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An improved method to estimate reference cloud-free
images for the visible band of geostationary satellites
Florian Tornowa,b, Nicolas Clerbauxb, Alessandro Ipeb and Manon Urbainb

aInstitute for Space Sciences, Freie Universität Berlin, Berlin, Germany; bService Observations, Royal
Meteorological Institute of Belgium, Brussels, Belgium

ABSTRACT
Geostationary images have been used frequently in the past
50 years to derive geophysical information. As a complement to
all-sky observations, clear-sky counterparts play an important role
in the derivation of cloud properties. We investigated ways to
improve estimates of top-of-atmosphere (TOA) visible clear-sky
images, over the full spatial and temporal resolution of Meteosat
First Generation (MFG) satellites. Estimation was based on TOA
measurements in MFG’s visible channel, collected for a specific
time of the day over the span of several days. In addition, a cloud
climatology aided estimation.

Parameter optimization and the introduction of a spatial filter
over ocean resulted in a bias of −1.0 to −2.0 digital counts (DC) and
a root mean square error (RMSE) of 2.0–3.0 DC when averaged over
the complete field of view. This excludes the Spring period which
has up to −3.5 DC bias and up to 5.5 DC RMSE. Reasons for these
exceptional differences were found in rapid greenness change,
affecting reflectances over vegetated surfaces, and dust storms,
with an effect over tropical land and ocean surfaces. Similarly, sea
ice and snow affected polar regions seasonally. Applied to 24 years
of MFG imagery, we successfully used improved clear-sky estimates
to stably detect clouds. Additionally, these clear-sky estimates may
prove useful for characterization of instrument degradation as well
as cloud feedback studies.
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Accepted 22 August 2017

1. Introduction

Observations from visible channels of weather satellites are widely used to estimate a large set
of geophysical variables, such as top-of-atmosphere (TOA) and surface radiation, cloud
properties, surface albedo, and many more. During daytime, the retrieval schemes often
involve the use of an a-priori cloud-free visible image that provides an estimate of the signal
that would be measured in the absence of clouds, such as in Figure 1. For example, clear-sky
reflectance serves to estimate all-sky surface incident solar (SIS) radiation using the Heliosat
method (e.g. Cano et al. 1986; Mueller et al. 2012). Alternatively, Ipe et al. (2003a) rely on clear-
sky reflectances to identify scenes in the framework of a Geostationary Earth Radiation Budget
radiance-to-flux conversion: clear-sky and instantaneous all-sky reflectance in the visible
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channel of the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) determine the cloud
optical thickness. Similarly, the now-casting Satellite Applications Facility (SAF) Meteosat
Second Generation (MSG) cloud mask (Derrien and Le Gléau 2005) exploits maps of clear-
sky reflectance and, in contrast to previous examples, fixed monthly clear-sky maps serve as
input. Likewise, Cloud Physical Properties (Roebeling, Feijt, and Stammes 2006) are based on
typical clear-sky reflectances for a limited number of surface types.

In general, the cloud-free visible signal depends on the surface bi-directional reflec-
tance, the atmospheric constituents (including water vapour and aerosols), and the Sun–
target–satellite geometry. In addition, the signal changes with observing instrument
calibration and spectral response curve.

For instruments on a geostationary orbit, the clear-sky estimate has often been based
on a temporal analysis of the images taken over a given temporal window. To reduce the
effect of the bi-directional reflectance on the signal, the analysis usually involves only
images taken in the same acquisition repeat cycle of the day (hereafter referred to as time
slot). Doing so limits the variation of the Sun–target–satellite geometry, although some
change still occurs due to the Sun inclination. Additionally, this approach has the advan-
tage of preserving the diurnal cycle from smoothing and interpolation effects. For proper
processing of regions with persistent cloudiness, the extent of the temporal window has
been between 30 (e.g. Posselt et al. 2012) and 60 days (Ipe et al. 2003a). For applications
aiming to provide near real-time data, the window can only include days in the past (e.g.
Ipe et al. 2003b). If near real time is not required (e.g. climate applications), it is better to
centre the time window, to include future days as shown in the present study.

When used to derive long records of climate variables, it is important that a clear-sky
estimate follows, as closely as possible, potential instrument modifications which may
occur during an instrument’s lifetime, e.g. calibration drift (Govaerts, Arriaga, and
Schmetz 2001) or spectral response degradation (Decoster et al. 2014). An approach
which follows instrument modifications has been used by the climate monitoring (CM)
SAF (Schulz et al. 2009) to build the Surface Solar Radiation Data Set – Heliosat (SARAH)

Figure 1. All-sky radiance observation (a) and desired clear-sky radiance estimate (b) in the visible band
of the Meteosat Visible and InfraRed Imager (MVIRI) instrument on board the geostationary Meteosat
First Generation (MFG) satellite are shown for the 02.03.2004 12:00 UTC in digital counts (DC).
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product (Müller et al. 2015). The Heliosat method produces high-quality estimates of SIS
radiation, even when applied to poorly calibrated instruments or in cases of doubtful
instrument spectral sensitivity (Govaerts, Clerici, and Clerbaux 2004). However, ignoring
instrument modification and using a static clear-sky reference could affect statistics and
result in false trends of cloud fraction, as shown in Evan, Heidinger, and Vimont (2007).
Processing can make use of an external cloud mask. In this case, the cloud-free signal
would be estimated through the nearest-in-time observation under clear-sky conditions,
as defined by the cloud mask. However, this approach may be problematic for climate
applications as the resulting reference image may be affected by discontinuities in the
cloud mask processing. This effect was illustrated by observed jumps and trends in
several satellite data records (e.g. Wilson, Parmentier, and Jetz 2014).

To better estimate cloud-free reference images for climate applications, we have
made improvements to an existing algorithm (Ipe et al. 2003a). In this article, we will
show how wye optimized and validated the scheme and discuss its limitations. We will
also show that the algorithm could be successfully applied to a 30+ year data set of the
Meteosat visible observations and is already serving as input to processing of the
Meteosat Visible and InfraRed Imager (MVIRI) and SEVIRI TOA radiation data set
(Urbain et al. 2017) within the CM SAF.

2. Methodology

We will first describe how we obtained clear-sky estimates (Section 2.1) and then how
we evaluated their accuracy (Section 2.2) to determine optimal parameters.

2.1. Retrieval of clear-sky estimates

To derive clear-sky estimates from geostationary satellites, we utilize constant observa-
tion over same locations. Focusing on one pixel in the same time slot over subsequent
days, filtered radiances in the visible band

L" ¼ �
λ2

λ1
L"0ðλÞϕðλÞdλ (1)

(with the unfiltered radiance L"0, which is input to the radiometer, and the instrument’s
spectral response function ϕ) experience variations due to

● changing geometry between Sun, Earth, and observing satellite
● changing atmospheric conditions: the presence of clouds, aerosols, and to a lesser

extent atmospheric water vapour and ozone
● changing surface parameters due to changes in vegetation, snow cover, and ocean

colour
● the ageing of the instrument which modifies the spectral sensitivity ϕðλÞ.

The Heliosat method aims to derive cloud albedo (A), necessary for the estimation of
SIS, and therefore requires information on clear-sky conditions. By collecting radiances
pixel wise for a specific time slot over 1 month, the maximum radiance L"max and
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minimum radiance, representing the clear-sky estimate L"cs, are extracted. For an

observed all-sky radiance L", A is computed as follows,

A ¼ L" � L"cs
L"max � L"cs

(2)

By using a ratio of differences of filtered radiances, ageing is taken into account.
However, the method does not consider changing solar irradiance, illumination geome-
try, or surface parameters in order to isolate changing atmospheric conditions.

To obtain an improved estimate of filtered, clear-sky radiances, we build on the
approach by Ipe et al. (2003a). As shown in Section 4, we will investigate ways to
optimize the estimation in order to remove remaining cloud contaminations.

In detail, Ipe et al. (2003a) transformed digital counts (DC) into filtered radiances by
using an age-respective calibration method (Govaerts, Arriaga, and Schmetz 2001). From
filtered radiances, reflectances ρm are determined to account for a changing solar irradia-
tion (Ipe et al. 2003a). In order to remove effects of a changing illumination geometry, a
ratio of the measurement-derived all-sky reflectances ρm and model-derived clear-sky
reflectances ρc over the same surface is computed. Modelled clear-sky reflectances ρc are
based on shortwave (SW) radiances (0.3–4.0 m) collected over a panoply of viewing
geometries (Loeb et al. 2003) by the Clouds and the Earths Radiant Energy System
(Wielicki et al. 1996) instrument on board the Tropical Rainfall Measuring Mission satellite.

The basis for the clear-sky retrieval is a sequence of above reflectance ratios; they are
collected for a window of time (61 days) and expected to vary only due to changing
atmospheric conditions, leaving a cloud-free base curve and cloud-related noise con-
tribution on top. The base curve is estimated using an assumed frequency of clear-sky
conditions. Surface parameters are assumed to remain constant for the window of time.

In more detail, the sequence of reflectance ratios spans a number N of days d into the
past and future around the day of interest d� for a constant time slot t� (e.g. 12:00 UTC).
In order to estimate the clear-sky base ratio α of the day of interest, Ipe et al. (2003a)
used the 5th percentile of the sequence

α d�; t�ð Þ ¼ 5th percentile of
ρm d; t�ð Þ
ρc d; t�ð Þ for d ¼ d� � N; . . . ; d�; . . . ; d� þ N (3)

α denotes the multiplicative factor between the measurement-based reflectance, pre-
sumed to originate from clear-sky conditions, and modelled clear-sky reflectance. Thus,
to derive the measurement-like clear-sky reflectance ρcs, we weight the modelled clear-
sky reflectance with the estimated clear-sky base ratio

ρcs d�; t�ð Þ ¼ α d�; t�ð Þ � %c d�; t�ð Þ (4)

In order to reproduce an image-like product, we first transform the clear-sky reflectance
into a filtered radiance L"cs

L"cs θ�0
� � ¼ ρcs d�; t�ð Þ � E0 cos θ

�
0

π
(5)

with θ�0 the solar zenith angle at day d� and time slot t�, and E0 the filtered solar
irradiance considering Sun–Earth distance (W m−2). Finally, we transform the filtered
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radiance back into DC by multiplying L"cs with the inverse of the age-dependent
calibration factor.

In Section 4, we will start by examining whether the choice of N and the estimation of
α d�; t�ð Þ are optimal.

2.2. Evaluation of clear-sky estimates

To select optimal parameters from a set of candidates, such as the time span length N,
we need to know how accurate our clear-sky radiance estimate for each of those
candidates is. To evaluate an estimated clear-sky radiance over a cloudy pixel, we
would ideally know the pixels true clear-sky radiance at the exact same time.

We can act as if an actually clear region is cloudy (e.g. by setting the ratio
ρm d�; t�ð Þð Þ= ρc d�; t�ð Þð Þ to a typical cloudy value or to missing value). Subsequent
estimation needs to rely on cloud-free days before and after d�. After estimation, a
cloud mask (CM SAF MSG/SEVIRI CMa [doi: http://dx.doi.org/10.5676/EUM_SAF_CM/
CMA_SEVIRI/V001]) identifies clear pixels. Considering only these pixels, we compare
the ignored true clear-sky radiances against their estimated counterparts.

In short, we knowingly turn a clear-sky pixel of the day of interest into a cloudy one,
then produce a clear-sky estimate, and are able to assess the goodness of estimation
when comparing the original clear-sky value against its estimate. This method, generally
known as leave-one-out cross-validation (e.g. Theodoridis and Koutroumbas 2008), is
frequently applied in parameter optimization studies and serves to select optimal
parameters in Section 4.

3. Data

The following subsections present measurements fromMFG’s visible channel (Section 3.1)
as well as a cloud climatology (Section 3.2).

3.1. MFG visible measurements

To apply the previously presented method and estimate TOA visible clear-sky radiances,
we use TOA radiance measurements in the visible channel (0.4–1.2) of the MVIRI
instrument. MVIRI has been gathering data during 1982–2006 at 0° longitude and at
about 36,000 km altitude on board geostationary MFG satellites 2–7. Encoded in 8 bit
count images (6 bit for MFG satellites 2–3), we downloaded the data from the European
Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Data Centre.

Images cover the globe up to 80° N/S and 80° W/E over 5000 × 5000 pixels. We refer
to this observable part of the globe as Meteosat Field-Of-View (FOV) or disc. The
resolution at the sub-satellite point is about 2.5 km. Each scan took 30 min. For this
study, we only used data of the 06:00, 09:00, 12:00, 15:00, and 18:00 UTC time slots
during the period of February–December 2004 (MFG 7). Later, we apply the method to
the full MFG archive. Apart from the above times of day, the method potentially
provides visible clear-sky radiance estimates for all other time slots over Sunlit areas.

7224 F. TORNOW ET AL.
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The response function of MVIRI’s visible channel has a maximum at about 0.7–0.8 μm.
According to Govaerts et al. (2006), the response function allows for a general sensitivity
to gas absorption as well as aerosol absorption and scattering. In addition, spectral
regions of fast and strong reflectance variability over vegetated areas were covered for
wavelength greater 0.7 due to absorption and for below 0.7 due to scattering.

3.2. Cloud climatology

A cloud persistence climatology informs us about the presumed local maximum number
of consecutive cloudy days. The basis of this climatology is a cloud frequency statistic
over the Meteosat FOV: the International Satellite Cloud Climatology Project (ISCCP,
Rossow and Schiffer 1991) D2 annual mean cloud cover. To derive cloud persistence, it is
assumed that low mean cloud cover corresponds to a short persistence, and vice versa.
Therefore, cloud persistence is translated to at least 20 and at most 60 days for lowest
and highest mean cloud cover, respectively. For 50% mean cloud cover, a value of
30 days is selected. Figure 2 shows supposed maximum number of consecutive cloudy
days against annual mean cloud cover. Resulting cloud persistence is mainly large over
the equator and higher latitudes (see Figure 3).

4. Results

Knowledge of the clear-sky state improves estimation of SIS radiation and cloud para-
meters. In order to establish a reference clear-sky TOA image as counterpart to every
single pixel and at each time slot of theMFG series of measurements in the visible channel,
we investigated ways to optimize the approach based on the work of Ipe et al. (2003a).

Shown in Figure 4, the clear-sky estimate based on Ipe et al. (2003a) captured cloud-
free conditions for most parts of the FOV. However, higher latitudes still showed signs of
cloud contamination, likely arising from persistent cloudy conditions.

Figure 2. Assumed maximum number of consecutive cloudy days as a function of the mean ISCCP
cloud cover.
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Starting from these observations, we decided to examine which choice of time span
and percentile is optimal for estimation of clear-sky conditions (Section 4.1), how to
handle pixels with remaining cloud contaminations (Section 4.2), which regions and

Figure 3. Resulting cloud persistence in days.

Figure 4. Generated by using the methodology in Ipe et al. (2003a), estimated filtered TOA visible
clear-sky radiances, shown in units of DC, for 12:00 UTC on 01.03.2004 contain cloud contaminated
regions in higher latitudes. This study aims at providing improved clear-sky estimates. Coloured
points mark pixel, which are examined further in Figure 5.
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times of the year remain problematic for a clear-sky estimate (Section 4.3), and, finally,
verify applicability on long time series (Section 4.4). In Sections 4.1 and 4.2, we use the
entire month of March 2004.

4.1. Parameter choice

Presented in Figure 5, reflectance ratios within the full-time span vary according to the
local frequency of clouds. In mid-latitudes (blue and red), phases of expected cloud-free
conditions (indicated by a ratio of about 1) happen more often than in high latitudes
(green). Accordingly, the selected clear-sky estimate (the 5th percentile or, alternatively,
the 4th-lowest value of ratios within the time span) is affected.

In order to capture clear conditions, an increase in time span is useful for regions with
high cloud persistence. On the other hand, less cloudy regions might not benefit from
longer time spans. Short-term temporal changes in surface albedo (e.g. an onset of
vegetation) call for shorter time spans in order to be captured correctly.

As a solution to this dilemma, we propose using a cloud climatology (presented in Section
3.2). Knowing which areas are likely to be cloud free, we estimate clear-sky reflectances from
shortened time spans. Figure 5 presents the shorter time spans through solid lines. The local
number of days N� was determined by

N�ðx; yÞ ¼ Cðx; yÞ
2

(6)

where x and y denote the column and row value of a pixel, and Cðx; yÞ is the local value
given by the cloud climatology (Figure 3).

To determine the optimal time span, we estimated cloud-free radiances using several time
span lengths and compared each to clear pixels of the MFG measurement (see Figure 6). It is
important to note that the estimate ignores the instantaneous value in order to mimic cloudy
conditions at that time slot, where we would like to estimate radiances under clear-sky
conditions as presented in Section 2.2. For frequently clear areas (triangles), any time span
longer than 1 day led to good agreement with degradation beyond 10 days. Figure 6 states
our assumptions: clear-sky estimates over cloud-persistent areas (circles) improved with
longer time spans. A value of more than 30 days (into the past/future) did not lead to higher

−30 −20 −10 0 10 20 30

Day before/after DOI
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ef

le
ct
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1

2

5

10

Figure 5. Reflectance ratios (shown in logarithmic scale) over subsequent days (12:00 UTC time slot),
centred around the day of interest (DOI) for the 3 pixels, which are highlighted in Figure 4 (colours
correspond). Solid lines show the individual, reduced time span N�, in contrast to the full span of
30 days (broken lines). Horizontal lines indicate the 5th percentile of the full span. Squares mark the
4th lowest value of the reduces span.
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correlation, but to a lower variability. Therefore, we consider a maximum span of 30 days into
past/future (a total time span of 61 days) as the best choice to estimate clear-sky radiances.

Selecting a constant percentile from shorter time spans would imply that there are
fewer values below the percentile which are expected to be lower than a relevant clear-
sky candidate – such as cloud-shadow-contaminated values. For instance, the 5th
percentile over the Sahara with a time span of 21 days allows just one value which is
contaminated by cloud shadows. Choosing a higher percentile would be better.

As an alternative to percentiles, a uniform rank value as clear-sky estimator provides
the opportunity to maintain a constant lower end for any time span. In this study, a rank
r is defined as the r-lowest value Xr from a vector x 2 R

M, identified from sorting

Xi�1 � Xi; i ¼ 2; . . . ;M (7)

where X1 ¼ min x and XM ¼ max x

For instance, rank 4 is greater than or equal to 3 other values in the vector, which might
be too low for a clear-sky estimate.

Figure 6. A Taylor diagram (Taylor 2001) allows us to select optimal parameters, here time span
length. Standard deviations (SDs) (left and bottom axis) are normalized with regards to MFG
radiances over cloud-free pixels, regarded as the truth. An estimate is entered in the diagram,
according to its SD and correlation with the truth. The blue dotted line, ending and starting at 1.0,
indicates how well true SD is met by estimation. The third dimension (grey circles emanating from
the bottom axis) is the normalized root mean square error (RMSE). A perfect estimate would have
zero RMSE, a SD of 1.0, and a correlation of 1.0 being positioned on the open circle of the bottom
axis. Circles denote evaluation of frequently cloudy areas and triangles of frequently clear areas.
Circle and triangle refer to the methodology of Ipe et al. 2003a.
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Figure 5 compares estimation via 5th percentile over a full-time span versus 4th
lowest rank value over a reduced time span. For these samples, it can be seen that
both estimates lead to similar clear-sky ratios.

To determine which rank value provides best clear-sky values, we performed the
estimation with a maximum time span of 61 days for different rank values. Figure 7
shows the performance of different estimates. Over the tropics, extra-tropical vegetated
regions, and the ocean, we find highest correlations for lower rank values. However, over
tropical and extra-tropical vegetation, only higher ranks provide a similarly high varia-
bility (distance to dotted blue line) of clear-sky radiances corresponding to the on- and
offset of vegetation.

Over desert, higher ranks maintain a better variability. In addition, 3rd-lowest
values provide a slightly lower correlation. Globally, the difference between the
estimates is lower. As a trade-off between capturing variability and maintaining
high correlation, the 4th-lowest rank appears as the optimal choice. In other words,
each time span is expected to contain no more than 3 days which are contami-
nated by cloud shadows and at least 4 days which are not cloudy.

In order to ensure the best clear-sky estimation for time slots other than 12:00 UTC, we
assessed different rank values for 06:00, 09:00, 15:00, and 18:00 UTC, as shown in Figure 8. As
09:00 and 15:00 UTC are estimated optimally with the rank 4, the same rank is sub-optimal for
06:00 and 18:00 UTC. Slightly better performing, higher ranks (6 and 5, respectively) are likely
needed because of cloud shadow contamination, coming along with the illumination
geometry.

In short, for improved clear-sky estimation, we introduced a way to reduce time
span lengths of reflectance ratios where low levels of cloudiness allowed for it. We
confirmed a maximum time span length of 61 days as optimal. Finally, a switch from

Figure 7. Similar to Figure 6, this Taylor diagram (left) allows us to select the optimal rank value for
12:00 UTC. Symbols indicate different surfaces; colours correspond to the height of the rank (e.g.
blue is the 3rd lowest value out of 61 days). The rectangle is magnified on the right.
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(a)

(b)

(c)

(d)

Figure 8. In addition to Figure 7, we generated clear-sky estimates for the other time slots before
and after 12:00 UTC: 06:00 UTC (a), 09:00 UTC (b), 15:00 UTC (c), and 18:00 UTC (d). Generally,
performance differences between rank values are rather small. For 09:00 and 15:00 UTC, 4th-lowest
values present optimal rank values. However, at 06:00 UTC and 18:00 UTC, 4th lowest fail to
maximize estimation performance. Higher rank values are optimal: 6th-lowest and 5th-lowest for
06:00 and 18:00 UTC, respectively. Cloud shadows likely complicate clear-sky estimation in early and
late time slots.
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percentiles to rank values as estimator for clear-sky base ratios proved useful, espe-
cially for shorter time spans. Optimal rank values were rank 4 and rank 5 for daytimes
of low and high solar zenith angles, respectively.

4.2. Spatial filter over ocean

Parameters were optimized with regard to the full FOV. However, clear-sky estimates in
higher latitudes remained cloud-contaminated. As most of these regions were located
over ocean, a region of spatially homogeneous reflectances, we applied a spatial filter
after estimation of clear-sky reflectances.

The idea behind the spatial filter is to select a constant number of reflectances over
an ocean region, which is partly cloud contaminated. To account for a fraction of pixels
with remaining cloud shadows, the 2nd percentile of this subset is assumed to resemble
the clear-sky ratio. Some regions are characterized by a higher density of cloud con-
tamination. In other words, clear-sky pixels are more scarce or further away. Instead of
selecting a lower percentile over a constant region, we extended the sampling distance
for areas of higher cloud persistence, keeping the percentile constant. Over usually clear
ocean surfaces, on the other hand, a reduced sampling distance would be necessary to
maintain local characteristics of reflectances. Again, we utilized the cloud climatology to
select an individual distance Δs between samples, shown in Equation (8). Figure 9
provides an illustration of this idea.

Δsðx; yÞ ¼
1 : Cðx; yÞ<30
1þ 12�ðCðx;yÞ�30Þ

30 : 30 � Cðx; yÞ � 60
13 : Cðx; yÞ>60

8<
: (8)

In contrast to a usually dark ocean surface among bright clouds, the ocean Sun glint
is characterized by a much higher reflectance. Sun glint describes specular reflection on
water surfaces, usually roughened by wind-induced waves creating a distribution of
tilted facets (Cox and Munk 1954). At the reflection angle equal to the incidence angle
(i.e. a Sun-glint angle equals zero), chances of facets oriented such that mirror-like
reflection directs Sun light to the observer are largest. In effect, reflectances are highest.
In regions further away from this point (reflecting at Sun-glint angles greater zero), the
chances of such facets decline and so does the reflectance. Applying the spatial filter in
the vicinity of the Sun-glint spot, covering samples of brighter Sun-glint and darker non-
Sun-glint pixels, and selecting the 2nd percentile would likely result in using a dark non-
Sun-glint sample as a clear-sky estimate. Therefore, we adapted the percentile accord-
ingly. Figure 10 shows the percentile as a function of Sun-glint angle.

To select the number of samples used for processing each single ocean pixel, we
applied spatial filters over ocean with different grid sizes. However, the local sample
distance Δsðx; yÞ remained unchanged. Consequently, a larger grid size selected addi-
tional samples further away from the pixel of interest. Figure 11 shows the agreement of
ocean clear-sky estimates against clear ocean pixels of the measurement. Again, leave-
one-out cross-validation is applied for assessment.

Over ocean regions with short cloud persistence (squares), the best choice is no filter,
although spatial filtering did eliminate some reflectance features. The next best choice is
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a filter size of 23 times 23 samples. Larger and a smaller filter size obtained slightly
smaller correlations (and larger RMSE). Considering all ocean surfaces (stars), we found
estimates with no filter to be closest to the variability of the measurement (dotted blue
line), but to have the lowest correlations. Again, the difference in performance between

Figure 9. Shown in (a), we see estimated clear-sky reflectance ratios containing cloud contamina-
tion. x and y counts denote column and row values of each pixel, respectively. The spatial ocean
filter adapts regionally with sample distance as a function of cloud persistence, as illustrated in
green for two examples. As shown in (b), we see resulting reflectance ratios after filtering.

Figure 10. The plot shows the choice of percentile with regard to the Sun-glint angle of a pixel.
Percentiles serve to estimate clear-sky conditions over ocean from a subset of samples, collected in
the vicinity of the pixel of interest. The dotted line marks the 2nd percentile, used outside the Sun-
glint region.
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different filter sizes was not large. Twenty-three times 23 samples performed as well as
11 times 11 samples. Eleven times 11, however, proved to be worse for clear ocean
regions. Therefore, 23 times 23 samples represented the optimal parameter.

The clear ocean filtering is likely to suppress the higher reflectance signal in the
presence of sea ice. This is a documented limitation of the method.

4.3. Error analysis

After optimizing parameters for TOA visible clear-sky radiance estimation with data from
March 2004, we investigated estimation performance for all available months in 2004
(February until December). In contrast to Sections 4.1 and 4.2, the clear-sky estimate of
this section included day d� for estimation.

As presented in the top of Figure 12, we found all surfaces more or less steadily
cloudy for the whole year: desert surfaces about 20% cloudy (yellow line) and ocean
surfaces about 80% (blue line). Because of this steadiness in and outside the training
month March, we expected other months to be as estimated equally well as March.

We computed bias and root mean square error (RMSE) as presented in panels (a) and
(b) of Figure 12. Surprisingly, estimates in March (black lines) globally showed a stronger
underestimation (bias of up to −3.0 to −4.0 DC) and larger RMSE (5:0� 6:0DC) than all
other months (−1.0 to −2.0 DC and 2:0� 3:0DC, respectively). Since we already mini-
mized error estimates for March, we assume that extraordinary circumstances compli-
cated clear-sky radiance estimation during this month. Again split into different surfaces,
vegetation (green line) and ocean surfaces contributed most to a large absolute bias (up
to −5.0 DC and about −3.0 DC, respectively) and RMSE (up to 7.5 DC and about 5.0 DC,
respectively) in March. We therefore suspect that there still some discrepancies caused
by unstable surface parameters.

Figure 11. Similar to Figure 6, we determine the optimal sample size from this Taylor diagram.
Squares indicate pixels from less cloudy ocean surfaces; stars indicate pixels of all ocean surfaces.
Colours mark different sampling sizes around each pixel, corresponding to an extended grid.
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To investigate the appearance of potentially changing surfaces, we computed the
bias on seasonal maps, as presented in Figure 13. In the season of March until May, we
found large areas of underestimation in Africa’s tropics and western subtropics (about
−2.0 to −15.0 DC). During other seasons, we underestimated less (e.g. September–
November with −2.0 to −10.0 DC) or occasionally overestimated (e.g. July–August with

(a)

(c)

(b)

Figure 12. Cloud-free fraction (a), as well as bias (b) and RMSE (c) of estimated clear-sky radiances
for February–December 2004, shown for different surface types (colours) and the full view (black).
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5.0–15.0 DC) clear-sky radiances in the same area. Underestimation during December–
February was potentially counterbalanced by widespread overestimation (2.0–10.0 DC)
over southern Africa and Brazil. Comparing southern and western Africa and Brazil
during March–May with maps on phenological transition dates based on the work of
Zhang, Friedl, and Schaaf (2006), we found corresponding onsets of greenness increase
and onsets of greenness maximum. We concluded that a rapid change in vegetation
greenness complicated TOA SW clear-sky radiance estimation.

Figure 13. Seasonal plots show the bias of estimated clear-sky radiance minus MFG measurements
over cloud-free areas for December and February (a), March–May (b), June–August (c), and
September–November (d). Darkest colours represent differences of and beyond 10 DC.

INTERNATIONAL JOURNAL OF REMOTE SENSING 7235

D
ow

nl
oa

de
d 

by
 [

K
on

in
kl

ijk
 M

et
eo

rl
og

ic
al

 I
ns

tit
ut

e 
va

n]
 a

t 0
7:

32
 0

4 
Se

pt
em

be
r 

20
17

 



As this change led to both over- and underestimation, we assumed the positive and
negative biases were due to the current time span position and greenness (correspond-
ing to darkness) duration at a location. For instance, a time span covering a greenness
onset right after the day of interest could bias the estimate towards the greener (hence,
darker reflectance) period, resulting in an underestimate of clear-sky reflectance. On the
other hand, the time span could be centred around a short period of greenness in
contrast to a less green period around. This estimate would ignore the greenest (darkest)
days, resulting in an overestimate of clear-sky radiance.

Clear-sky estimates over ocean surfaces (e.g. in the subtropic Atlantic) differed
strongly during some seasons (March–May and December–February). We suspected
dust storms were providing large areas with aerosols interacting with SW radiation, to
be the reason. Based on Goudie and Middleton (2000), dust storms intensity peaks from
January to June along Africa’s west coast. We therefore consider dust storms as a cause
for extended bias patterns over ocean.

Furthermore, polar regions had biases of up to −20.0 DC in the Arctic region for
northern winter and in the Antarctic for southern winter. We suspect transient phases of
sea ice and snow provide unusually bright clear-sky conditions. Similar to changing
vegetation surfaces, bright phases were underestimated.

Why is there an overall negative bias? Apart from the effects mentioned, our span can
naturally contain (many) more than just four clear days. Given that each clear day varies
in TOA radiance due to an underlying distribution of aerosol load, captured clear days
represent samples of that distribution. Facing a large number of clear days, our estimate
would originate from darker conditions (i.e. the lower end of the distribution). On the
other hand, given just four clear days in a span (i.e. four samples of the same distribu-
tion), we would likely estimate average conditions. We would rarely estimate a high
aerosol load given any number of days and therefore rarely overestimate.

In summary, we found that optimized parameters based on March 2004 led to a
global bias of −1.0 to −2.0 DC and an RMSE of 2.0–3.0 DC in estimated TOA SW clear-sky
radiances for the rest of the year. Those numbers can be translated in reflectances values
of −0.5% to −1% for the bias and 1–1.5% for the RMSE (100% corresponding to a perfect
Lambert reflection). Seasonally pronounced biases over land together with phenology
maps led to the conclusion that estimation is complicated due to a rapid change in
vegetation greenness. Similarly, estimation in polar regions was prone to sea ice and
snow events. Temporally underestimated clear-sky radiance over ocean surfaces were
assumed to originate from Saharan dust storm events.

4.4. Evaluation of long-term application

Measured over a long period of time, TOA all-sky images are usually affected by sensor
ageing in the radiometer instrument and show jumps when observed by new instru-
ments on board follow-up satellite missions (e.g. Staylor 1990). In order to stably detect
clouds in images, we aimed to generate similarly affected clear-sky counterparts. In
other words, if the clear sky map fails to reproduce the instrument ageing, the ageing
would reduce the fraction of detected clouds, and the retrieved cloud optical depth
would decrease.
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To investigate whether subsequent cloud detection works stably, we produced clear-
sky images for the period February 1983–July 2006, covering Meteosat missions 2–7.
Based on improved clear-sky images, we then detected clouds (Ipe et al. 2003b). We
extracted estimated, clear-sky counts (daily), as well as cloud fractions (every 10 days) at
the 12:00 UTC slot, averaged over the complete disk as well as separately over surface
types ocean, bright vegetation, dark vegetation, bright desert, and dark desert. In
addition, a monthly mean cloud fraction of daytime observations, monitored from
polar-orbiting satellites (http://dx.doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V001),
served for verification. To match Meteosat’s observing geometry, we weighted geo-
graphic areas in the global data set by their representative size within the Meteosat FOV
with lower weight for larger latitudes and longitudes.

Figure 14 shows clear-sky counts (coloured dots) as well as cloud fractions (grey and
black dots) over time. Aside from a characteristic annual mode, clear-sky counts show an
inter-annual trend within each satellite mission (i.e. each colour) which is partly offset
when switched to another mission (e.g. from Meteosat 2 to 3). In addition, these trends
were different between surfaces (cf. bright desert and ocean). As the spectrum of
reflected solar radiance naturally varies among the surfaces, individual trends and offsets
of clear-sky count suggest a spectral degradation and slightly different spectral response
function, respectively, for each sensor.

In contrast to above degradations in clear-sky counts, produced cloud fraction (grey
dots) emerged temporarily stable (see complete disk). However, we found long-term
trends in cloud fraction (blue lines and text): over the course of the MFG period, clouds
decreased about 5% in fraction at 12:00 UTC over the observable Meteosat FOV. This
trend can be qualitatively confirmed using data from polar-orbiting satellites (black
dots). As this data set includes observations from local sunrise to sunset, differences
may occur whenever 12:00 UTC is an ill representative of daytime cloud cover. Sun et al.
(2015) found similar trends over the USA.

Specific regions exhibit characteristic cloud fraction magnitude and variability (cf.
dark vegetation and dark desert) as well as various long-term trends (cf. bright desert
and ocean). Could these trends be a result of either missing clouds or falsely identifying
clouds, caused by instrument degradation? If clouds are missed, computed clear-sky
count would be contaminated with clouds and should appear brighter, while cloud
fraction would be lower. If clear-sky cases are falsely identified as clouds (likely over
unusually bright clear-sky pixels), less bright land pixels would contribute to the clear-
sky count and cloud fraction would increase. However, we observed neither the declin-
ing cloud fraction and growing clear-sky count nor vice versa.

Based on cloud fraction’s apparent independence from sensor degradation or sensor
exchange, we conclude that derived clear-sky images are a suitable method to stably
detect clouds, even when facing multi-year and multi-satellite records.

Future efforts could involve the comparison to ground-based cloud observations.
Despite their small-scale applicability, the systematic errors towards detection of opti-
cally thin clouds, and a high concentration of instruments with longer time-series over
the European land mass, where Meteosat’s resolution is lower, ground-based instru-
ments have the advantage of detecting clouds below satellite resolution and offer
another source for stable cloud detection. The CLARA-A1 data record, which we
employed for validation in this study, is based on measurements from another
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instrument (the Advanced Very High Resolution Radiometer) on board satellites with
different orbit characteristics. We thus considered this record independent from the
presented Meteosat retrieval and particularly suitable for comparison over the entire
Meteosat disk.

5. Discussion and summary

This study aimed to estimate filtered cloud-free images from observations in the visible
channel from radiometers on board geostationary satellites. We improved and validated
an existing estimation approach (Ipe et al. 2003a). We showed that optimization of

Figure 14. Shown are multi-year cloud fraction (grey/black) and clear-sky counts (coloured) aver-
aged over different regions: complete disk (a), ocean (b), bright vegetation (c), dark vegetation (d),
bright desert (e), and dark desert (f). Respective for each region, counts of all clear pixels on the
observable disk appear daily (cloud fraction every 10 days) at 12:00 UTC. Colours indicate underlying
satellites (Meteosat 2–7), and vertical lines mark each changeover. Blue lines show a linear fit of
Meteosat-based cloud fraction (grey) and time (since 1983). Respective intercept and slope are
shown in each upper right corner. Supplementary to Meteosat-based cloud fractions, data from
polar-orbiting satellites (black) are shown as monthly daytime averages using a Meteosat-like FOV
averaging. Clear-sky counts show jumps between satellites as well as long-term decay within each
satellite period, likely caused by spectral response degradation. In contrast, cloud fraction remains
temporally stable. Characteristic for each region is mean cloud fraction and its variability as well as
detected long-term trends.
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parameters for statistical extraction of clear-sky features from time lines and for spatial
filter over ocean surfaces resulted in a global bias of −1.0 to −2.0 DC and an RMSE of
2.0–3.0 DC for most parts of the year 2004. Larger and seasonally pronounced discre-
pancies over vegetated areas can be attributed to rapid changes in vegetation green-
ness, while dust storms presumably complicated estimation over tropical ocean surfaces.
Furthermore, we show that derived cloud-free images are ideal for application to long-
term records of clear-sky images for cloud detection.

Instead of assuming stable surface reflectances for estimation purposes, it seems
reasonable to consider surface reflectance changes. But how do we achieve such a
consideration? A possible way could be using dynamic surface maps, providing a
climatology on changing parameters over surfaces due to vegetation, snow, and ice.
Alternatively, vegetation changes could be detected using normalized difference vege-
tation index changes. As a result of such knowledge, we could reduce the time span
accordingly. Future work will be directed towards the use of additional auxiliary data to
account for these short-term surface changes.

We observed negative long-term trends in cloud fraction over Meteosat’s observable
disk. Reasons for a decreasing 12:00 UTC cloud fraction are unknown. Potentially, clouds
occurred earlier or later in the day over the same location, shifted in location (i.e. out of
the disk or into parts of the disk, which receive less weight when averaging), or exist less
frequently in space and time. Subsequent investigations should tackle these questions.

The use of a cloud climatology for filtering clear-sky signals proved highly useful. Certainly,
amonthly resolved climatologywould further constrain time span length and spatial extent of
the ocean filter and could, consequently, improve clear-sky image estimation.

With respect to other methods, our approach aimed at following instrument degra-
dation as closely as possible. In addition to studying cloud and surface properties,
produced cloud-free images allow investigation of instrument degradation over differ-
ent surface types and may aid future calibration efforts.
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