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ABSTRACT

Formore than 30 years, theMeteosat satellites have been in a geostationary orbit around the earth. Because

of the high temporal frequency of the data and the long time period, this database is an excellent candidate for

fundamental climate data records (FCDRs). One of the prerequisites to create FCDRs is an accurate and

stable calibration over the full data period. Because of the presence of contamination on the instrument in

space, a degradation of the visible band of the instruments has been observed. Previous work on theMeteosat

First Generation satellites, together with results from other spaceborne instruments, led to the idea that there

is a spectral component to this degradation. This paper describes the model that was created to correct the

Meteosat-7 visible (VIS) channel for these spectral aging effects. The model assumes an exponential temporal

decay for the gray part of the degradation and a linear temporal decay for the wavelength-dependent part.

The effect of these two parts of the model is tuned according to three parameters; 253 clear-sky stable earth

targets with different surface types are used together with deep convective cloud measurements to fit these

parameters. The validation of themodel leads to an overall stability of theMeteosat-7 reflected solar radiation

data record of about 0.66 W m22 decade21.

1. Introduction

One of the primary goals of satellites in the twentieth

century was to observe weather, ocean, and land for fore-

casting purposes (Szekielda 1988). When the data records

became sufficiently long, the usefulness of these satellites

for climatological studies was recognized. This led to the

creation of the European Organisation for the Exploita-

tion of Meteorological Satellites (EUMETSAT) Climate

Monitoring Satellite Application Facility (CM SAF) in

1999. From the satellite data, fundamental climate data

records (FCDRs) were generated. These are time series

that cover different instruments and have been exten-

sively tested and calibrated to ensure consistency over

the entire record (WMO 2006). Geophysical variables

[essential climate variables (ECVs)] such as cloud

properties, precipitation, ozone, albedo, etc., were de-

rived from these FCDRs, forming thematic climate

date records (TCDRs). Stability requirements for such

TCDRs are very strict. For example, the Global Cli-

mate Observing System (GCOS) requires a stability of

0.2 W m22 decade21 for the top-of-atmosphere earth

radiation budget (WMO 2006).

These requirements are, however, usually not met us-

ing the original data. Postprocessing and intercalibrations

are done to meet the criteria. An example of this is the

work done by Yang et al. (2011), who demonstrate the

impact and importance of the Special Sensor Microwave

Imager (SSM/I) intersensor calibration for the improved

FCDRs and TCDRs. Satellites in geostationary orbit

provide information on a fixed viewing geometry through-

out the whole day, which allows the creation of quite

accurate and stable FCDRs and TCDRs.

The Meteosat First Generation (MFG) program con-

sists of seven geostationary satellites,Meteosat-1 through
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Meteosat-7, which have been developed by the European

Space Agency (ESA) and since 1986 have been operated

by EUMETSAT. These instruments were operational at

08 longitude from December 1977 until June 2006, with

a gap of 21months whenMeteosat-1 failed andMeteosat-

2 was not yet launched. Every 30 min, the Meteosat Vis-

ible and Infrared Imager (MVIRI)—the main payload of

these satellites—scanned the full earth disc in three spec-

tral bands: the visible (VIS, 0.4–1.1 mm), the water vapor

(WV, 5.7–7.1 mm), and the infrared (IR, 10.5–12.5 mm)

bands.

As the MFG satellites were not designed for clima-

tological use, attempts to create FCDRs from the 25

years of data are still ongoing. As a first step toward

the generation of FCDRs, a consistent calibration is

needed. For the WV and IR channels, vicarious cali-

brations have been derived by van de Berg et al. (1995),

Gube et al. (1996), and Tjemkes et al. (2001). Koepke

(1982), Kriebel and Amann (1993), Moulin et al.

(1996), Lefèvre et al. (2000), and Rigollier et al. (2002)

developed vicarious calibrations for the VIS channel

using the known earth targets such as deserts, oceans,

or clouds, whereasBrooks et al. (1984), Sohn et al. (2000),

and Doelling et al. (2004a) made use of satellite inter-

calibrations. Recently, the Global Space-Based Inter-

Calibration System (GSICS) has been set up to ensure

consistent calibration among space-based observations

worldwide for climate monitoring, weather forecasting,

and environmental applications (Goldberg et al. 2011).

AlthoughGSICS recognizes the interest of theMFGVIS

observations, at the moment the main effort is put into

calibrating the IR bands.

Degradation of the MFG VIS band

In preparation of the Meteosat Second Generation

(MSG) satellites, EUMETSAT developed a state-of-the-

art calibration method for the VIS bands of the Spinning

Enhanced Visible and Infrared Imager (SEVIRI), called

the SEVIRI Solar Channel Calibration (SSCC) method,

which is based on radiative transfer model computations

over desert and ocean targets with known spectral re-

flectance (Govaerts et al. 2001). The method was also

applied to the MFG VIS archive (Govaerts et al. 2004)

and proved to be successful in increasing the accuracy of

the initial vicarious calibration. The full archive has been

reprocessed to derive the official calibration, which is now

published on the EUMETSAT website as a calibration

coefficient at launch and a linear temporal decrease of the

sensitivity due to degradation of the instrument. How-

ever, validation of this calibration method provided evi-

dence (i) that an in-flight change of the spectral response

occurred and that in particular the sensitivity decreased

more at short visible wavelengths than at long, and

(ii) that there seems to be a saturation of the calibra-

tion curve (Govaerts et al. 2004).

When instruments are in space, they suffer from out-

gassing. This means that lightweight molecules coming

from moisture, lubricants, adhesives, etc., become vol-

atile under the vacuum conditions in spacecrafts (Frink

et al. 1992; Tribble et al. 1996). This volatile material can

simply condense or, when exposed to solar ultraviolet

(UV) radiation, be photodeposited onto the surface of

the mirrors, decreasing their reflectance. On top of that,

the high-energy radiation from the sun also seems to

polymerize the deposited material and thus change its

optical properties, so that it absorbs more radiation in

the shorter wavelengths (UV and blue VIS) than in the

longer (red VIS and near IR).

This effect was reported by Matthews et al. (2005) for

the Clouds and the Earth’s Radiant Energy System

(CERES) instruments (Wielicki et al. 1996), where dif-

ferent drifts were measured for clear-sky ocean scenes

than for the other scenes. Hints of this spectral degra-

dation are also visible in the data of the Geostationary

Earth Radiation Budget (GERB) instrument on board

the MSG satellites (N. Clerbaux 2010, personal com-

munication). More proof was given by Delwart et al.

(2006), who reported that for the Medium Resolution

Imaging Spectrometer (MERIS) on board the Environ-

mental Satellite (Envisat), a stronger modification of the

spectral response was needed over time for the blue end

of the spectrum than for the red end. Also, the Moderate

Resolution Imaging Spectroradiometer (MODIS) and

the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS)

narrowband instruments suffer from a spectral on-orbit

degradation. Xiong et al. (2009) report a higher degra-

dation rate for the blue channels of these instruments

than for the ones with a larger central wavelength. For

narrowband detectors, however, it is sufficient to change

the calibration coefficient for each channel indepen-

dently, as the channels are small enough for the deg-

radation to stay constant over its spectral range.

To correct the VIS channels of the MFG satellites for

this spectral degradation, a semiempirical model is pro-

posed here, without, however, the possibility of giving a

full physical justification. The reason for this is that during

the whole MFG history, real physical modeling of the

degradation of the MVIRI instruments has never been

carried out because of a lack of knowledge of the in-

strument characteristics and their behavior in space. It is

worth noticing that these instruments had already been

designed by 1970, and that they have only been charac-

terized with the accuracy permitted at that time. In the

model that is given in section 2, the calibration coefficient

is kept constant, but the spectral response curve is al-

lowed to vary in time to be able to correct for the spectral
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aging effects. The methodology of how the model is ap-

plied to the Meteosat-7 data is explained in section 3.

Section 4 shows the results of the correction. The differ-

ent validation methods of the model and the comparison

with the EUMETSAT model are given in section 5. The

conclusions and future applications for the corrected data

are presented in section 6.

2. Aging model

As mentioned above, the temporal decrease in re-

flectance that was observed for MVIRI was adjusted by

EUMETSAT by changing the calibration coefficient in

time (Govaerts et al. 2004). As this allows only an overall

wavelength-independent correction, and, as there is a

spectral-dependent character to the degradation process

of MVIRI, this spectral component needs to be included

in the correction. This is achieved here by creating a

model that lets the spectral response f(l) change in time.

The first part of this model covers the gray degradation,

that is, the wavelength-independent part. Based on the

ideas fromXiong et al. (2009),Matthews et al. (2005), and

the NASA study performed by Stewart et al. (1990), an

exponential degradation is used. This gray part of the

model is based on two parameters: a, the decay rate of

gray degradation, and b, the asymptotic sensitivity when

t / ‘, and it takes the form of e2at 1 b(1 2 e2at). A

physical interpretation would be that 1 2 e2at is the

fraction of the instrument that is contaminated and

e2at is the fraction of the instrument that is not yet

contaminated.1 Then b can be seen as the sensitivity of

the damaged part, and this way the sensitivity of the

full instrument goes to b when t / ‘.
For the spectral part of the degradation model, differ-

ent possibilities were investigated. In the case of CERES,

Matthews et al. (2005) proposed a model that is an ex-

ponential function of wavelength. This idea is based on

the fact that atomic oxygen is a major source of con-

tamination for polar-orbiting instruments (Dooling and

Finckenor 1999). As all instruments in the Meteosat

Program occupy a geostationary orbit instead of a polar

one, the CERES model did not provide good enough

results for the MFG instruments. Instead, a linear func-

tion of time and wavelength was chosen with g as the

temporal decay rate of spectral degradation. The full

model of the on-orbit spectral response f(l, t) at time t

then takes the following form:

f(l, t)5f(l, 0)[e2at 1b(12 e2at)][11gt(l2 l0)] (1)

with a, b, and g as the model parameters; f(l, 0) is the

spectral response function at launch; and l0 is the central

wavelength of the VIS response curve at launch. Figure 1

shows the original spectral response function f(l, 0) of

Meteosat-7 together with the corrected response curves

f(l, t) with t 5 2, 4, 6, and 8 yr following the above-

mentioned model (the parameters are given in Table 2).

The wavelength-dependency is visible when comparing

the curves at short and long wavelengths: at longer

wavelengths, the curves decrease less in time than at

shorter wavelengths.

Apart from time and wavelength, the model is also

strongly dependent on the spectral response curve, as it

was measured prior to launch. For Meteosat-7, the origi-

nal response curve was characterized quite accurately,2

while for the older satellites it was not always the case.

3. Methodology

The explanation of the methodology below is based

on the Meteosat-7 data. The same methods, however,

can be applied on the data of any of the other MFG

instruments. In this work only one image of 50003 5000

pixels is used per day. For the majority of the images,

this is the one at 1200 UTC. When this image is not

available or if the quality is not good, then the one at

FIG. 1. Normalized spectral response functions of Meteosat-7

VIS channel at launch, after 730 days (2 yr), 1460 days (4 yr), 2190

days (6 yr), and 2920 days (8 yr). Following themodel, there is both

a gray exponential degradation (a5 1.1643 decade21, b5 0.7489)

and a wavelength-dependent linear degradation (g5 0.4745 mm21

decade21) present in these response curves.

1 One could say that the degradation of the instrument is af-

fected by both the degradation of the mirror and the detector. In

which case, e2at would be written as e2a1t ; e2a2 t 5 e2(a11a2)t 5 e2at,

where a1 is the decay rate of degradation of the mirror and a2 is the

decay rate of degradation of the detector.

2 The original spectral response curve was cut off at l 5 1 mm.

The idea of Govaerts et al. (2004) to extend the response curve for

l . 1 mm was adopted in this work.
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1100 UTC is used; otherwise, the image at 1300 UTC is

selected. When it is not possible to use any of these three

images, the day is skipped. Thedata period at 08 longitude
used is from 3 June 1998 to 11 June 2006.

a. From digital count to reflectance ratio

All images are first transformed from digital counts to

radiance L, defined as

L5Cf (y2O)

with y as the original value in digital counts and Cf and

O as the calibration coefficient and offset value, respec-

tively. The latter two stay fixed throughout this work at

the values at launch calculated by Govaerts et al. (2004)

for Meteosat-7: Cf 5 0.9184 W m22 sr21 DC21 and O 5
4.84 DC.3 This radiance is called filtered or narrowband

(NB) radiance, as it was filtered by the instrument’s spec-

tral response f(l) as it went through (optics throughput

and detector response), that is,

L5

ð
VIS

L(l)f(l) dl (2)

where L(l) is the spectral radiance at wavelength l

coming into the instrument. The integration covers the

whole MFG visible band wavelength range.

Next, this narrowband radiance L is transformed into

narrowband reflectance r as follows:

r5
L

FSI cos(u0)

pd2

(3)

where u0 is the solar zenith angle, d is the distance

between the sun and the earth in astronomical units

(AU), and FSI is the filtered solar irradiance given by

EUMETSAT on their webpage (FSI 5 690.8 W m22).4

The filtered reflectance is then transformed into un-

filtered broadband (BB) reflectance following a linear

relation between both, as shown:

rBB 5 a1 br . (4)

To find the coefficients a and b, radiative transfer sim-

ulations are done for the spectral radiance L(l) for

different surface types. The spectral signatures for the

simulations are obtained from Clerbaux et al. (2008) for

750 different scenes. The simulations are made using

the Santa Barbara DISORT (discrete ordinate radiative

transfer) atmospheric radiative transfer (SBDART)

model (Ricchiazzi et al. 1998). This is carried out for a

large set of surface types characterized by a mixture

of one or several surface reflectance models from the

Advanced Spaceborne Thermal Emission and Re-

flection Radiometer (ASTER) library (Baldridge et al.

2009), and for different types of aerosols and cloudiness.

The simulations cover all possible solar and viewing

geometries, with an angular resolution of 108 for the

solar zenith angle u0 and relative azimuth angle c, and 58
for the viewing zenith angle u. The simulations are done

with a sufficiently fine spectral resolution to create sim-

ulated narrowband [Eq. (2)] and broadband radiances

[Eq. (6)]. Using the modeled spectral response curve

f(l, t) from Eq. (1), the simulated narrowband radi-

ance becomes

L5

ð
VIS

L(l)f(l,0)[e2at1b(12e2at)][11gt(l2l0)]dl

5 [e2at1b(12e2at)](L01gtL0) (5)

with

L0 5

ð
VIS

L(l)f(l, 0) dl

L05
ð
VIS

L(l)f(l, 0)(l2 l0) dl

and the simulated broadband radiance is computed as

LBB5

ð
0--2mm

L(l) dl . (6)

After both NB- and BB-simulated radiances are

converted into reflectance using Eq. (3) with the same

constant value for FSI, the coefficients a and b are fitted

for each time t and each surface type through Eq. (4).

Figure 2 shows a sample of simulated NB and BB re-

flectances for different surface types at time t 5 0 and

with u0 5 508, u5 308, and c5 508. From this figure it is

clear that a linear relation exists between narrowband

and broadband reflectance, and a linear fit can be done.

The coefficients a and b are then used through Eq. (4) to

convert the observed filtered reflectance into unfiltered

reflectance. This conversion is needed to obtain a para-

meter independent of degradation of the spectral re-

sponse. The narrowband reflectance r is filter dependent,

3 The calibration and offset coefficients can be found on the

EUMETSAT webpage as version 07.07.01. The calibration co-

efficient is given as a constant value. The offset, however, is given

for different smaller periods, and the fixed value used here is the

time average of all of these periods over the full Meteosat-7 time

range.
4 The FSI was computed using the solar spectrum as measured

by the Atmospheric Laboratory for Applications and Science

(ATLAS).
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and thus aging dependent, whereas broadband reflec-

tance is computed using a flat normalized spectral re-

sponse function, so that there is no dependence on the

Meteosat-7 filter. This means that it should be possible

to find model parameters that will lead to broadband

time series with a slope close to zero.

As a final step, the unfiltered (broadband) reflectance

values are divided by a modeled anisotropy factor (R)

and albedo (Alb) to correct for the difference in sun–

earth–satellite geometry, and for the difference in re-

flectance for different surface types. For clear-sky sites,

R and Alb have been empirically estimated by Loeb

et al. (2003) using data of the CERES instrument on the

Tropical Rainfall Measuring Mission (TRMM) satellite

(Kummerow et al. 1998).5 As the shortwave spectral re-

sponse of the CERES instrument is broader than the one

of MFG, the cloudy R and Alb contain the effects of

the deep ice and water absorption bands between 1 and

2 mm. For this reason the anisotropy and albedo values

for deep convective clouds are not taken from Loeb et al.

(2003). Instead, they are modeled with the radiative

transfer program libRadtran (Mayer and Kylling 2005)

using theKey et al. (2002) parameterizationwith the solid

column crystal habit. The result of the division of mea-

sured broadband by modeled broadband is called the

reflectance ratio r, written as

r5
rBB

R(u0, u,c)Alb(u0)
(7)

in which the dependency of r on the angles u0, u, and c is

expected to be removed, and the r value should be close

to 1.

b. Selection of clear-sky targets

As the model depends on time and wavelength, re-

flectance ratio time series for targets with different

spectral characteristics could be used to fit the model

parameters a, b, and g for each instrument separately.

These targets are chosen to be themost stable sites in the

Meteosat field of view6 (FOV) in order to have as little

noise as possible on the time series. To have a wide va-

riety in reflectance ratio values, different surface types

are selected using both cloudy and clear-sky targets. The

next two sections explain how the target selection is

done.

To find clear-sky targets, clear-sky images are created

every 10 days using a pixel-to-pixel analysis of a series of

30 reflectance ratio images before and 30 reflectance

ratio images after the original one, following themethod

of Ipe et al. (2003). As an example, Figs. 3a and 3b show

an original image expressed in reflectance ratio r (dated

14 March 2002) and its clear-sky version. To reduce the

effect of spatial variability at the pixel level, each clear-

sky image is transformed into a so-called local mean

image (see Fig. 3c). This means that each clear-sky pixel

is replaced by the average value in the image of all pixels

in a box of 25 3 25 around this one.

As the decrease in signal of the satellite can be ap-

proximated to the first order by a linear function, a linear

fit in time is computed over the whole Meteosat-7 time

range for each individual pixel in these local mean im-

ages. Based on this, the variance, defined as the quadratic

deviation to each fitting line, is computed and stored in

a so-called variance image. Here each pixel contains the

variance of the linear fit of this pixel over the whole time

range. In the same way, the mean image is computed as

the image where each pixel is the average of the pixels

with the same position over the whole time range of im-

ages. In a next step, the pixel-to-pixel ratio of the variance

to the mean is taken in order to normalize the variance.

This variance-to-mean ratio image is shown in Fig. 3d.

The most stable sites (with respect to the linear fit) are

then the pixels with the lowest normalized variance.

The last requirement on these sites is that no two sites

can be located closer than 50 pixels, that is, each site is

the local minimum of variance-to-mean value ratio in a

box of 513 51 pixels. This ensures that two adjacent sites

come from geographic regions that are different enough,

and that the number of sites stays limited. Figure 4 shows

the locations of the final 253 clear-sky targets in the

Meteosat FOV.

FIG. 2. Simulated NB and BB reflectances for different surface

types and with angles u0 5 508, u 5 308, and c 5 508. The BB re-

flectance values are plotted here as a function of theNB reflectances.

5 The availability of these broadband CERES models is also the

reason why the NB-to-BB correction is done for Meteosat and why

no other stable conversion is used.

6 The Meteosat field of view is the part of the earth that is ob-

served from the geostationary orbit of the Meteosats at their

nominal position of 08 longitude.

500 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 30



c. Selection of cloudy targets

The most stable cloudy pixels are the ones that con-

tain deep convective clouds, as these are the clouds with

the highest and most stable reflectance values, due to

the ice crystals at the top (Vermote and Kaufman 1995;

Doelling et al. 2004b). To select cloudy targets, the

original images that still contain clouds are used. Be-

cause clouds move, different pixels are used as a target

in each frame.

As a first step, the original image is replaced by a local

mean image in the same way as described in section 3b.

Here, however, each original pixel is replaced by the

average value of a box of 9 3 9 pixels. These boxes are

smaller because they are mainly used to remove the

effects of very small clouds and to smooth out the bor-

ders of the biggest clouds. The deep convective cloud

scenes are then found as the local maxima of boxes

of 151 3 151 pixels. These boxes are larger than the

boxes used for the clear-sky target selection process

because convective clouds can be large, and we do not

want to select different scenes from the same convec-

tive cloud.

d. From targets to time series

For all of these clear-sky and cloudy targets, reflectance

ratio time series are constructed for the fullMeteosat-7

time range. Before they are used to find the best model

parameters, a seasonal correction and surface-type av-

eraging are performed on the time series as follows.

First, residual small seasonal effects are corrected for

by subtracting the mean annual cycle from the reflec-

tance ratio value time series [Qian et al. (2011)]. An

example of this is shown in Fig. 5, where the time series

of a site with high seasonal variation is plotted before

and after the seasonal correction.

Next, the 253 clear-sky time series are averaged ac-

cording to five different surface types (ocean, dark vege-

tation, bright vegetation, dark desert, and bright desert).7

First, this grouping is done to decrease the number of

FIG. 3. The Meteosat-7 VIS image of 14 Mar 2002 as (a) the original reflectance ratio image, (b) the clear-sky

reflectance ratio image, (c) the local mean reflectance ratio image, and (d) the variance-to-mean ratio image of the

fullMeteosat-7 data range. The black spot in the center of (a)–(c) and the white spot in (d) are due to data removed

because of sun glint.

7 As there are almost no snow pixels in the Meteosat FOV, this

surface type was not used at all in this work. Furthermore, the snow

spectrum in the visible band is very similar to the convective cloud

spectrum (see Dozier 1989).

MARCH 2013 DECOSTER ET AL . 501



time series to check while still keeping information about

the whole Meteosat FOV. Second, it is also not possible

to ensure that each individual target is stable; however,

grouped together, the less stable time series are averaged

out. Third and most importantly, it seems that the aging

effect is stronger for scene types with a strong component

in the blue part of the visible spectrum. By selecting the

sites with the same surface type, similar spectral charac-

teristics are being grouped together and targets with

distinct spectral properties can be compared with each

other. On the cloudy side, only one time series is created.

This is done by selecting, for each individual image, the

five scenes with the highest reflectance ratio values and

averaging these. Also, a time averaging over 10 days is

done for the cloudy time series to have the same temporal

resolution as for the clear-sky time series.

Together, this results in six time series, which are

plotted in Fig. 6a. The first thing to notice in this figure is

the slight difference in degradation rate for the different

time series. The dark and bright vegetation decrease

1.2%–1.4% yr21, while the dark and bright desert decrease

1.5%–1.7% yr21. The ocean time series decrease about

1.8%yr21 and the convective cloud time series 1.9%yr21.

The exact numerical value for the slope of each time se-

ries is given in column 4 of Table 1. The error on each

value is given by the square root of the reduced chi-square

statistics xred of the fit of each time series, as shown:

xred 5

ffiffiffiffiffiffiffiffiffiffiffi
SSR

NDF

r
(8)

where SSR is the sum of squares of residuals and NDF

is the number of degrees of freedom. The number of

degrees of freedom is calculated as the number of points

in the time series minus the number of parameters in

the fit. As a linear fit is done through the time series, the

number of parameters in the fit is equal to 2. As the

ocean spectrum has a strong peak in the blue part of

the visible wavelength, and the spectrum of the con-

vective clouds also covers the full blue visible wave-

lengths (the absorption of these ice clouds increases with

increasing wavelengths), this slightly stronger decrease

in time for the convective clouds and ocean time series

corroborates the wavelength dependence of the degra-

dation process of Meteosat-7. A stronger degradation,

however, is expected for the ocean than for the con-

vective clouds just because of this strong peak in the blue

visible wavelengths. Even though this is not the case for

the broadband reflectance ratio time series, it is the case

for the narrowband version of these time series (where

the narrowband-to-broadband conversion has not been

done). The fifth column of Table 1 shows that, indeed, the

ocean time series decrease stronger than the convective

cloud time series when expressed in NB reflectance ratio

instead of BB reflectance ratio. The reason for this is to be

found in the NB-to-BB conversion, as shown:

rBB 5 a1 brNB

and can be explained as follows. Expressing this con-

version in reflectance ratio, using ~r5R(u0, u,c)Alb(u0)

in Eq. (7) leads to

rBB~rBB 5 a1 brNB~rNB .

Taking the partial derivative of this equation to time

results in the slope of the reflectance ratio time series,

defined as

FIG. 4. Position of the 253 clear-sky targets used in this work.

FIG. 5. Time series for site with coordinates (2288, 2222) before

and after the seasonal correction. This target is one with high

seasonal variation, where there was still a small seasonal effect

visible in the time series.
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The slopes are divided by the intercept to get the relative

change in time, as shown:
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›t
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1
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Filing in typical values for theNB reflectance rNB and the

(a, b) coefficients for possible angles u0 5 308, u5 308,
and c 5 908 leads for convective cloud time series to

1

11
a

brNB

5
1

11
0:04

0:93 0:7

’ 0:94

and for ocean time series in

1

11
a

brNB

5
1

11
0:014

0:943 0:1

’ 0:87.

This explains why the ratio of NB-to-BB slope is bigger

for the ocean time series than for the convective cloud

time series.

From Fig. 6a it can also be seen that the initial re-

flectance ratio values differ from 1 for five of the six time

series. The reason that they differ from 1 can come from

three sources. First, the spectral response at launch is

never perfectly known. Second, the narrowband-to-

broadband correction relies on simulations that may not

perfectly represent the observed surface type. Third, the

CERES TRMM angular distribution models used to

convert the reflectance values to reflectance ratio are

global tropical models. This means that the models for

each different surface type are based on observations

from that surface type from the global tropical region.

The models will be good as an average over that region,

but they might slightly misrepresent targets in the Me-

teosat FOValone. The inadequacy of theCERESTRMM

models in the Meteosat FOV has been reported for dark

vegetation by Bertrand et al. (2006).

e. Minimizing variance cost function

The ultimate goal is to correct the MFG data for

degradation and thus find the set of model parameters

FIG. 6.Meteosat-7 reflectance ratio time series for the five clear-

sky and one cloudy time series with (a) the time series before the

aging correction was done, (b) after they were corrected for deg-

radation using the aging model of Eq. (1), and (c) after they were

corrected using the model from Govaerts et al. (2004) as used by

EUMETSAT.
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(a, b, g) that leads to time series with a slope close to

zero. This is done as follows:

1) Simulate the spectral radiance L(l) for different

surface types and times.

2) Set the model parameters (a, b, g) to an initial value.

3) Calculate L and LBB using Eqs. (5) and (6) with the

given values for a, b, and g.

4) Convert these simulated radiances into reflectances

using Eq. (3).

5) Do the NB-to-BB conversion of Eq. (4), fitting the

a and b values for these simulated reflectance values.

6) Use the values for a and b from this conversion to

convert the observed reflectance r to broadband re-

flectance rBB [Eq. (4)].

7) Transform rBB to reflectance ratio r using Eq. (7).

8) Calculate the cost function

�
6

i51

wi

8>>>><
>>>>:

1

N

2
66664 �

N

j51

r2ij 2

 
�
N

j51

rij

!2

N

3
77775

9>>>>=
>>>>;

(9)

using the method of Powell (1964) and using these

r values.8

9) If the cost function does not lead to the optimal

solution, then the Powell method returns a new set

of (a, b, g) parameters and the routine goes back to

step 3.

The weights used in the cost function for the clear-sky

time series were determined using the presence of each

surface type in the Meteosat FOV. For the clouds the

weight was obtained using a statistical analysis in the

FOV. The values for the weightswi are given in the third

column of Table 1 for each different time series.

4. Results

The search for the set of model parameters (a, b, g)

that leads to undegraded time series was performed on

the Meteosat-7 database. The optimal solution from the

cost function is given in Table 2, together with the stan-

dard deviation of each parameter. The standard deviation

was computed by running the same minimization tech-

nique on 30 different subsets of 100 time series (of the

254). As the standard deviations of the parameters are all

smaller than the parameter values themselves, the opti-

mal solution is significant. The clear nonzero value for

the g parameter indicates the need for a wavelength-

dependent correction of degradation.

These a, b, and g values result in the corrected time

series shown in Fig. 6b. Comparing this with Fig. 6a, one

thing that can be seen is that the starting point of the six

time series in Fig. 6b are slightly higher than the ones in

Fig. 6a. The reason for this is that the aging correction

starts at launch in September 1997 but that the dataset

used to present the results in this work starts in June

1998. Apart from that, it is clear that the time series are

all corrected for aging, and that they are now all quasi

horizontal. The slope for each of the time series is given

in column 7 of Table 1, expressed in percentage per year.

TABLE 1. For each surface type, the number of sites used is given, the weight values used in the cost function in Eq. (9), the slope of the

original time series expressed in BB reflectance ratio, the slope of the original time series expressed inNB reflectance ratio, the slope of the

BB reflectance ratio time series corrected using the model of Govaerts et al. (2004), and the BB reflectance ratio time series corrected

using the model from this paper. The error on each slope value is the square root of the reduced chi-square statistics xred.

Surface type No. of sites Weight wi

Original BB

slope (% yr21)

Original NB

slope (% yr21)

Govaerts

slope (% yr21)

Current model

slope (% yr21)

Convective clouds 1 0.6562 21.9090 6 0.0230 22.0144 6 0.0295 20.2689 6 0.0263 20.0463 6 0.0181

Ocean 127 0.1611 21.7900 6 0.0222 22.4311 6 0.0280 20.7562 6 0.0238 20.0105 6 0.0166

Dark vegetation 22 0.0252 21.2542 6 0.0204 21.6699 6 0.0244 0.1219 6 0.0234 20.0605 6 0.0190

Bright vegetation 49 0.0554 21.3895 6 0.0167 21.7932 6 0.0205 20.0139 6 0.0183 0.0030 6 0.0129

Dark desert 11 0.0268 21.5328 6 0.0156 21.8030 6 0.0185 20.0320 6 0.0165 0.0758 6 0.0147

Bright desert 44 0.0753 21.6847 6 0.0149 21.8631 6 0.0180 20.1011 6 0.0154 0.0623 6 0.0132

Total sum-weighted average 254 1.00 21.8176 22.0435 20.3044 20.0267

TABLE 2. The optimal solution is given for each parameter together

with its standard deviation.

Parameter Optimal solution Standard deviation

Gray decay

rate a

1.1643 decade21 0.1606 decade21

Asymptotic

sensitivity b

0.7489 0.0161

Spectral decay

rate g

0.4745 mm21 decade21 0.0329 mm21 decade21

8 Index i runs over all six time series, index j over all points in the

time series, wi is the weight given to each of the six time series,N is

the number of points in the time series, and rij is the reflectance

ratio for time series i and time j.
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The values confirm the improvement as they are now all

clearly smaller than the original ones. The residual error

for each individual time series is expressed as the square

root of the reduced chi-square statistics xred of the fit of

each time series. The resulting time-dependent spectral

response curves were already shown in Fig. 1 for t5 2, 4,

6 and 8 yr.

5. Validation

Several different steps have been taken to validate

this model. First, the model is applied to all-sky obser-

vations, where different surface types are grouped to-

gether. The result of this is shown in section 5a. A second

validation is based on the dataset from the International

Geosphere-Biosphere Programme (IGBP; Eidenshink

and Faundeen 1994; Loveland and Belward 1997). In-

stead of grouping the Meteosat FOV pixels into five

groups according to their surface type, the 17 classes of

the IGBP dataset are used. The method and residual

slopes of the time series are given in section 5b. Finally,

the model explained here is compared to the model that

was already in use by EUMETSAT. This comparison is

shown in section 5c.

a. Regional validation

The key to the first validation is that, instead of the

clear-sky and convective cloud simulations that were

used for the NB-to-BB conversion, all-sky simulations

are used allowing all types of clouds. These simulations

are also created using the SBDART model. As before,

the pixels of the original images are converted from ra-

diance to reflectance; however, for the NB-to-BB con-

version of Eq. (4), the values for a and b are now fitted on

the all-sky simulations. As there are no all-sky R and Alb

values (only for strictly clear-sky or cloudy pixels), the

division by the R and Alb is not done and thus the

broadband reflectance values are not converted into re-

flectance ratio, as was done before. Filling in the values

for the model parameters a, b, and g that came out of the

optimization process (see Table 2) and applying the

model to all images, any time series derived from these

corrected images should be corrected for aging and

should thus have a slope close to zero, as long as the

cloudiness does not vary too much.

To show that this is the case, the Meteosat FOV is

divided into 625 boxes, each 200 3 200 pixels. For each

box, the reflectance values are averaged and used to

create time series. As each box contains 40 000 pixels,

this means that different surface types are combined in

each time series. To show the results, first, a few random

boxes have been selected. Their position is shown in

Fig. 7b on top of the Meteosat FOV. As the broadband

reflectance values are not converted into reflectance

ratio, the pixels are not corrected for differences in solar

illumination in different seasons. To mitigate these sea-

sonal effects, yearly averages are taken. The resulting

time series are shown in Fig. 7a.

To check how flat the time series actually are, the

residual slopes of the time series have been computed.

This is done for the 401 of 625 boxes in the Meteosat

FOV that satisfy the condition u , 808 and u0 , 808,
including the random selection of boxes from Fig. 7. The

spatial distribution of the residual slopes is shown in

Fig. 8a. Figure 8c gives the slopes as a function of their

mean reflectance. In the latter, the error bars on the

slopes are the square roots of the reduced chi-square

statistics xred of the fit of each individual time series as

explained in the previous section. Figure 8c shows that

the slopes are all grouped around zero, with a few

FIG. 7. Yearly averaged reflectance time series in (a) for the random selection of boxes of 2003 200 pixels shown in

(b) in the Meteosat FOV at 08 longitude.
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extreme positive values going as high as 0.007. From Fig.

8a it can be seen that these positive values are situated in

the North Atlantic Ocean. The cloud fraction of MODIS

for 2000–06 shows that in this region, there has been an

increase in cloudiness over the years. An increasing

amount of clouds explains the increasing reflectance, and

thus the positive slope for this area. The standard de-

viation s of the slopes is about 0.0015 yr21, so 95% of

the boxes have a slope between 20.003 (22s) and

0.003 yr21 (2s); using an average radiance of 100 W m22,

this results in stability of 3 W m22 decade21.

The same procedure is now applied on the composite

clear-sky images (still using the all-sky simulations). For

comparison, Fig. 8b shows the spatial distribution of the

residual slopes for all boxes, while Fig. 8d gives the slope

as a function of their mean reflectance, where each box

still consists of 200 3 200 pixels. As the model is based

on these clear-sky images, it is obvious that the results

are better with smaller error bars. The few slopes with

large errors come from parts of the FOV with perma-

nent stratocumulus clouds, where it was not possible

following our procedure to totally remove the presence

of clouds (e.g., in the Atlantic Ocean close to the west

coast of Africa). To compare with the validation on

the original images, the deviation of the slopes s is

smaller here (about 3.33 1024 yr21). With about 95%

of the boxes with a slope between 26.6 3 1024 (22s)

and 6.6 3 1024 yr21 (2s), the stability is about

0.66 W m22 decade21.

b. IGBP surface-type selection

In another validation step, the 17-class land cover

dataset created by the IGBP Data and Information Sys-

tem is used. Based on these different surface types, 17

time series are created, where all pixels with the same

surface type are spatially averaged into one time series.

After the data are corrected using the spectral model and

the optimal set of model parameters as given in Table 2,

a linear fit is done for these 17 time series. The residual

slope and the xred [using Eq. (8)] of the fits are given in

Table 3. As no correction has been done for snowy sur-

faces in the Meteosat FOV by our model, surface type 15

is left out. The residual slopes are all smaller than their

reduced chi-square statistics and are thus all within the

FIG. 8. Results of the regional validation method. (a) Spatial distribution of residual slope using the original

images. (b) Spatial distribution of residual slope using the clear-sky images. (c) Residual slope as a function of mean

reflectance using the original images. (d) Residual slope as a function of mean reflectance using the clear-sky images.

Note that the range of the slopes is different in all figures. For the validation using the original images, the slopes have

a larger range because of the presence of clouds than for the validation using the clear-sky images.
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uncertainty of themethod close to zero. For surface types

1, 3, and 11, the xred is much higher than for the others

because of the small sampling within the FOV (see % of

sites in FOV for each IGBP class in Table 3).

c. Comparison with EUMETSAT model

A comparison is also carried out between the results

of this model and the results of the model provided by

EUMETSAT (Govaerts et al. 2004). Figure 6c shows

the same six clear-sky and cloudy time series that were

used to create our model; however, instead of correcting

them for aging following the model explained in this

paper and keeping the calibration coefficient constant,

themodel of EUMETSAT is used, where the calibration

coefficient changes linearly in time, written as

Cf (t)5Cf 1 (DfNt10
25)

with Cf the fixed calibration coefficient at launch

(50.9184 W m22 sr21 DC21 for Meteosat-7), Df as the

daily drift (55.3507 3 1025 W m22 sr21 DC21 day21

forMeteosat-7), and Nt as the number of days since the

date of launch. In Fig. 6c, it can be seen that the ocean

and cloud time series are still decreasing, while the

vegetation and desert time series are flat. The latter is

as expected, as the desert targets were used in the vi-

carious calibration in the SSCC method. The fact that

the wavelength dependency in the degradation was not

taken into account in this model explains why not all

time series have a zero slope.

6. Conclusions and future work

A spectral degradation was observed in the data of the

Meteosat First Generation instrument Meteosat-7. To

correct for this, an aging model was created using

three parameters. Validation shows that the model is

working well for this satellite. With a stability of

0.66 W m22 decade21 on the clear-sky images, we are

not that far off from the GCOS requirement of

0.2 W m22 decade21, so the idea of using a model in-

cluding a wavelength dependency in the degradation

seems to be consolidated. It is probably not possible

to derive a more accurate model of spectral response

degradation at this moment without having measure-

ments of the spectra of the surface types.

Preliminary work has shown promising results for the

rest of the MFG database. Once the full dataset is cor-

rected for degradation, there is the possibility to create

FCDRs from this. The main application in mind is to

create top-of-atmosphere earth radiation budget through

GERB-like data, and thus extending the GERB data

records prior to its launch (Clerbaux et al. 2007). The

modeled spectral response curve could also immediately

be used to derive TCDRs for aerosol radiative forcing,

aerosol optical depth, and surface albedo. Another op-

tion is that, instead of creating broadband data, the da-

taset could also be corrected based on, for example, the

Meteosat-7 spectral response curve at launch. This would

lead to a full corrected narrowband dataset that might be

more useful for applications where full corrected time

series are needed, instead of just the modeled spectral

response curve.
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