

Composite TOA clearsky solar fluxes for the GERB processing

Alessandro.Ipe@oma.be & Luis Gonzalez Sotelino

Royal Meteorological Institute of Belgium

CERES/GERB/ScaRaB Joint Science Team Meeting @ Princeton – October 22–25 2012

Overview

Motivations

Algorithm

Selection of $n_{\rm CS}$

Further work

Motivations Algorithm Literature

Dataset

Limitations

Scheme

Results

Selection of *n*_{cs} Datasets Scheme

Motivations

Motivations

Algorithm

Selection of $n_{\rm CS}$

- Comparisons with GCMs output
 Surface albedos through inversion
- Estimation of cloud radiative forcing
- Diurnal cycle of clouds
- Monitoring for decadal changes
- Instantaneous L20 clear–sky solar fluxes
- ► Time–averaged L30 clear–sky solar fluxes

Literature

Motivations

Algorithm

Literature Dataset

Limitations

Scheme

Results

Selection of $n_{\rm cs}$

Further work

Futyan & Russel (2005) developped a clear–sky scheme to be applied to ARG, BARG (50 km):
Use of sceneID & MPEF cloud mask to detect clear GERB footprints

• HR (10 km) GERB, sceneID & MPEF cloud mask used to estimate clear–sky fluxes within partially cloudy ARG, BARG footprints

Instantaneous L20 clear–sky solar fluxes unavailable over regions with persistent cloudiness

Dataset

Motivations

Algorithm

Literature

Dataset

Limitations

Scheme

Results

Selection of $n_{\rm CS}$

Further work

V003 L20 GERB products (baseline for ED01):

 without data in sunglint (to be filled soon)
 large gaps in sun avoidance seasons
 corrected with GERB measurements

- corrected with GEKB measuremen
- ► V003 L20 GERB–*like* products:
 - less accurate: only relying on NB-to-BB
 - higher availability
 - sunglint estimates, even if inaccurate
- Development on HR format: native GERB processing resolution (10 km) → ARG & BARG
- Use of sceneID information within the products

Limitations

Motivations

Algorithm

Literature

Dataset

Limitations

Scheme

Results

Selection of $n_{\rm cs}$

Further work

V003 L20 products:

• No fresh snow detection in SEVIRI sceneID

• No snow ADMs for static snow/sea-ice covers

Motivations

Algorithm

- Literature
- Dataset
- Limitations
- Scheme
- Results
- Selection of $n_{\rm CS}$
- Further work

Similar to sceneID for clear–sky reflectances:
Time–series of fluxes F_G at given time of day t and location (x, y) upto Δ previous days
Assuming clear–sky fluxes is base–curve and additive transient contribution (clouds, aerosols, dust, ...)

- Slow solar zenith angle θ_0 dependency of clear–sky fluxes according to CERES TRMM SW clear–sky ADMs
 - $\alpha(x, y, d, t) = \frac{F_{G}(x, y, d, t)}{F_{C}^{cs}(x, y, d, t)} \text{ for } d = d^{\star} \Delta, \dots, d^{\star}$
- Use of sceneID information → {α_i^{cs} = α(d')}
 Select α̃^{cs} to estimate F_G^{cs}(d*) = α̃^{cs} · F_C^{cs}(d*)

Algorithm

Literature

Dataset

Limitations

Scheme

Results

Selection of n_{cs}

Motivations

Algorithm

- Literature
- Dataset
- Limitations
- Scheme
- Results
- Selection of n_{cs}
- Further work

Selection of $\tilde{\alpha}^{cs}$ within $\{\alpha_i^{cs}\}$

- SEVIRI sceneID:
 - cloud–conservative cloud mask
 - cloud fraction
 - ocean dust flag
 - MPEF cloud mask (updates)
- Flagged clear–sky contains spurious:
 - thin clouds (over ocean & land)
 - aerosols and dust (only over land)
- $\tilde{\alpha}^{cs} = \min_{i=1,\dots,n_{cs}} \{\alpha_i^{cs}\} \text{ with } n_{cs} = \{1, 2, 5, 10, 15, 20\}$ and $\Delta = 120 \text{ days}$

Results

Algorithm

Literature

Dataset

Limitations

Scheme

Results

Selection of n_{cs}

Results

Motivations

Algorithm

- Literature
- Dataset
- Limitations
- Scheme
- Results
- Selection of $n_{\rm cs}$
- Further work

- Thin clouds, aerosols & dust contamination on clear-sky fluxes
 Mitigation by
- Mitigation by selecting adequate n_{cs}
 Strategy for selecting n_{cs}(x, y)

CERES/GERB/ScaRaB Joint Science Team Meeting @ Princeton - October 22-25 2012

Datasets

Motivations

Algorithm

Selection of n_{cs}

Datasets

Scheme

Further work

• GERB–*like* L20 HR V003 products:

- Solar clear–sky flux products computed for 2010 and $n_{cs} = \{1, 2, 5, 10, 15, 20\}$
- Computation of associated monthly means
- CERES EBAF TOA solar monthly clear–sky fluxes for 2010 (Ed2.6r)

Motivations

Algorithm

Selection of n_{cs}

Datasets Scheme

Further work

For each pixel (x, y): • we compute a "normalized" annual cycle from monthly means $F_{\dots}^{cs}(t)$ as $\frac{F_{\cdots}^{\rm cs}(t) - \langle F_{\cdots}^{\rm cs}(t) \rangle}{\sigma_{\rm F_{\cdots}^{\rm cs}(t)}} \text{ for } \{n_{\rm cs}\}$ and GERB & CERES • we select n_{cs} associated to highest correlation of GERB & CERES "normalized" annual cycles

 $n_{\rm cs}$

NЛ	ot	tra	tic	me	
INT	υu	va	u	115	

- Algorithm
- Selection of n_{cs}
- Further work

- Consider another year (e.g. 2011) to check consistency of n_{cs} image
- Consider several years to build monthly climatological *n*_{cs} images
- Estimate clear–sky fluxes on GERB sunglint–filled products
- Compare monthly clear–sky fluxes between GERB sunglint–filled & CERES EBAF products (gaps due sun avoidance seasons ?)