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Abstract: The current lack of a long, 30+ year, global climate data record of reflected shortwave
top-of-atmosphere (TOA) radiation could be tackled by relying on existing narrowband records
from the Advanced Very High Resolution Radiometer (AVHRR) instruments, and transform
these measurements into broadband quantities like provided by the Clouds and the Earth’s
Radiant Energy System (CERES). This paper presents the methodology of an AVHRR-to-CERES
narrowband-to-broadband conversion for shortwave TOA reflectance, including the ready-to-use
results in the form of scene-type dependent regression coefficients, allowing a calculation of
CERES-like shortwave broadband reflectance from AVHRR channels 1 and 2. The coefficients
are obtained using empirical relations in a large data set of collocated, coangular and
simultaneous AVHRR-CERES observations, requiring specific orbital conditions for the AVHRR- and
CERES-carrying satellites, from which our data analysis uses all available data for an unprecedented
observation matching between both instruments. The multivariate linear regressions were found to be
robust and well-fitting, as demonstrated by the regression statistics on the calibration subset (80% of
data): adjusted R2 higher than 0.9 and relative RMS residual mostly below 3%, which is a significant
improvement compared to previous regressions. Regression models are validated by applying them
on a validation subset (20% of data), indicating a good performance overall, roughly similar to the
calibration subset, and a negligible mean bias. A second validation approach uses an expanded data
set with global coverage, allowing regional analyses. In the error analysis, instantaneous accuracy is
quantified at regional scale between 1.8 Wm−2 and 2.3 Wm−2 (resp. clear-sky and overcast conditions)
at 1 standard deviation (RMS bias). On daily and monthly time scales, these errors correspond to 0.7
and 0.9 Wm−2, which is compliant with the GCOS requirement of 1 Wm−2.
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1. Introduction

Broadband measurements of top-of-atmosphere (TOA) reflected solar flux and emitted thermal
flux are essential climate variables of which a high-quality data record of satellite measurements with
sufficient length (“Climate Data Record” or CDR) is needed by, among others, the climate modeling
community (for validation purposes), and preferably spanning several decades [1]. However, apart
from instrument-specific broadband measurement campaigns (e.g., CERES, 2000-present [2]) and
regional datasets based on geostationary satellites (e.g., Meteosat-based, 1983–2015 [3]), to date no
harmonized global CDR dating back several decades exists. An alternative method is to rely on existing
global long-term CDRs of harmonized narrowband reflectance (FCDRs), e.g., from the Advanced
Very High Resolution Radiometer (AVHRR) instrument [4,5], and transform these measurements
into broadband quantities [6]. This study aims to establish robust relations between the long-term
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record of narrowband AVHRR measurements, and the relatively recent state-of-the-art broadband
measurements from CERES: these results allow the generation of a global, long-term, broadband
energy balance dataset, that would fit the needs of the climate modeling and monitoring community.

Narrowband-to-Broadband (NTB) corrections can be developed in two different ways [7]: (a) data
sets with pairs of collocated, coangular and simultaneous narrowband (i.e. spectral) and broadband
observations (also referred to as “matched NTB pairs”) can empirically be analyzed with regression
methods, or (b) theoretical simulations of NTB corrections using sophisticated radiation models may be
used [8,9]. Here we focus on the first, empirical method, for which there are basically three possibilities
of obtaining matched NTB pairs:

A first possibility is that the narrowband and broadband instruments are located on the
same satellite. In this case, all matched NTB pairs are per definition highly collocated, coangular,
and simultaneous. Examples include CZCS and ERB on Nimbus-7 satellite [10], AVHRR and ERBE
on NOAA-9 satellite [11,12], SEVIRI and GERB on Meteosat satellite [3]. While this is obviously the
easiest way to obtain a large database of matched NTB pairs, the instrument combinations are limited.

A second possibility is to combine a broadband instrument located on a polar orbiting satellite
(e.g., ERB, ERBE, CERES, ScaRaB) with a narrowband instrument located on a geostationary satellite
(e.g., VISSR, SEVIRI). The geostationary satellite provides a fixed field of view with a relatively
frequent temporal sampling. However, the coangularity criteria have as effect that the matching is
restricted to certain regions, e.g., to the tropics when combining SEVIRI with cross-track CERES [13].
Examples include GOES2/VISSR to Nimbus7/ERB [14], Meteosat2/MVIRI to NOAA9/ERB [15],
GOES7/VISSR to Meteor/ScaRaB [16], MSG1/SEVIRI to Terra-Aqua/CERES [13].

Finally, the narrowband and broadband sensors can be located on different polar orbiting satellites.
This is rather challenging since both satellites are moving independently from each other and chances
of simultaneous collocated and coangular measurements are rare, except if both orbital planes coincide
and their speed (altitude) is significantly different to allow frequent catch-ups. Probably due to these
specific requirements, this possibility is barely reported in the literature.

A brief overview of existing empirical NTB conversions for AVHRR is given in the review paper
by Godøy and Eastwood [7]. The following studies are discussed, where AVHRR is used for planetary
albedo determination: Wydick et al. [17] collocated AVHRR (NOAA-7) to ERB (Nimbus-7), but this
study does not really belong to any of the mentioned methods since the narrowband (1981) and
broadband (1978–1980) observations are not simultaneous. Li and Leighton [11] and Hucek and
Jacobowitz [12] collocated AVHRR to ERBE, on the same satellite NOAA-9 (possibility 1).

This paper aims to improve on the last two mentioned studies by making new regressions
between AVHRR and CERES, with the most notable advancement being the use of CERES Ed.4
broadband radiance products which, compared to ERBE, performs better due to several instrumental
and processing improvements such as a higher resolution, better scene identification, more accurate
auxiliary data (e.g., sea ice), etc. [18]. Furthermore, more detailed scene types are distinguished
(e.g., “forest”, “grass”, or “savannas” instead of just “land”), for each of which a separate NTB
regression is derived. Relating AVHRR narrowband to CERES broadband reflectance necessarily
means a choice for the third empirical NTB possibility in the above mentioned framework.

Early studies proposed a linear regression that was solely dependent on the narrowband
reflectances [11,12,14,17,19]. The equation used to relate narrowband reflectance (AVHRR channels
0.6 µm and 0.8 µm) to broadband reflectance (ρSW) typically takes the following form:

ρSW = b0 + b1 · ρ0.6 + b2 · ρ0.8 (1)

where bx are the regression coefficients and ρ stands for “true isotropic reflectance”[4], also known
as “Lambertian reflectance” [20], here simply referred to as reflectance. The values are expressed as
percentage, with a range of 0–100. In subsequent studies, however, the regression parameters were
found to depend moderately on solar zenith angle (SZA; θ0) [21]. These studies therefore included θ0 as
additional parameter [16,22,23]. Feng and Leighton [23] furthermore found a dependency on viewing
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zenith angle (VZA; θ). Built on this knowledge, the current study includes the SZA-dependency in
the same way as Minnis et al. [22] and adds the VZA-dependency [23], resulting in the following
regression equation:

ρSW = b0 + b1 · ρ0.6 + b2 · ρ0.8 + b3 · ln
(

1
cos(θ0)

)
+ b4 · ln

(
1

cos(θ)

)
(2)

The inverse of the cosine being a good approximation for the atmospheric path. While the
first two of above mentioned studies [16,22] removed anisotropy by applying a narrowband angular
directional model (ADM), prior to the NTB conversion, the latter study [23] argued against this practice:
it prevents the user from applying an ADM of his choice, e.g., anticipating on future improved ADMs.
Their point of view is largely followed in this study, in which no a priori angular correction is applied.
The resulting ρSW can then be used in a broadband ADM of choice (e.g., [24–26], or anticipated future
ADMs) to remove anisotropy and ultimately obtain the real hemispherical albedo and flux.

2. Data

The broadband measurements are taken from the instantaneous footprint data of the CERES
instrument [27] onboard satellites Terra FM1 and Aqua FM3 (Single Scanner Footprint TOA/Surface
Fluxes and Clouds edition 4A [28]). Apart from the actual broadband reflectance, also included are
geophysical variables (e.g., cloud mask) simultaneously recorded by the accompanying MODIS
imager and aggregated to CERES resolution. These will be compared to geophysical variables from
AVHRR, to verify whether the matched NTB pair also has identical conditions (apart from the purely
temporal-geometrical conditions). Footprint size and shape are spatially variable: cross-track and
along-track dimensions increase with viewing zenith angle (θ) due to an increasingly spread-out
projected area, which is even more magnified by the earth’s curvature. Assuming a spherical pixel
with diameter of 32 km at nadir (PSF with 95% energy cutoff [29]), at θ = 70◦ its dimensions reach
~212 km (cross-track) and ~71 km (along-track).

The narrowband measurements are taken from the AVHRR instrument [30] onboard
NOAA-17,-18,-19 satellites, from which an FCDR is created with Global Area Coverage Level-1c data
created using the PyGAC processor [5]. This data set is supplemented with geophysical variables
(such as cloud mask, sea ice concentration, etc.) remapped on the same grid [31]. The data have a
spatial resolution of 4 km at nadir, but similar to CERES SSF, pixel size and shape are subject to biaxial
deformation with increasing viewing zenith angle.

The analysis time period has been selected by examining the orbital planes of Terra/Aqua and
NOAA satellites: the former have a true sun-synchronous orbit (with daytime equatorial crossing
times of ~10:30 and ~13:30 LST) whereas the latter suffer from orbital drift (Figure 1). The orbital
planes coincide around January 2005 (NOAA-17), 2008 (NOAA-18) and 2012 (NOAA-19), which
then provides the necessary conditions for having frequent matched NTB pairs, i.e., simultaneous,
collocated, and coangular. Since coinciding orbital planes of AVHRR- and CERES-carrying satellites
did not occur outside these three time periods, this study analyses an unprecedented exhaustive
amount of matched NTB pairs. Combining satellites with deviating orbital planes is not efficient, since
there is only a marginal addition of NTB pairs at a high computational cost. This is illustrated by a
small test on January 2012: the combination Aqua+NOAA19 (coinciding) results in 4.124.334 matched
NTB pairs, whereas Aqua+NOAA18 (~1h off) generates only 99.605 pairs, or 2.4%, which furthermore
occur in two limited high-latitude bands. To account for seasonal variability in spectral properties of
some land cover types (such as vegetation or sea-ice), the full annual cycle is considered. Therefore,
a range of at least +/−6 months is chosen around January, ending up with the periods given in Table 1.
The long time span of a full year furthermore enables regressions per surface type, as the sample size
must be large enough within each of these groups, and finally it also allows splitting off a smaller
subset serving as independent observations for validation purposes.
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Table 1. Specifications for database with matched NTB pairs.

AVHRR CERES
ECT (dir) 1 Analysis Period Nr. of All-Sky

Satellite Satellite (From–To) NTB Pairs 2

NOAA-17 Terra ~10:30 LST (D) 1/5/2004–30/8/2005 17.106.331
NOAA-18 Aqua ~13:30 LST (A) 1/7/2007–30/6/2008 14.256.034
NOAA-19 Aqua ~13:30 LST (A) 1/7/2011–30/6/2012 14.395.121

1 Equatorial Crossing Time (ECT) as Local Solar Time (LST); flight direction (D = descending, A = ascending).
2 After filtering for temporal and angular constraints.

Figure 1. Daytime equatorial crossing time for the relevant satellite sensors.

3. Method

3.1. Data Preparation

An initial version of the dataset is constructed by identifying matched NTB pairs: based on
temporal and spatial constraints, the algorithm iterates over all pixels in both datasets to find
corresponding pixels.

In a first step, the CERES pixels are filtered on the criterion that it only contains either land, water,
or snow (mixtures are excluded). Only water and sea ice are permitted to co-exist in a single CERES
pixel. Then, the AVHRR pixel closest to the CERES pixel center is identified, but only considered
if differences in 3D viewing angle (combining viewing zenith and azimuth) and observation time
are less than 6◦ and 450 s [13], respectively. If so, based on the viewing geometry and assuming an
at-nadir size of 32 × 32 km (cf. Appendix A.1), the footprint size of the CERES pixel is determined,
the corresponding AVHRR pixels are identified (their centroids should be located inside the CERES
footprint), and their associated radiance and other geophysical variables are aggregated. This converts
the binary cloud mask, either 0 or 1, into a continuous cloud fraction between 0–100%. An additional
constraint is that all AVHRR pixels should belong to the same surface type (first column in Table 2:
ocean, forest, etc.), otherwise the pixel disqualifies and the iteration continues. Therefore the algorithm
finds the nearest matching IGBP land cover category for each AVHRR pixel in a static 1 km grid
IGBP map [32], followed by a mapping from IGBP category to surface type [33] as shown in the
first two columns in Table 2. Sea ice surface types can only contain a mixture of ocean and sea ice,
and are subdivided according to sea ice concentration: subdivisions are based on the non-linear
relations between concentration, color and albedo due to the seasonal effects such as melting pond
formation [34]. Finally, sun glint contamination is avoided by rejecting NTB pairs with a sun glint
angle (between sun specular reflection and viewing direction) smaller than 25◦ [13]. The resulting
dataset amounts over 45 million matched NTB pairs (Figure 2).
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Figure 2. Schematic overview of data preparation steps.

In a second step, filtering is performed on the resulting dataset. Matched NTB pairs are categorized
according to their cloud fraction: “clear” and “overcast” pairs require both the CERES and AVHRR
cloud fraction to exactly amount 0% and 100% respectively. “All-sky pairs” simply require that
the difference between CERES and AVHRR cloud cover is no more than 20% point. At this point,
the dataset contains over 35 million all-sky pairs and is referred to as the “expanded validation database”
characterized by relaxed matching criteria (used in Sections 3.3.2 and 4.3.2).

In a third step, the dataset is narrowed down to 3.3 million pairs by restricting angular and temporal
matching criteria: for most NTB pairs, the maximum allowed temporal and 3D-angular differences
between CERES and AVHRR observations are set to 250 s and 2.5◦, respectively. These threshold
values were established after an iterative trial-and-error process to find a trade-off between keeping
a sufficiently large sample size (higher thresholds) and lowering angle/time difference error (lower
thresholds). For surface types ocean and permanent snow, their areal abundance allows stricter criteria:
100 s and 1.0◦ respectively. For some scarce combinations of surface type and cloud cover (i.e. scene
type), namely clear forests, overcast savannas and clear broken sea ice (60–10%), the thresholds are set to
300 s and 3.0◦. Subsequently, for each scene type, every fifth pair in the chronologically ordered dataset
is split off: these 20% of the pairs constitute the “smaller validation subset” characterized by strict matching
criteria (used in Sections 3.3.1 and 4.3.1). The remainder of the data constitutes the “calibration subset”
(80% of the pairs), used to derive the NTB regression coefficients (about 2.7 million pairs).

3.2. Regression Calibration

For each scene type, a multivariate linear regression is performed on the calibration subset using
the least squares method with AVHRR reflectance and solar/viewing zenith angles as predictors
(Equation (2)). The resulting best-fit coefficients are stored together with the associated regression
statistics (adjusted R2, absolute and relative RMS residual). Let ρ̂SW and ρSW be the estimated and
observed broadband shortwave reflectance, then residual ri is defined as (ρ̂SW,i − ρSW,i) and the sum
of squared residuals (SSR) as (∑n

i=1 r2
i ), so that the surface-type-dependent Root-Mean-Square residual

(RMSr) is calculated as follows:

RMSr =

√
SSR

n
=

√
1
n
·

n

∑
i=1

r2
i =

√
1
n
·

n

∑
i=1

[(ρ̂SW,i − ρSW,i)2] (3)

where n is the number of NTB pairs i within a given scene type. Please Note that the units of RMSr are
identical to the units of reflectance, i.e., expressed as percentage and ranging from 0 to 100. The relative
RMS residual (rRMSr) is defined as the absolute RMSr divided by the mean observed broadband
shortwave reflectance (< ρSW >), and can be expressed as fraction or percentage:

rRMSr =
RMSr

< ρSW >
=

√
1
n ·∑

n
i=1[(ρ̂SW,i − ρSW,i)2]

1
n ·∑

n
i=1 ρSW,i

(4)
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For each scene type, also two simpler regression models are constructed by using only
3 and 2 predictors, respectively (instead of 4 predictors in the complete model), from which the
2-predictor model is given by Equation (1). This allows to assessment of the added value of the
additional predictors.

Finally, beside the surface-type-dependent regressions, a generic surface-type-independent
regression is fitted by considering all matched NTB pairs regardless surface type. This regression
allows to assessment of the added value of with a separate regression for each surface type.

3.3. Validation

3.3.1. Validation on Smaller Validation Subset (with Strict Matching Criteria)

To validate the surface-type-dependent NTB regression models obtained from the calibration subset,
they are applied on narrowband AVHRR reflectance from the smaller validation subset (20% of the matched
NTB pairs with strict matching criteria) using Equation (2). The resulting estimated broadband reflectance
is compared with its observed equivalent (from CERES-SSF), and their difference quantified by the Mean
Bias (MB) and relative Mean Bias (rMB) per scene type, each containing n NTB pairs:

MB =
1
n
·

n

∑
i=1

(ρ̂SW,i − ρSW,i) (5)

rMB =
1
n
·

n

∑
i=1

(
ρ̂SW,i − ρSW,i

ρSW,i

)
(6)

with ρ̂SW the estimated and ρSW the observed broadband reflectance. The statistical significance of
MB is estimated by using Welch’s Two Sample t-test at 95% confidence level, meaning that when the
p-value remains below 0.05 the null hypothesis is rejected and the means are considered significantly
different. Furthermore, for each scene type, the reflectance bias is also expressed in terms of isotropic
flux (MB f lux, Wm−2), also referred to as flux-equivalent Mean Bias, allowing a better assessment of the
bias’ relevance since it is weighted by insolation:

MB f lux =
1
n
·

n

∑
i=1

[(ρ̂SW,i − ρSW,i) · 0.01 · TSI · cos(θ0,i)] (7)

where TSI is the total solar irradiance (here taken at 1363 Wm−2). The statistical significance calculation
of MB f lux is equal to the one of MB.

This approach does not allow a regional (spatial) analysis since the strict matching criteria for
both calibration and validation subsets limit the sampling, geographical coverage and hence the
construction of global maps and globally aggregated metrics. This problem is tackled when using a
different validation approach (Section 3.3.2).

3.3.2. Validation on Expanded Validation Database (with Relaxed Matching Criteria) and
Regional Analysis

A second validation approach is to apply the surface-type-dependent NTB regressions on the
narrowband reflectances from the expanded validation database, consisting of 35 million pairs with
global coverage due to the relaxed matching criteria. The bias (MB, rMB, MB f lux) between estimated
and observed broadband reflectance is then calculated for each pair and stratified per surface type.
Furthermore, to detect regional biases and to calculate a global mean bias regardless region-specific
over- or undersampling of the matched NTB pairs, the expanded database is spatially aggregated
into a 5◦ × 5◦ equirectangular grid. Prior to the global mean calculation, grid boxes with less than
32 observations are excluded and the grid is subjected to area-weighting [cos(latitude)]. Additional
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global statistics are calculated, such as the mean absolute bias (MAB) and RMS bias, both indicators
for uncertainty at the 5◦ regional scale.

3.3.3. Added Value of Surface-Type-Dependent Regressions

Both above mentioned validations are also done using the generic surface-type-independent
regression, which is applied on all NTB pairs regardless their surface type. The added value of having
a separate NTB regression for each surface type is then assessed by comparing the validation results
derived by surface-type-dependent and by surface-type-independent regression coefficients.

3.4. Error Budget

The error is separated in three components: the precision, the stability and the accuracy.

3.4.1. Precision

The precision refers to the non-systematic error associated with the derivation of the NTB
regression. Note that this does not include the error associated with the input data (including the
FCDR). The precision depends on the sample size, i.e., number of NTB pairs within each scene type
(n) used to derive the NTB regressions, and is quantified by the standard error of residuals (SEr),
calculated as the RMS residual divided by

√
n:

SEr =
RMSr√

n
=

1
n
·
√

n

∑
i=1

[(ρ̂SW,i − ρSW,i)2] (8)

Just like all other above mentioned metrics (R2
adj, RMSr, rRMSr, MB, rMB, MB f lux), this quantity

is calculated for each scene type separately.

3.4.2. Stability

The stability refers to the change of the systematic error (bias) in time. Usually this includes jumps
due to instrument switches and slow temporal degradation (aging of sensor). Here we only look to the
first, i.e., the change of the bias from one AVHRR instrument to the other. Therefore, the regressions
calibrated using all three satellite combinations (Section 3.2) are now applied on each satellite
combination separately (NOAA17+Terra, NOAA18+Aqua and NOAA19+Aqua). This is done using the
entire database of NTB pairs with relaxed matching criteria (max 6◦ 3D angle and 450 s). Global mean
statistics are calculated as described in Section 3.3.2, i.e., by aggregating all matched NTB pairs
on a global map with 5◦ × 5◦ resolution and averaging all grid boxes after weighting by areal
fraction [cos(latitude)]. For the flux-equivalent mean bias (MB f lux) we derive three values MB f lux,N17,
MB f lux,N18, and MB f lux,N19:

MB f lux,sat =
1
n
·

n

∑
i=1

[MB f lux,sat,i] (9)

where n stands for the number of NTB pairs for each satellite combination sat (across all scene types).

3.4.3. Accuracy

Finally, the accuracy is defined as the regional bias associated with the NTB regressions. Similar
to the stability statistic, the accuracy statistics are calculated by considering the global 5◦ × 5◦ bias
grid based on NTB pairs with relaxed matching criteria, but now for all satellite combinations together.
On the resulting bias map, the Mean Absolute Bias (MAB) and root mean square bias (RMSB) are
calculated. The latter can be used to describe regional uncertainty at 1 standard deviation.
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4. Results

4.1. Data Preparation

Table 2 shows the different surface types with their associated IGBP category and occurrence
frequency of matched NTB pairs using strict matching criteria. Combined sample size for categories
“clear” and “overcast” is much lower than for “all-sky”, because they have much stricter selection
criteria (cfr. Section 3.1). For clear and overcast categories, the regional sampling patterns are plotted
in Figure 3. These patterns are self-evident and reflect the spatial distribution of dry and wet climate
regions. The figures are shown for all satellites together; subdividing the density maps per satellite
does not significantly affect the spatial distribution (results not shown here).

Figure 3. Sampling number of matched NTB pairs with strict matching criteria for (a) clear, (b) overcast,
and (c) all-sky conditions in 5◦ × 5◦ boxes.
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Table 2. Surface types, corresponding IGBP categories, and number of matched NTB pairs (with
strict matching criteria) for clear, overcast, and all-sky conditions; Data: 2004–2005 (NOAA17+Terra),
2007–2008 (NOAA18+Aqua) and 2011–2012 (NOAA19+Aqua).

Surface Type IGBP Category Nr. (Clear) Nr. (Overcast) Nr.(All)

Ocean 17 44,099 396,552 875,251
Forests 1,2,3,4,5 5265 11,146 44,405
Savannas 8,9 8498 6006 28,295
Grass/crop 6,10,11,12,13,14 13,651 19,629 76,910
Dark deserts 7,18 27,548 5628 61,340
Bright deserts 16 108,146 8089 191,645
Perm. snow/ice 15 67,766 46,403 196,854
Fresh snow 19 40,407 102,128 481,576

Sea ice 100% 35,095 34,319 130,282
Sea ice 95–99% 46,678 85,440 272,354
Sea ice 90–95% 11,098 48,876 118,266
Sea ice 80–90% Not applicable 12,737 84,861 197,343
Sea ice 60–80% 6286 59,595 135,770
Sea ice 10–60% 5393 78,287 144,676
Sea ice 0–10% 9272 220,499 381,304

(total) 441,939 1,207,458 3,336,271

4.2. Regression Calibration

The resulting regression coefficients are listed in Table 3. NTB conversions can be applied on any
combination of channel 1 + 2 AVHRR reflectances by inserting the coefficients associated with a given
scene type, together with solar and viewing zenith angles, into Equation (2).

The regressions are characterized by high coefficient of determination (R2
adj) and low RMS residual

(Table 4), indicating the high goodness-of-fit and explanatory power of the models. The largest RMS
residual (RMSr) can be noticed for surface type “Sea ice 10–60%” because of the high internal variability
within this surface type which enlarges the spread around the regression line. Clearsky scenes have
on average much lower absolute RMSr compared to overcast scenes, but this comparison doesn’t
hold anymore when considering the relative RMSr (rRMSr). The latter should be interpreted with
care: ocean, for instance, has a rather high rRMSr (4.82%) but one of the lowest absolute RMSr (0.26).
Overall, the regression models fit the observations well.

When comparing to earlier NTB regressions with AVHRR as narrowband reflectance predictor,
the present study forms a significant improvement. For example Wydick et al. [17] report for clear
ocean, clear land and clouds an absolute RMSr of respectively 1.4, 2.1 and 7.5 (compared to our
0.26, 0.33–0.67 and 0.80–1.76). Li and Leighton [11] report for the same surface types an RMSr of
respectively 1.0, 1.8 and 3.1, corresponding to a relative RMSr of 13.8%, 10.4% and 6.5% (compared
to our 4.82%, 2.26–3.13% and 1.49–3.71%). Explained variance (R2) is higher for all scene types,
e.g., for clear ocean (0.91), clear land (0.95–0.98) and clouds (0.97–0.98) compared to respectively
0.64, 0.75, 0.76 [17] and 0.83, 0.77, 0.93 [11]. Part of the improvement can be attributed to the CERES
instrument, which has a better spatial resolution allowing a more homogeneous signal (less noise)
within a scene type, compared to the ERBE broadband instrument used in earlier studies. Also the
strict pixel selection criteria (data filtering) used in this study, which is based on both AVHRR and
the CERES-accompanying MODIS imager, could contribute to less noise (compared to the previous
studies in which only AVHRR was used for scene identification).
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Table 3. Regression coefficients based on calibration subset (80% of the NTB pairs with strict matching criteria), stratified per surface type, for clear, overcast, and allsky
conditions; Data: 2004–2005 (NOAA17+Terra), 2007–2008 (NOAA18+Aqua) and 2011–2012 (NOAA19+Aqua).

Clear-Sky Overcast All-Sky

Surface Type b0 b1 b2 b3 b4 b0 b1 b2 b3 b4 b0 b1 b2 b3 b4

Ocean 1.828 1.093 −0.480 −0.071 0.522 4.341 0.313 0.441 0.770 1.339 2.942 0.333 0.447 0.716 1.113
Forests 0.970 0.567 0.379 1.295 1.081 3.937 0.376 0.383 0.913 1.341 2.572 0.409 0.371 0.919 1.616
Savannas 1.419 0.455 0.394 2.233 0.732 3.033 0.379 0.380 4.404 1.452 2.388 0.416 0.371 2.260 0.697
Grass/crop 2.217 0.453 0.350 1.202 1.365 3.940 0.416 0.343 1.215 1.818 2.829 0.430 0.348 0.869 1.781
Dark deserts 2.427 0.370 0.371 1.334 0.738 3.284 0.300 0.461 1.565 1.679 1.691 0.432 0.356 1.546 1.141
Bright deserts 3.241 0.362 0.338 1.464 1.247 0.978 0.402 0.384 2.609 1.028 1.591 0.553 0.207 2.488 1.523
Perm. snow/ice 6.483 0.212 0.480 −0.452 1.358 14.754 0.171 0.463 −1.187 6.579 20.238 0.078 0.468 −1.706 4.602
Fresh snow 1.701 0.283 0.438 1.431 2.796 2.433 0.341 0.426 1.261 3.198 1.638 0.306 0.451 1.145 3.388
Sea ice 100% 4.150 0.214 0.498 0.144 3.713 7.159 0.290 0.423 0.343 4.751 21.605 0.179 0.324 −2.220 6.527
Sea ice 95–99% 7.640 0.218 0.451 -0.420 3.574 9.236 0.243 0.450 −0.139 4.319 12.543 0.281 0.343 −0.841 5.585
Sea ice 90–95% 6.188 0.259 0.427 −0.248 3.229 10.301 0.220 0.461 −0.319 4.006 10.402 0.174 0.504 −1.128 4.658
Sea ice 80–90% 2.954 0.372 0.343 0.299 2.431 9.614 0.218 0.472 −0.107 3.579 9.590 0.073 0.628 −0.803 4.028
Sea ice 60–80% 2.563 0.446 0.259 0.540 2.399 6.820 0.271 0.454 0.387 2.804 4.912 0.215 0.541 0.334 3.020
Sea ice 10–60% 2.676 0.462 0.218 0.333 4.475 4.794 0.282 0.472 0.416 2.201 3.288 0.263 0.517 0.412 2.536
Sea ice 0–10% 1.802 0.901 −0.251 0.246 1.991 4.525 0.314 0.443 0.372 2.524 3.169 0.348 0.433 0.498 2.830

(generic *) 2.503 0.336 0.384 1.172 1.720 4.126 0.360 0.394 0.963 2.327 2.965 0.390 0.363 0.887 2.810

b0, b1, b2, b3, b4: coefficients in Equation (2). (*) surface-type-independent regression, that combines all matched NTB pairs (regardless the surface type).



Remote Sens. 2019, 12, 305 11 of 25

Table 4. Regression metrics based on calibration subset (80% of the NTB pairs with strict matching criteria), stratified per surface type, for clear, overcast, and all-sky
conditions; Data: 2004–2005 (NOAA17+Terra), 2007–2008 (NOAA18+Aqua) and 2011–2012 (NOAA19+Aqua).

Clear-Sky Overcast All-Sky

Surface Type R2
adj RMSr rRMSr SEr R2

adj RMSr rRMSr SEr R2
adj RMSr rRMSr SEr

Ocean 0.912 0.26 4.82% 0.001 0.983 1.59 3.71% 0.003 0.990 1.69 5.85% 0.002
Forests 0.954 0.33 2.74% 0.005 0.975 1.76 3.60% 0.019 0.987 1.75 5.83% 0.009
Savannas 0.976 0.38 2.70% 0.005 0.978 2.08 5.25% 0.030 0.985 1.30 6.13% 0.009
Grass/crop 0.958 0.49 3.13% 0.005 0.979 1.52 3.11% 0.012 0.990 1.50 5.00% 0.006
Dark deserts 0.982 0.56 3.05% 0.004 0.975 1.62 3.42% 0.024 0.986 1.24 5.21% 0.006
Bright deserts 0.979 0.67 2.26% 0.002 0.979 1.42 3.08% 0.018 0.973 1.02 3.32% 0.003
Perm. snow/ice 0.979 0.52 0.86% 0.002 0.959 1.24 2.02% 0.006 0.880 1.78 2.94% 0.004
Fresh snow 0.993 0.96 2.41% 0.005 0.978 1.28 2.55% 0.004 0.976 1.74 4.11% 0.003
Sea ice 100% 0.960 0.55 1.04% 0.003 0.967 0.80 1.49% 0.005 0.871 1.38 2.63% 0.004
Sea ice 95–99% 0.965 0.56 1.05% 0.003 0.972 0.94 1.70% 0.004 0.900 1.68 3.18% 0.004
Sea ice 90–95% 0.992 0.66 1.39% 0.007 0.969 1.02 1.85% 0.005 0.934 1.75 3.37% 0.006
Sea ice 80–90% 0.932 0.57 1.57% 0.006 0.973 1.08 2.04% 0.004 0.964 1.52 3.17% 0.004
Sea ice 60–80% 0.934 0.73 2.45% 0.010 0.972 1.20 2.41% 0.005 0.972 1.52 3.44% 0.005
Sea ice 10–60% 0.926 1.34 7.77% 0.020 0.975 1.33 2.98% 0.005 0.982 1.59 4.21% 0.005
Sea ice 0–10% 0.974 0.23 3.90% 0.003 0.973 1.42 3.30% 0.003 0.984 1.64 4.59% 0.003

(generic *) 0.998 0.73 2.05% 0.001 0.982 1.44 3.05% 0.001 0.985 1.93 4.91% 0.001

R2
adj: adjusted coefficient of determination; RMSr: root-mean-square residual; rRMSr: relative RMSr. SEr: standard error of residuals. (*) surface-type-independent regression, that

combines all matched NTB pairs (regardless the surface type).
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The adjusted R2 is a modified version of R2 that has been corrected for the number of predictors:
it increases only if the additional predictor improves the model more than it would be expected
by chance. By comparing R2

adj obtained by the two simpler models, with respectively only 2 and 3
predictors, the added value of the SZA and VZA predictors becomes obvious as (for every scene type)
their R2

adj is equal or lower than the full 4-predictor model (Appendix A.2). Furthermore, rRMSr is in
both simple models equal or higher than the full 4-predictor model (results not shown).

The generic surface-type-independent regression combines all matched NTB pairs, regardless
surface type. With a value of 0.998, the adjusted R2 from the generic regression is higher than any of
the surface-type-dependent regressions (Table 4). This has been reported in similar studies [11,17],
from which the latter argues that this does not mean that surface type discrimination is unimportant,
since applying the generic model on homogeneous scenes would introduce systematic biases [11].
The added value of the surface-type-dependent regressions is assessed in Sections 4.3 and 4.4.3, where
the results are derived using both surface-type-dependent and surface-type-independent regressions.

4.3. Validation

4.3.1. Validation on Smaller Subset of Data (with Strict Matching Criteria)

Validation is done by applying the regression models to the narrowband AVHRR reflectances in
the smaller validation subset, thereby quantifying their performance, of which the results are shown
in Table 5. The bias metrics (rMB, MB, and MB f lux) should be small and as close as possible to zero
(note that in the calibration subset this metric is per definition zero, and therefore omitted in Table 4).
The relative RMS residual (rRMSr) is calculated similarly to the calibration rRMSr (Equation (4)),
but in this case applied on the validation subset instead of the calibration subset. The results indicate
an overall good performance, with rRMSr roughly similar to the calibration rRMSr, and the rMB
close to zero with an outlier maximum value of only +0.48% (corresponding to MB f lux of +0.57 Wm−2).
None of the scene types have a statistically significant bias.

Table 5. Surface-type-dependent regression performance based on smaller validation subset (20%
of the NTB pairs with strict matching criteria), stratified per surface type, for clear, overcast,
and allsky conditions; Data: 2004–2005 (NOAA17+Terra), 2007–2008 (NOAA18+Aqua) and 2011–2012
(NOAA19+Aqua).

Clear-Sky Overcast All-Sky

Surface Type MB f lux MB rMB rRMSr MB f lux MB rMB rRMSr MB f lux MB rMB rRMSr

Ocean −0.04 −0.003 −0.06% 4.81% +0.06 −0.004 −0.01% 3.73% −0.23 −0.031 −0.11% 5.86%
Forests +0.17 +0.015 +0.12% 2.79% +0.81 +0.058 +0.12% 3.61% −0.16 −0.020 −0.07% 5.82%
Savannas −0.07 −0.007 −0.05% 2.66% −1.23 −0.105 −0.27% 5.40% −0.06 −0.007 −0.03% 6.11%
Grass/crop +0.01 −0.001 −0.01% 3.15% +0.42 +0.027 +0.06% 3.11% −0.26 −0.026 −0.09% 5.02%
Dark deserts +0.04 +0.003 +0.02% 3.07% +0.92 +0.082 +0.17% 3.44% −0.09 −0.014 −0.06% 5.18%
Bright deserts +0.22 +0.020 +0.07% 2.26% −0.48 −0.050 −0.11% 3.05% +0.01 +0.002 +0.01% 3.25%
Perm. snow/ice −0.19 −0.031 −0.05% 0.86% −0.09 −0.007 −0.01% 2.01% +0.12 +0.034 +0.06% 2.95%
Fresh snow −0.07 −0.020 −0.05% 2.42% −0.30 −0.046 −0.09% 2.56% +0.05 +0.041 +0.10% 4.11%
Sea ice 100% +0.08 +0.023 +0.04% 1.05% +0.08 +0.023 +0.04% 1.50% −0.18 −0.028 −0.05% 2.64%
Sea ice 95–99% −0.27 −0.058 −0.11% 1.06% −0.22 −0.043 −0.08% 1.72% −0.11 −0.013 −0.02% 3.19%
Sea ice 90–95% −0.15 −0.030 −0.06% 1.36% −0.31 −0.058 −0.11% 1.84% +0.15 +0.027 +0.05% 3.36%
Sea ice 80–90% −0.07 −0.005 −0.01% 1.64% +0.10 +0.006 +0.01% 2.06% +0.25 +0.030 +0.06% 3.17%
Sea ice 60–80% −0.27 −0.022 −0.07% 2.52% +0.34 +0.045 +0.09% 2.40% +0.29 +0.033 +0.08% 3.45%
Sea ice 10–60% +0.57 +0.083 +0.48% 7.80% −0.19 −0.036 −0.08% 2.95% +0.04 −0.003 −0.01% 4.21%
Sea ice 0–10% +0.02 −0.002 −0.03% 3.79% −0.05 −0.019 −0.05% 3.31% +0.06 +0.002 +0.01% 4.61%

MB f lux : mean bias expressed as isotropic flux (Wm−2); rMB: relative mean bias; rRMSr: relative rms residual.

Instead of using surface-type-dependent regressions, the same validation is done using the
generic surface-type-independent regression: the results shown in Appendix A.3 indicate that for
all scene types the performance is significantly worse, demonstrating the advantage of having
surface-type-dependent regressions.
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4.3.2. Validation on Expanded Validation Database (with Relaxed Matching Criteria) and
Regional Analysis

For the second validation approach, the regression models are applied on the expanded database,
and the results are listed in Table 6. Compared to the first validation approach (Section 4.3.1) relative
RMSr is mostly larger due to the relaxed matching criteria, which introduces additional noise due
to spatial and angular errors. The mean biases are relatively small, but still significant for some
scene types, with MB f lux ranging from −1.14 to +1.20 Wm−2 (for respectively all-sky ocean and clear
sea-ice 10–60%). Please Note that the ratio MB f lux/MB varies, e.g., clear-sky ocean has a Mean Bias
(MB) of −0.078 and a resulting MB f lux of −0.78 Wm−2 (factor 10), whereas clear-sky permanent
snow/ice has a Mean Bias of −0.116 and a resulting MB f lux of −0.64 Wm−2 (factor 5), which is due to
differences in geographical distribution (latitude) and hence solar zenith angle for the different surface
types (Equation (7)).

rRMSr obtained by validation of the two simpler models, with respectively only 2 and 3 predictors,
demonstrates the added value of the SZA and VZA predictors as (for every scene type) this metric is
equal or lower than the full 4-predictor model (results not shown).

Instead of using surface-type-dependent regressions, the same validation is done using the
generic surface-type-independent regression: the results shown in Appendix A.4 indicate that for
all scene types the performance is significantly worse, demonstrating the advantage of having
surface-type-dependent regressions.

Global statistics can be made after the bias is aggregated and mapped on a global grid of 5◦ ×
5◦. Table 2 and Figure 3 illustrate the sample size and corresponding geographical coverage of the
dataset with strict matching criteria: it is clear from this that the sampling coverage is insufficient (not
global). Using relaxed criteria, however, the sample size becomes much larger (35 million instead of
3.3 million matched pairs) and the geographical coverage improves accordingly (figures not shown),
allowing a spatial analysis of the regional bias as well as the calculation of a global mean. The resulting
global MB f lux (Table 6) is low and varies from −0.81 Wm−2 (clear-sky), −0.64 Wm−2 (all-sky) to
−0.08 Wm−2 (overcast).

Figures 4 and 5 show the spatially explicit results in the form of bias maps, in which each 5◦ × 5◦

grid box represents the aggregated Mean Bias (MB) of all corresponding matched NTB pairs it contains.
Results for overcast conditions (Figure 4) are shown for varying regression predictors, i.e., first only
the two visible channels (Ch1,Ch2), then the visible channels and solar zenith angle (Ch1,Ch2,SZA),
and finally the visible channels plus solar and viewing zenith angles (Ch1,Ch2,SZA,VZA). Results for
clear and all-sky conditions are only shown for the complete model, i.e., using all regression predictors
(Figure 5).

SZA is known to be a significant predictor in shortwave NTB regression models, explaining
increases up to 10% for observations with highest SZA (polar regions) compared to lowest SZA
(tropics) [16,22,35]. To a lesser extent, this is also true for VZA. Models ignoring these parameters
are tuned to the most frequently sampled SZA and VZA. The dominance of midlatitude/subpolar
sampling of the scene type overcast ocean in our analysis (Figure 3b) thus explains the positive bias
associated with overcast tropical ocean (Figure 4a) and its reduction when adding SZA as predictor
(Figure 4b). Similarly, the inclusion of VZA improves the negative bias associated with overcast poles
(Figure 4b,c), because in this limited region the VZA is much higher than the global average (due to
specific sampling near the terminator). The added value of SZA and VZA as regression parameters is
also quantified using the accuracy statistics (cfr. Section 4.4.3).
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Table 6. Surface-type-dependent regression performance based on expanded database (with relaxed matching criteria), stratified per surface type, for clear, overcast,
and allsky conditions; Data: 2004-2005 (NOAA17+Terra), 2007-2008 (NOAA18+Aqua) and 2011–2012 (NOAA19+Aqua).

Clear-Sky Overcast All-Sky

Aggregation Type MB f lux MB rMB rRMSr MB f lux MB rMB rRMSr MB f lux MB rMB crRMSr

Ocean −0.78 * −0.078 * −1.42% * 6.12% −1.09 * −0.155 * −0.36% * 4.63% −1.14 * −0.147 * −0.49% * 6.82%
Forests −0.12 +0.002 +0.02% 3.30% +0.88 +0.056 +0.12% 4.00% +0.17 +0.007 +0.02% 6.32%
Savannas +0.64 * +0.058 * +0.41% * 3.14% −0.10 −0.007 −0.02% 5.14% +0.39 +0.035 +0.16% 6.57%
Grass/crop −0.24 −0.026 −0.17% 3.38% +0.39 +0.013 +0.03% 3.60% +0.04 −0.007 −0.03% 5.62%
Dark deserts −0.69 * −0.062 * −0.33% * 3.27% +0.19 +0.004 +0.01% 3.95% −0.20 −0.016 −0.07% 5.57%
Bright deserts +0.12 +0.005 +0.02% 2.38% +0.42 +0.042 +0.09% 3.72% −0.24 −0.025 −0.08% 3.52%
Perm. snow/ice −0.64 * −0.116 * −0.19% * 1.09% −0.59 * −0.179 * −0.29% * 2.53% −0.62 * −0.169 * −0.28% * 3.33%
Fresh snow +0.18 +0.010 +0.02% 2.64% −0.42 * −0.144 * −0.28% * 2.99% −0.64 * −0.155 * −0.36% * 4.43%
Sea ice 100% +0.22 * +0.047 * +0.09% * 1.11% −0.33 −0.054 −0.10% 1.73% −0.11 −0.013 −0.02% 2.88%
Sea ice 95–99% −0.03 −0.018 −0.03% 1.16% −0.01 +0.003 +0.00% 1.93% −0.08 −0.008 −0.01% 3.34%
Sea ice 90–95% +0.01 −0.004 −0.01% 1.47% −0.46 * −0.069 * −0.13% * 2.08% −0.31 * −0.056 * −0.11% * 3.58%
Sea ice 80–90% −0.09 −0.018 −0.05% 1.75% −0.13 −0.007 −0.01% 2.23% +0.20 * +0.047 * +0.10% * 3.32%
Sea ice 60–80% +0.44 * +0.076 * +0.25% * 2.46% −0.31 −0.026 −0.05% 2.62% −0.30 −0.031 −0.07% 3.63%
Sea ice 10–60% +1.20 * +0.151 * +0.89% * 7.62% −0.93 * −0.125 * −0.28% * 3.43% −0.62 * −0.092 * −0.25% * 4.67%
Sea ice 0–10% +0.22 +0.018 +0.31% 4.67% −1.09 * −0.206 * −0.47% * 3.86% −0.93 * −0.191 * −0.53%* 5.16%

Global mean [1] −0.81 −0.085 −1.19% n.a. [2] −0.08 −0.044 +0.19% n.a.[2] −0.64 −0.092 +0.64% n.a. [2]

MB f lux : mean bias expressed as isotropic flux (Wm−2); rMB: relative mean bias; rRMSr: relative rms residual. * statistically significant on the 99% confidence level. [1] After
spatial aggregation of all NTB pairs on a 5◦×5◦ grid with area-weighting. [2] Since rRMSr is calculated with respect to all NTB pairs within that scene type, this metric cannot be
globally aggregated.
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When considering the complete models using all predictors, the bias does not show pronounced
region-specific patterns (Figures 4c and 5a,b).

(a)

(b)

(c)

Figure 4. Flux-equivalent Mean Bias (MB f lux) between observed and estimated broadband reflectance,
for overcast conditions; estimated values are calculated by applying surface-type-dependent regressions
on the narrowband observations, using the predictors: (a) channels 1 + 2, (b) channels 1 + 2 and
SZA, and (c) channels 1 + 2, SZA and VZA. Biases are calculated on expanded validation database
(with relaxed matching criteria).
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(a)

(b)

Figure 5. Flux-equivalent Mean Bias (MB f lux) between observed and estimated broadband
reflectance, for (a) clear-sky and (b) all-sky conditions; estimated values are calculated by
applying surface-type-dependent regressions on the narrowband observations, using all predictors
(full regression model). Biases are calculated on expanded validation database (with relaxed
matching criteria).

4.4. Error Budget

4.4.1. Precision

The standard error of residuals (SEr), calculated on the calibration subset, is very small (Table 4):
it ranges from 0.001 to 0.024, indicating a sufficient sample size for all scene types.

4.4.2. Stability

The change of systematic bias from one AVHRR instrument to the other is investigated. Therefore
the NTB regressions are applied on three subsets of the expanded validation dataset, which is stratified
by satellite combination (NOAA17+Terra, NOAA18+Aqua, NOAA19+Aqua). After aggregating these
instrument-specific biases (MB f lux,N17, MB f lux,N18, MB f lux,N19) on a 5◦ × 5◦ grid, the resulting global
mean biases are calculated (Table 7).

When applying the regressions on the subset with satellite combination NOAA17+Terra, a small
positive bias becomes apparent (+0.32 Wm−2 for all-sky conditions). For the subset NOAA18+Aqua
there is a clear negative bias (−1.42 Wm−2 for all-sky conditions), and the subset NOAA19+Aqua
takes an intermediate position (−0.86 Wm−2 for all-sky conditions).

The instrument-specific bias can be attributed to the FCDR on which the analysis is based.
Homogenizing satellite data from different satellites and viewing conditions is a challenging task
and a continuous effort that will remain subject of future research. The stability, here quantified
as instrument-specific bias, may therefore be alleviated whenever the FCDR is improved with
updated calibrations.
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Table 7. Global stability statistics from bias map, based on expanded database (with relaxed matching
criteria) for clear, overcast, and allsky conditions; Validation data is stratified per satellite combination,
i.e., 2004–2005 (NOAA17+Terra), 2007–2008 (NOAA18+Aqua) and 2011–2012 (NOAA19+Aqua).

Clear-Sky Overcast All-Sky

Statistic Validation Subset MB f lux MB MB f lux MB MB f lux MB

global mean NOAA17+Terra −0.78 −0.108 +0.66 +0.027 +0.32 +0.013
(on 5◦ × 5◦ grid) NOAA19+Aqua −0.50 −0.017 −0.41 −0.063 −0.86 −0.087

NOAA18+Aqua −0.74 −0.126 −1.20 −0.195 −1.42 −0.241

MB f lux : mean bias expressed as isotropic flux (Wm−2); MB: mean reflectance bias (Wm−2).

Figure 6 illustrates the figures in a spatially-explicit way; the satellite-specific biases are well
spread across all regions (scene types), and mostly reflect the average numbers indicated in Table 7.

(a)

(b)

(c)

Figure 6. Satellite-specific flux-equivalent Mean Bias (MB f lux,sat) between observed and estimated
broadband reflectance, for all-sky conditions; estimated values are calculated by applying
surface-type-dependent regressions on the narrowband observations. Biases are calculated on
expanded validation database (with relaxed matching criteria), narrowed down to each of the satellite
combinations (a) NOAA17/Terra, (b) NOAA19/Aqua, (c) NOAA18/Aqua; grid boxes with less than
32 observations are excluded and appear white in the maps.
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4.4.3. Accuracy

The (regional) regression uncertainty at 1 standard deviation is quantified by the Root Mean
Square of biases (RMSB) calculated on the earlier derived bias maps (Section 4.3.2: Figures 4 and 5).
It is estimated at 1.82 Wm−2 and 2.29 Wm−2 for clearsky and overcast conditions, respectively (Table 8).
As expected from visual inspection of the bias maps, including the solar zenith angle as regression
predictor clearly improves the regression accuracy for overcast conditions (by 0.6 Wm−2), whereas the
inclusion of viewing zenith angle only yields a smaller improvement (by another 0.3 Wm−2).

Table 8. Global accuracy statistics from bias map, based on surface-type-dependent regressions from
expanded database (with relaxed matching criteria) for clear, overcast, and allsky conditions; Data:
2004–2005 (NOAA17+Terra), 2007–2008 (NOAA18+Aqua) and 2011–2012 (NOAA19+Aqua).

Clear-Sky Overcast All-Sky

Statistic Regression Predictors MB f lux MB MB f lux MB MB f lux MB

global RMSB Ch1,Ch2,SZA,VZA 1.82 0.217 2.29 0.301 2.07 0.317
Ch1,Ch2,SZA 1.96 0.262 2.61 0.465 2.39 0.429
Ch1,Ch2 2.09 0.277 3.21 0.487 2.33 0.427

global MAB Ch1,Ch2,SZA,VZA 1.38 0.168 1.76 0.236 1.58 0.225
Ch1,Ch2,SZA 1.55 0.206 1.97 0.300 1.86 0.294
Ch1,Ch2 1.60 0.209 2.38 0.348 1.77 0.297

Global statistics: RMSB: root mean square of biases (Wm−2); MAB Mean of absolute biases (Wm−2).
On pixel-level: MB f lux : mean bias expressed as isotropic flux (Wm−2); MB: mean reflectance bias (Wm−2).

The global Mean Absolute Bias (MAB) is an alternative way of quantifying accuracy, and shows
similar tendencies.

Above mentioned accuracy estimations are valid for the instantaneous matched NTB pairs.
For daily or monthly time scales, however, the error decreases due to the inclusion of nighttime (zero
flux). The proportion between monthly mean shortwave flux from the CERES Energy Balanced and
Filled (EBAF) dataset [2] (98.7 Wm−2) and mean instantaneous shortwave flux from matched NTB
pairs (254.4 Wm−2) is 0.388. This is used as correction factor to calculate the accuracy on daily time
scale, which is estimated at 0.71 Wm−2 (clear-sky) and 0.89 Wm−2 (overcast), both compliant with the
GCOS requirement of 1 Wm−2 [1].

The same accuracy assessment is done using the generic surface-type-independent regression,
instead of the surface-type-dependent regressions: the results shown in Appendix A.5 indicate
that all statistics the performance is significantly worse, demonstrating the advantage of having
surface-type-dependent regressions.

5. Conclusions

This paper establishes conversions between narrowband and broadband reflectances observed by
respectively the AVHRR and CERES instruments. This is achieved by using empirical relations in a
large data set of collocated, coangular and simultaneous AVHRR-CERES observation pairs. Specific
orbital conditions for the AVHRR- and CERES-carrying satellites are required, which seriously narrows
down the temporal range of potential matched pairs. A data survey has been performed using all
available data for an unprecedented observation matching between both instruments.

Multivariate linear regressions are performed for 15 surface types and 3 cloud cover classes,
resulting in regression coefficients for 45 scene types. As a result, for each combination of AVHRR
reflectances in channels 1 and 2, for a given scene type, a CERES-like broadband reflectance can
be estimated. The linear regressions were found to be accurate, as demonstrated by the regression
statistics: adjusted R2 > 0.9 and relative RMS residual (rRMSr) below 3% for almost all clear-sky and
overcast scene types, which is a significant improvement compared to previous works in the literature.

The added value of scene-dependent models was extensively demonstrated for regression
calibration (better fit) as well as for validation (lower bias and rRMSr). In addition, this study
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shows that the inclusion of solar and viewing zenith angle as predictors increases goodness-of-fit and
lowers rRMSr, and furthermore proves necessary to avoid sampling-based model biases.

Validation of the regression models is done first by applying them on a validation subset
(20% of pairs with strict matching criteria). The results indicate an overall good performance,
with rRMSr similar to the calibration-rRMSr, and the flux-equivalent Mean Bias (MB f lux) close
to zero. A second validation approach makes use of a much expanded database with global coverage
(obtained by relaxing matching criteria), allowing a spatially-explicit analysis and calculation of global
mean statistics.

Error analysis is performed with three measures: Precision is given by the standard
error of residuals, which is found very small (<0.03%). Stability is calculated by stratifying
the data set according to the AVHRR-CERES instrument combination. The analysis reveals
systematic instrument-specific biases with an order of (NOAAA19+Aqua) > (NOAA18+Aqua) >
(NOAA17+Terra): this is illustrated by MB f lux for all-sky conditions (+0.32, −0.86, −1.42 Wm−2),
stressing the need for a well calibrated FCDR. Finally, accuracy is quantified as regional uncertainty
at 1 standard deviation on a 5◦ × 5◦ grid (RMS bias), which is estimated for clear-sky and overcast
conditions at respectively 1.8 and 2.3 Wm−2 (instantaneous); this corresponds with 0.7 and 0.9 Wm−2

on daily mean time scale, which is compliant with the GCOS requirements of 1 Wm−2.

Author Contributions: T.A. wrote the paper which was thoroughly re-read by N.C. All authors have read and
agreed to the published version of the manuscript

Funding: This work was funded by the Climate Monitoring Satellite Application Facility (CM SAF) of EUMETSAT.

Acknowledgments: The authors are grateful to the Atmospheric Science Data Center at NASA Langley Research
Center for providing the CERES data used in this work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ADM Angular Dependency Model
AVHRR Advanced Very High Resolution Radiometer
Ch1, Ch2 Channel 1, Channel 2
CDR Climate Data Record
CERES Clouds and the Earth’s Radiant Energy System (instrument and mission)
CZCS Coastal Zone Color Scanner
ECT Equatorial Crossing Time
ERB Earth Radiation Budget (instrument and mission)
ERBE Earth Radiation Budget Experiment (instrument and mission)
FCDR Fundamental Climate Data Record
FM Flight Model
GAC Global Area Coverage
GCOS Global Observing System for Climate
GERB Geostationary Earth Radiation Budget (instrument and mission)
GOES Geostationary Operational Environmental Satellite
IGBP International Geosphere-Biosphere Programme
LST Local solar time
MAB Mean absolute bias
MB Mean bias
MB f lux Flux-equivalent mean bias
MODIS Moderate Resolution Imaging Spectroradiometer
MSG Meteosat Second Generation
MVIRI Meteosat Visible and Infrared Imager
NOAA-X National Oceanic and Atmospheric Administration, Satellite X
NTB Narrowband-to-Broadband
PSF Point Spread Function
RMS Root Mean Square
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RMSr Root Mean Square of residuals
RMSB Root Mean Square of Biases
rRMSr relative Root Mean Square of residuals
ScaRaB Scanner for Radiation Budget
SEr Standard Error of residuals
SEVIRI Spinning Enhanced Visible and Infrared Imager
SSF Single Scanner Footprint
SSR Sum of Squared Residuals
SZA Solar zenith angle
TOA Top of Atmosphere
VISSR Visible-Infrared Spin-Scan Radiometer
VZA Viewing zenith angle

Appendix A

Appendix A.1. Method: Data Preparation

The assumption of an at-nadir spherical CERES footprint with 32 km diameter was supported
by sensitivity tests on a subset of the database, with pixel diameters of 20, 26, 32, 38 and 44 km
respectively. For each configuration the rRMSr was calculated, and the 32 km configuration resulted in
the lowest rRMSr.

Appendix A.2. Regression Calibration

Figure A1. R2
adj per scene type as function of regression predictors, for (a) clearsky and (b)

overcast conditions.
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Appendix A.3. Validation: On Smaller Subset of Data

Table A1. Generic surface-type-independent regression performance based on smaller validation subset (20% of the observations with strict matching criteria),
stratified per surface type, for clear, overcast, and allsky conditions; Data: 2004–2005 (NOAA17+Terra), 2007–2008 (NOAA18+Aqua) and 2011–2012 (NOAA19+Aqua).

Clear-Sky Overcast All-Sky

Surface Type MB f lux MB rMB rRMSr MB f lux MB rMB rRMSr MB f lux MB rMB rRMSr

Ocean −0.31 −0.015 −0.28% 7.16% +1.57 * +0.169 * +0.39% * 3.78% −2.53 * −0.344 * −1.19% * 6.46%
Forests +2.31 * +0.200 * +1.67% * 4.64% +2.14 +0.197 +0.40% 3.64% −3.55 −0.368 −1.22% 6.25%
Savannas −5.09 * −0.480 * −3.41% * 5.36% +7.05 +0.571 +1.45% 5.67% +0.42 +0.028 +0.13% 6.83%
Grass/crop −3.97 * −0.429 * −2.76% * 4.91% +0.45 −0.003 −0.01% 3.16% −3.70 * −0.450 * −1.50% * 5.58%
Dark deserts −0.73 −0.083 −0.45% 3.39% +3.67 +0.316 +0.67% 3.58% +5.72 * +0.521 * +2.19% * 6.31%
Bright deserts +1.88 * +0.164 * +0.55% * 2.44% +12.62 * +1.176 * +2.55% * 4.23% +17.30 * +1.594 * +5.19% * 6.37%
Perm. snow/ice −0.07 * +0.110 * +0.18% * 1.12% +1.44 * +0.368 * +0.60% * 2.47% +7.97 * +1.609 * +2.66% * 4.40%
Fresh snow +0.80 +0.083 +0.21% 2.56% +2.61 * +0.400 * +0.80% * 2.74% +3.14 * +0.511 * +1.21% * 4.40%
Sea ice 100% −1.36 * −0.350 * −0.66% * 1.44% −0.22 −0.105 −0.20% 1.71% +2.81 * +0.637 * +1.21% * 3.55%
Sea ice 95–99% −1.16 * −0.256 * −0.48% * 1.34% −0.13 −0.078 −0.14% 1.94% +1.43 * +0.315 * +0.60% * 3.55%
Sea ice 90–95% −0.50 +0.010 +0.02% 1.62% −0.27 −0.063 −0.11% 2.07% −0.73 −0.105 −0.20% 3.61%
Sea ice 80–90% −0.57 −0.040 −0.11% 1.78% −1.61 * −0.298 * −0.56% * 2.30% −2.86 * −0.518 * −1.08% * 3.87%
Sea ice 60–80% −4.19 * −0.472 * −1.57% * 3.38% −1.69 * −0.262 * −0.53% * 2.50% −4.10 * −0.700 * −1.59% * 4.12%
Sea ice 10–60% +0.15 +0.246 +1.44% 8.80% −1.41 −0.159 −0.36% 3.02% −5.48 * −0.782 * −2.07% * 5.10%
Sea ice 0–10% +0.96 * +0.175 * +3.01% * 6.83% −1.33 −0.115 −0.27% 3.38% −6.87 * −1.018 * −2.85% * 5.65%

MB f lux : mean bias expressed as isotropic flux (Wm−2); rMB: relative mean bias; rRMSr: relative rms residual. * statistically significant on the 99% confidence level.
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Appendix A.4. Validation: On Expanded Validation Database (With Relaxed Matching Criteria) and Regional Analysis

Table A2. Generic surface-type-independent regression performance based on expanded database (with relaxed matching criteria), stratified per surface type, for clear,
overcast, and allsky conditions; Data: 2004–2005 (NOAA17+Terra), 2007–2008 (NOAA18+Aqua) and 2011–2012 (NOAA19+Aqua).

Clear-Sky Overcast All-Sky

Aggregation Type MB f lux MB rMB rRMSr MB f lux MB rMB rRMSr MB f lux MB rMB rRMSr

Ocean −1.29 * −0.106 * −1.92% * 8.17% +0.10 * −0.015 * −0.04% * 4.59% −3.74 * −0.499 * −1.66% * 7.27%
Forests +2.05 * +0.196 * +1.58% * 4.38% +1.76 +0.152 +0.31% 4.01% −3.47 * −0.374 * −1.22% * 6.68%
Savannas −4.59 * −0.431 * −3.01% * 5.15% +6.97 * +0.564 * +1.38% * 5.40% +0.54 +0.042 +0.19% 7.05%
Grass/crop −4.06 * −0.430 * −2.73% * 4.92% +0.45 −0.016 −0.03% 3.62% −3.33 * −0.413 * −1.42% * 6.11%
Dark deserts −1.40 * −0.136 * −0.73% * 3.46% +3.19 +0.264 +0.56% 4.05% +5.45 * +0.509 * +2.12% * 6.46%
Bright deserts +2.46 * +0.210 * +0.70% * 2.62% +12.91 * +1.229 * +2.69% * 4.73% +18.13 * +1.654 * +5.38% * 6.68%
Perm. snow/ice −0.30 * +0.067 * +0.11% * 1.30% −0.11 * −0.042 * −0.07% * 2.91% +7.24 * +1.424 * +2.35% * 4.45%
Fresh snow +1.44 * +0.175 * +0.43% * 2.84% +1.68 * +0.149 * +0.29% * 3.16% +2.69 * +0.339 * +0.78% * 4.71%
Sea ice 100% −0.83 * −0.222 * −0.42% * 1.51% −0.19 * −0.085 * −0.16% * 1.95% +2.93 * +0.671 * +1.28% * 3.66%
Sea ice 95–99% −0.63 * −0.146 * −0.27% * 1.45% −0.21 * −0.089 * −0.16% * 2.14% +1.47 * +0.316 * +0.60% * 3.68%
Sea ice 90–95% −0.19 +0.076 +0.16% 1.72% −0.82 * −0.145 * −0.26% * 2.29% −0.65 * −0.084 * −0.16% * 3.81%
Sea ice 80–90% −0.64 * −0.047 * −0.13% * 1.94% −2.23 * −0.378 * −0.71% * 2.51% −2.88 * −0.510 * −1.06% * 4.02%
Sea ice 60–80% −3.42 * −0.383 * −1.27% * 3.25% −2.57 * −0.376 * −0.75% * 2.78% −4.29 * −0.717 * −1.63% * 4.35%
Sea ice 10–60% +0.45 * +0.247 * +1.46% * 8.22% −2.61 * −0.323 * −0.73% * 3.56% −5.74 * −0.837 * −2.25% * 5.65%
Sea ice 0–10% +0.96 * +0.186 * +3.20% * 7.54% −2.57 * −0.339 * −0.78% * 3.99% −7.45 * −1.176 * −3.26% * 6.33%

Global mean [1] −1.16 −0.087 −1.17% n.a. [2] +1.59 +0.126 +0.63% n.a. [2] −0.96 −0.138 +1.91% n.a. [2]

MB f lux : mean bias expressed as isotropic flux (Wm−2); rMB: relative mean bias; rRMSr: relative rms residual. * statistically significant on the 99% confidence level. [1] After
spatial aggregation of all NTB pairs on a 5◦ × 5◦ grid with area-weighting. [2] Since rRMSr is calculated with respect to all NTB pairs within that scene type, this metric cannot be
globally aggregated.
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Appendix A.5. Accuracy

Table A3. Global accuracy statistics from bias map, based on surface-type-independent regressions
from expanded database (with relaxed matching criteria) for clear, overcast, and allsky conditions;
Data: 2004–2005 (NOAA17+Terra), 2007–2008 (NOAA18+Aqua) and 2011–2012 (NOAA19+Aqua).

Clear-Sky Overcast All-Sky

Statistic Regression Predictors MB f lux MB MB f lux MB MB f lux MB

global RMSB Ch1,Ch2,SZA,VZA 2.41 0.296 3.51 0.420 5.50 0.786
Ch1,Ch2,SZA 2.71 0.345 3.49 0.470 5.92 0.827
Ch1,Ch2 2.58 0.394 5.90 0.678 5.85 0.842

global MAB Ch1,Ch2,SZA,VZA 1.81 0.229 2.35 0.295 4.25 0.588
Ch1,Ch2,SZA 2.14 0.273 2.33 0.317 4.80 0.656
Ch1,Ch2 2.00 0.302 4.17 0.505 4.39 0.643

Global statistics: RMSB: root mean square of biases (Wm−2); MAB Mean of absolute biases (Wm−2).
On pixel-level: MB f lux : mean bias expressed as isotropic flux (Wm−2); MB: mean reflectance bias (Wm−2).
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