0.08 0.04 0.02 0.03 0.07 3.89

4 0.00 0.47 0.82 1.07 0.84 0.67 0.40 0.21 0.15 0.08 0.02 0.03 0.10 4.88

5 0.18 0.23 0.47 0.51 0.44 0.35 0.23 0.13 0.08 0.03 0.04 0.07 2.78

6 0.18 0.31 0.41 0.52 0.69 0.60 0.47 0.29 0.19 0.07 0.06 0.11 3.90

7 0.11 0.12 0.18 0.29 0.38 0.38 0.33 0.28 0.22 0.06 0.05 0.06 2.46

8 0.11 0.14 0.16 0.33 0.43 0.57 0.65 0.56 0.42 0.17 0.15 0.11 3.79

9 0.00 0.08 0.07 0.10 0.12 0.21 0.35 0.43 0.51 0.45 0.14 0.12 0.11 2.71

10 0.12 0.06 0.09 0.14 0.19 0.36 0.56 0.77 1.04 0.47 0.49 0.23 4.52

11 0.03 0.04 0.04 0.04 0.05 0.08 0.16 0.29 0.52 0.32 0.30 0.18 2.06

12 0.05 0.03 0.03 0.04 0.06 0.09 0.16 0.31 0.60 0.37 0.69 0.26 2.68

13 0.01 0.46 0.26 0.24 0.23 0.29 0.36 0.53 0.81 1.61 1.85 6.08 32.68 45.42

Sum 0.42 14.86 6.87 5.46 4.69 4.20 4.05 4.03 4.27 5.33 3.57 8.08 34.17 40599

Bold numbers on the diagonal are for cases where the ADMs selected using CERES and GERB cloud fraction

retrievals are identical. ADM class numbers are for the following ranges of cloud fraction (Loeb et al., 2003):

1=(0–0.001), 2=(0.001–0.1), 3=(0.1–0.2), 4=(0.2–0.3), 5=(0.3–0.4), 6=(0.4–0.5), 7=(0.5–0.6), 8=(0.6–0.7),

9=(0.7–0.8), 10=(0.8–0.9), 11=(0.9–0.95), 12=(0.95–0.99) and 13=(0.99–1).
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covers would be to perform CERES PSF convolution on MS-7 pixels and only select

footprints whose mean cloud optical depth is above sthres. However, such processes are

deferred to a future study on SEVIRI data. Nevertheless, the choice of sthres is a basic

validation of our cloud fraction retrievals as it leads to the same average of cloud fractional

cover than CERES.
5. Homogenization of GERB cloud optical depths

5.1. Method

In this section, we propose a generic homogenization scheme to correct retrievals of a

given feature according to some method towards associated reference values. More

specifically, the reference values will be taken as the CERES cloud optical depth retrievals

while the results that have to be corrected are the outputs of the GERB cloud optical depth

algorithm.

As previously mentioned, cloud optical depth values are not convenient to handle due

to their large range of variation (about three decades). Any attempt to fit them directly will

produce poor results due to the influence of large values compared to small ones. One

would expect that retrieval errors increase with increasing optical depth values and thus,

any fit should decrease the weights of these large values accordingly. However, if we

consider the logarithm of cloud optical depths, the variation range is implicitly reduced

while having an almost linear dependence and therefore these values are more suited to

perform meaningful statistical fits.
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To perform statistical fit on ln s values we used by convenience a mathematical model f

(needed to express the correlation between two variables) of the following form: f ðln sÞ ¼
Pnðln sÞ, where Pn is the generic form of a degree n polynomial with coefficients ai for

i = 0, . . ., n. The robust polynomial least square fits with respect to outliers (Huber, 1964)

which lead to a significant decrease of the residuals for the selected footprints are given in
Fig. 7. Natural logarithm of cloud optical depth retrieval pairs (ln sC, ln sG) from collocated CERES and GERB

footprints according to three different surfaces and two cloud phase types. Plain line represents the ideal case

s G = s C where both retrieval schemes provide identical values. Dashed line illustrates the most significative

robust polynomial least square fits in terms of confidence on the decrease of residuals (Huber, 1964).



Fig. 7 (continued ).
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Fig. 7. Having set the number of degrees of freedom n* and performed the fit on the

dataset, we end up with the expression

lnsG ¼ P
n*ðln sCÞ ð4Þ

where Pn� is the fitted polynomial of degree n* with coefficients ai* for i= 0, . . ., n*. The

next step is to homogenize values for GERB cloud optical depth, sG, in such a way that in

average ln sC = ln s
˜
G. By substituting the latter formula in Eq. (4), the homogenized cloud

optical depths are implicitly given by

P
n*ðln s̃GÞ ¼ ln sG: ð5Þ

As we see, the difficulty lies in solving this equation for s̃G, either explicitly for n*V 5

or iteratively when n*>5, for every value sG. However, robust iterative methods for

finding roots of polynomials exist and are described in the literature (Press et al., 1992).

5.2. Results

Our correction scheme is illustrated for cloud optical depth pairs associated with

ocean and ice cloud footprints. It turns out that the fitting model in terms of

robustness and significant decrease of the residuals is the third degree polynomial

P4(ln sC) = 0.336 + 0.737ln sC + 0.076 (ln sC)
2� 0.017 (ln sC)

3. Results are given in

Table 6 as a confusion matrix. As we could expect from Fig. 4(b), our retrieval scheme

overestimates low cloud optical depth while underestimates high s values by comparison

to CERES. The benefit of our correction method is clearly shown by comparing

uncorrected (Table 3) and homogenized GERB values (Table 6) where the number of



Table 6

Confusion matrix (in percent) resulting from the comparisons of CERES ADMs cloud optical depth

classifications according to CERES (columns) and GERB (rows) retrievals for ocean and ice cloud footprints

for homogenized GERB results

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.00

2 4.61 1.73 0.03

3 1.07 9.96 2.55 0.05

4 0.03 1.56 8.64 1.54 0.33 0.08 0.03

5 1.81 3.68 1.48 0.63 0.19 0.03 0.05 0.03

6 0.49 1.78 2.33 0.91 0.22 0.19 0.08 0.11 0.05 0.05 0.11 0.25

7 0.63 0.93 1.45 0.85 0.47 0.30 0.11 0.19 0.05 0.36

8 0.08 0.47 0.96 1.10 0.85 0.47 0.36 0.11 0.14 0.11 0.41

9 0.05 0.69 0.99 0.77 0.55 0.69 0.16 0.30 0.14 0.30

10 0.05 0.14 0.47 0.91 0.47 0.91 0.41 0.33 0.16 0.44

11 0.03 0.11 0.55 0.55 1.07 1.43 0.91 0.96 0.16 0.49

12 0.03 0.33 0.49 0.69 0.74 0.85 0.41 0.69

13 0.03 0.14 0.55 0.93 1.21 1.84 0.85 1.23

14 0.03 0.14 0.25 0.69 0.69 0.66 1.54

15 0.03 0.16 0.60 1.07 1.04 9.85

The bold numbers on the diagonal are associated to the case where the ADMs selected using CERES and GERB

cloud optical depth retrievals are identical. ADM class numbers are for the following ranges of cloud optical

depth (Loeb et al., 2003): 1=(0–0.01), 2=(0.01–2.5), 3=(2.5–6), 4=(6–10), 5=(10–18), 6=(18–40), 7=(>40).
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diagonal-dominant elements decreased from 8 to 4 while the off-diagonal elements are

balanced, leading to a more symmetric matrix. Finally, it can be noted that adjusted GERB

values are now all classified in an adjacent CERES class for those that do not meet the

diagonal dominance criterion.
6. Conclusions and future work

In this paper, we have presented cloud optical depth and cloud fraction retrieval

algorithms. These schemes will be implemented as part of the SEVIRI scene identification

for the RMIB GERB Ground Segment. They are based on a direct inversion method that

relies on simulated radiances by a radiative transfer model over specific scenes, composed

by a restricted number of ground surfaces and cloudy conditions. The method uses an

innovative and efficient parameterization of the inversion look-up tables. Preliminary

validations of the cloud optical depth and cloud fraction retrieval algorithms were

performed by comparing CERES footprints and Meteosat-7 simulated GERB footprints.

These comparisons have shown good correlation between GERB and CERES methods.

However, discrepancies occur but there are expected to decrease with the use of the

SEVIRI imager thanks to its narrower visible channels compared to Meteosat-7. But it will

have to be confirmed by a future validation study on this imager. Moreover, a correction

scheme was also suggested in order to cope with the possible remaining cloud optical

depth discrepancies between CERES and SEVIRI retrievals. Its efficiency was demon-

strated on CERES and MS-7 cloud optical depth comparisons. Basic validation of the

cloud fraction was performed by choosing the optimal threshold value on cloud optical
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depth which is the border between cloudy/non-cloudy imager pixels. This value ensures

that, in average, our algorithm produces the same cloud coverage as the one computed by

the CERES software. Finally, some recommendations were issued for future comparisons

such as convolute with CERES point spread function our cloud properties retrievals.

These cloud optical depth and cloud fraction estimations will be part of the GERB

products generated at RMIB. Complete description of their content as well as the

algorithms used are available at http://gerb.oma.be. Products will be freely available to

the scientific community at ftp://gerb.oma.be.
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