

Stijn Nevens

Introduction

GERE

Aerosol Detection

Aerosol Radiative Forcing

Conclusions

Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens, Edward Baudrez, Nicolas Clerbaux, Ilse Decoster, Steven Dewitte, Alessandro Ipe, Almudena Velazquez

> Royal Meteorological Institute of Belgium (RMIB) Climate Monitoring SAF (CM-SAF) Geostationary Earth Radiation Budget Team (GERB)

ESSC Remote Sensing workshop, VUB (Brussels) 2010/11/25

Outline

Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction

GERE

Aerosol Detection

Aerosol Radiative Forcing

Conclusions

Introduction

GERB

Instrument Products

Aerosol Detection

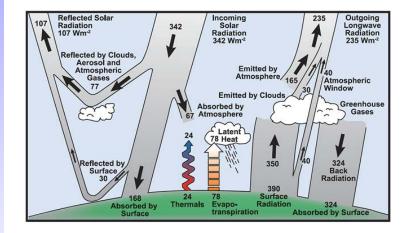
Motivation Algorithm Presentation Ocean Reflectance Land Minimum Reflectance AOD Retrieval Validation Examples

Aerosol Radiative Forcing

👁 Earth Radiation Budget

Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens


Introduction

GERE

Aerosol Detection

Aerosol Radiative Forcing

Conclusions

Main interest GERB team at RMIB.

Stijn Nevens

Introduction

GERB

Instrument Products

Aerosol Detection

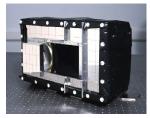
Aerosol Radiative Forcing

- Spinning Enhanced Visible and Infrared Imager.
- Main instrument aboard MSG satellite (2004-...).
- Spectral properties:
 - ▶ 12 narrow-band channels
 - \rightarrow chosen for specific detection purposes.

- Temporal resolution: 15 minutes interval
- Spatial resolution: 3km×3km at nadir (1km HRVIS)

Stijn Nevens

Introduction

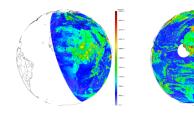

GERB

Instrument Products

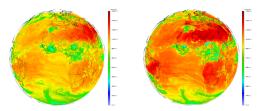
Aerosol Detection

Aerosol Radiative Forcing

- *Geostationary* Earth Radiation Budget instrument.
- Announcement of opportunity instrument on MSG.
- Spectral properties:
 - 2 broad-band channels
 - Short wave: 0.32- 4 μm
 - \blacktriangleright \rightarrow solar channel
 - Total: 4 30 μm
 - Longwave: by subtraction
 - $\blacktriangleright \rightarrow \text{thermal channel}$



- ► Temporal resolution: 15 minutes interval
- Spatial resolution: 44.5km×39.3km at nadir (NS x EW)
- $\rightarrow\,$ Upsampling using SEVIRI: 9km \times 9km


GERB High Resolution Example

Reflected solar radiation.

20070809 07:15

20070809 14:15

Emitted thermal radiation.

Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction

GERB

Instrument Products

Aerosol Detection

Aerosol Radiative Forcing

Top Of Atmosphere Products (TOA)

Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction

GERB

Instrument

Products

Aerosol Detection

Aerosol Radiative Forcing

Conclusions

We provide three TOA products (CM-SAF) form 2004 on:

- Total Incoming Solar radiation (TIS).
- Total Reflected Solar radiation (TRS).
- Total Emitted Thermal radiation (TET).
- Daily mean, monthly mean diurnal cycle and monthly mean.
- ► To get these (and much more):
 - http://www.cmsaf.eu
 - http://cmsaf.oma.be

Stijn Nevens

Introduction

GERB

Instrument

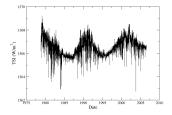
Products

Aerosol Detection

Aerosol Radiativ Forcing

Conclusions

Total Incoming Solar Radiation (TIS)


Computed from TSI (Total Solar Irradiance)

$$TSI = \frac{TIS\cos(\theta_{sol})}{d^2}$$

where,

- d = distance pixel sun (astronomical units).
- $\theta_{sol} = \text{solar zenith angle}$

TSI measured over 3 decades:

Example TIS

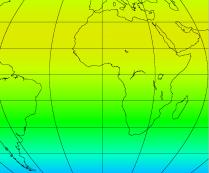
Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction

GERB

Instrument


Products

Aerosol Detection

Aerosol Radiative Forcing

Conclusions

TOA Incoming Solar (TIS) [W/m²]

TRS and TET

Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction

GERB

Instrument

Products

Aerosol Detection

Aerosol Radiative Forcing

Conclusions

Obtained from GERB instrument

- GERB field of view.
- ADM to correct for angles.
- Spatial upsampling.
- + CERES experiment \rightarrow polar region.

+ SEVIRI

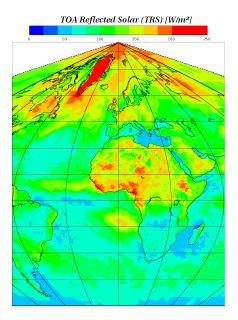
- If no GERB data available.
- \rightarrow narrow to broadband conversion: GERB-like data.
- ▶ The future: no GERB instument on MTG.
- And the past: no GERB instument on MFG.

Example TRS

Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction


GERB

Instrument

Products

Aerosol Detection

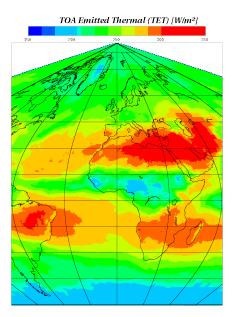
Aerosol Radiative Forcing

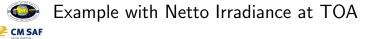
Example TET

Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction


GERB


Instrument

Products

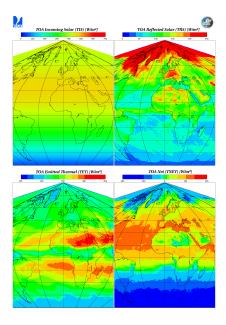
Aerosol Detection

Aerosol Radiative Forcing

Stijn Nevens

Introduction

GERB


RM

Instrument

Products

Aerosol Detection

Aerosol Radiative Forcing

Motivation

Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction

GERB

Aerosol Detection

Motivation

Algorithm Presentation Ocean Reflectance Land Minimum Reflectance AOD Retrieval Validation Examples

Aerosol Radiative Forcing

Conclusions

Tropospheric aerosol particles originate from:

- Urban/industrial activities.
- Biomass burning associated with land use processes.
- Wind-blown dust.
- Natural sources.

Global observations from space required due to:

- Short lifetime (a few days).
- High spatial variability in aerosol optical and radiative properties.

Stijn Nevens

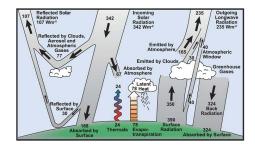
Introduction

GERE

Aerosol Detection

Motivation

Algorithm Presentation Ocean Reflectance Land Minimum Reflectance AOD Retrieval Validation Examples


Aerosol Radiative Forcing

Conclusions

Motivation (bis)

Major uncertainty in predicting climate change due to:

- ► Direct radiative forcing → radiation is scattered or absorbed by the aerosols.
- ► Indirect radiative forcing → influence on cloud microphysics.
- Modify concentration of climate-influencing constituents such as greenhouse gases trough heterogeneous chemistry.

Stijn Nevens

Introduction

GERB

Aerosol Detection

Motivation

Algorithm Presentation

Ocean Reflectance Land Minimum Reflectance AOD Retrieval Validation Examples

Aerosol Radiative Forcing

- SEVIRI level 1.5 images at wavelengths 600, 800 and 1600 nm.
- CM SAF cloud mask, based on NWC SAF software.
- ← planned replacement for current inadequate cloudmask.
 - Cloud shadows also need to be implemented.

Stijn Nevens

Introduction

GERE

Aerosol Detection

Motivation

Algorithm Presentation

Ocean Reflectance Land Minimum Reflectance AOD Retrieval Validation Examples

Aerosol Radiative Forcing

Conclusions

Reflectance (Rescaled BRDF)

 \blacktriangleright Single scatter approximation \rightarrow separation

 $\mathcal{R}(\lambda,\mu_i,\mu_o) = \mathcal{R}_{\textit{surface}} + \mathcal{R}_{\textit{rayleigh}} + \mathcal{R}_{\textit{aerosol}}$

The aerosol reflectance is given by,

$$\mathcal{R}_{aerosol} = \frac{\tau \tilde{\omega} P(\theta)}{4 \cos(\omega_i) \cos(\omega_o)}$$

where,

- $\tau = \text{aerosol optical depth (AOD)}$.
- $\tilde{\omega} = \text{aerosol single scatter albedo.}$
- $P(\theta)$ = aerosol phase function.
- $\mathcal{R}_{rayleigh}$ is calculated using RTE.

Ocean Reflectance

Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction

GERB

Aerosol Detection

Motivation Algorithm Presentation

Ocean Reflectance

Land Minimum Reflectance AOD Retrieval Validation Examples

Aerosol Radiative Forcing

- ▶ $\mathcal{R}_{surface} \leftarrow$ a fixed value chosen according to statistics on marine reflectance synthesis.
- \rightarrow works far away from sun glint region, where:
 - ► *R_{surface}* peaks.
 - Depends on wind speed.
 - Upgrade to LUT from Cox-Munk surface model planned.

Land Minimum Reflectance

Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction

GERB

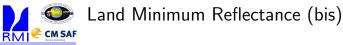
Aerosol Detection

Motivation Algorithm Presentation Ocean Reflectar

Land Minimum Reflectance

AOD Retriev Validation Examples

Aerosol Radiative Forcing


Conclusions

$\mathcal{R}_{\textit{surface}}$ calculated assuming

- $\mathcal{R}_{surface}$ constant over sufficiently long period (15d).
- τ (AOD) reaches its background value in this period.
- $\mathcal{R}(\lambda = 600 nm)$ increases with increasing AOD.
- \rightarrow only true when $\mathcal{R}_{\textit{surface}}$ is small (dark surface). Background aerosol day = day in the period under consideration when

$$\mathcal{R}(\lambda = 600$$
 nm) $- \mathcal{R}_{rayleigh}(\lambda = 600$ nm)

reaches its minimum.

Stijn Nevens

Introduction

GERE

Aerosol Detection

Motivation Algorithm Presentation

Land Minimum Reflectance

AOD Retriev Validation Examples

Aerosol Radiative Forcing

Conclusions

The surface reflectance (for all λ) is then given by:

$$\mathcal{R}_{ extsf{surface}} = ilde{\mathcal{R}} - ilde{\mathcal{R}}_{ extsf{rayleigh}} - ilde{\mathcal{R}}_{ extsf{aerosol}}$$

where,

▶ the RHS is taken on the background day.
 → *R˜_{aerosol}* = aerosol background reflectance fixed background value for AOD = 0.03

AOD Retrieval

Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction

GERE

Aerosol Detection

Motivation Algorithm Presentation Ocean Reflectanc Land Minimum Reflectance

AOD Retrieval

Validation Examples

Aerosol Radiative Forcing

Conclusions

► *R_{surface}* is now known.

- ▶ Retrieval performed for 6 different aerosol classes:
 - Derived from an analysis of AERONET retrieval.
 - Maritime model WMO, moderately absorbing, continental WMO, urban-industrial, smoke and spherical dust.
 - All are spherical and some are too similar.
 - \rightarrow Introduction of different (non-spherical) aerosol models.
- AOD is calculated form a best fit using the 3 solar channels with simulated reflectances using LUT.

Validation

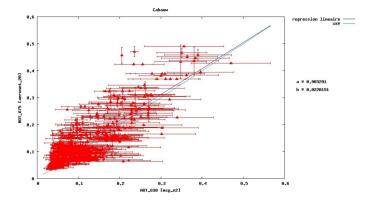
Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction

GERE

Aerosol Detection


Motivation Algorithm Presentation Ocean Reflectance Land Minimum Reflectance AOD Retrieval

Validation Examples

Aerosol Radiative Forcing

Conclusions

- Based on comparison with AERONET observations.
- ▶ July 2006: > 200 co-registrations with Cabauw.

slope = 0.96 intercept = 0.02.

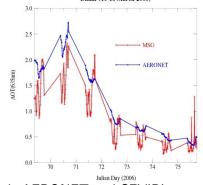
Stijn Nevens

Introduction

GERE

Aerosol Detection

Motivation Algorithm Presentation Ocean Reflectance Land Minimum Reflectance AOD Retrieval


Validation Examples

Aerosol Radiative Forcing

Conclusions

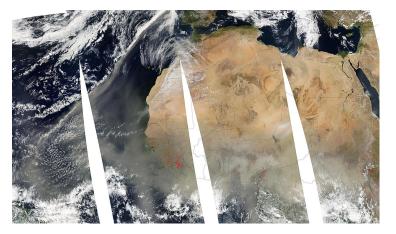
Dust event Dakar with AOD varying from > 2.0 till 0.3 in 7 days.
Dakar (10-16 March 2006)

Observation Temporal Changes in Aerosol Load

- Same trends AERONET and SEVIRI.
- SEVIRI tends to underestimate the aerosol load.
- → Background day: assumed AOD = 0.03 + high AODduring the reference period \Rightarrow systematic bias.

Stijn Nevens

Introduction


Aerosol Detection

Motivation Algorithm Presentation Ocean Reflectance Land Minimum Reflectance AOD Retrieval Validation Examples

Aerosol Radiative Forcing

Conclusions

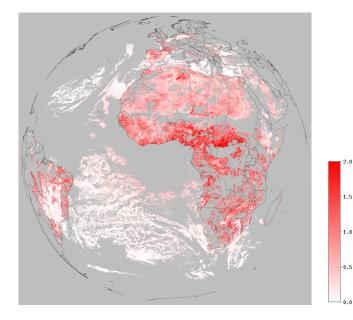
Dust storm across Central and West Africa

08/03/2004 Aqua Satellite

Example AOD (08/03/2004)

Stijn Nevens

Introduction


GERE

Aerosol Detection

Motivation Algorithm Presentation Ocean Reflectance Land Minimum Reflectance AOD Retrieval Validation

Examples

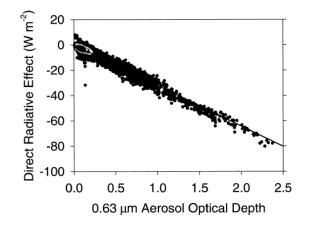
Aerosol Radiative Forcing

Methodology

Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introductio


GERE

Aerosol Detection

Aerosol Radiative Forcing

Conclusions

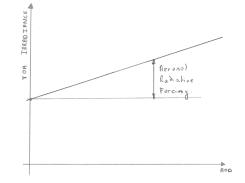
With low AOD there is a linear relation between (clear sky) radiative forcing and AOD.

LLoeb, Norman G., Seiji Kato, 2002)

Methodology (bis)

Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens


Introduction

GERE

Aerosol Detection

Aerosol Radiative Forcing

- Use this relation to calculate slope and intercept in a TRS (or TET) - AOD graph.
- ► Slope: radiative forcing corresponding with give AOD.

Conclusions

Detection of aerosols and other climatological effects by remote sensing using GERB/SEVIRI

Stijn Nevens

Introduction

GERE

Aerosol Detection

Aerosol Radiative Forcing

- GERB: provides many interesting products (both direct and derived).
- Aerosols algorithm: constant background AOD of 0.03 unrealistic in high AOD periods.
- $\rightarrow\,$ Use different algorithm to improve estimation of background AOD.
 - ► Aerosol retrieval works only when *R_{surface}* is small (dark surface).
- \rightarrow Use different algorithm for bright surfaces (desert).
 - We can combine our products to calculate aerosol radiative forcing.