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Abstract

The climate system of the Earth is fundamentally determined by the Earth radiation bud-
get (ERB) and its regional distribution. The Earth receives energy from the Sun and radiates
energy back to space. In a stable climate system, both incoming and outgoing energy flows
are balanced. An external perturbation, e.g. an increase of greenhouse gases or a variation of
aerosols concentrations, results in a radiative forcing which is driving a change of the climate
system. The final effect of this radiative forcing is influenced by various feedbacks mecha-
nisms.

As we mentioned, the ERB at the top of the atmosphere (TOA) consists of the incoming
solar energy and outgoing radiation. While the first component of this budget is known with
high accuracy, the exact amount of energy leaving the atmosphere into space is still subject to
speculation. This has driven the launch of the Geostationary Earth Radiation Budget (GERB)
experiment whose goal is to provide TOA reflected solar and emitted thermal fluxes. This
project aims to resolve the diurnal cycle of the outgoing fluxes by providing measurements
at high temporal sampling, and combining these to the high spatial resolution of the Me-
teosat Second Generation (MSG) satellite data. However, these quantities can not be directly
measured from narrow field–of–view (FOV) broadband radiometers. Therefore, they need
to be estimated from models linking directional radiance measurements to such hemispheric
fluxes. This angular modeling plays a central part in the GERB processing. Due to the fixed
scene geometry implied by the geostationary orbit, these models must priorly be built from
low Earth orbit (LEO) radiometers. These instruments allow to measure the radiance field of
several specific scenes in several geometries and thus to derive their associated fluxes. These
specific scenes represent broad classes of surface types and cloudy conditions with radiance
fields that have a similar angular behaviour for all the scene class members. Thus, to apply
such models to GERB measurements, each footprint must be characterized in terms of the fea-
tures used to stratify these models, i.e. cloud properties (cloud mask, cloud optical depth and
cloud thermodynamic phase) and surface geotypes.

In this work, we propose to address this issue. First, we briefly introduce the concepts
of physics behind specific cloud parameters needed in such scene identification. Then, we
provide an extensive review of the literature about the techniques developed and commonly
used to estimate these parameters from satellite–borne sensors. We present the complete de-
sign of the method currently implemented in the GERB Edition 1 processing starting from the
development and testing of the prototype algorithm on the previous generation satellite data
(Meteosat–7) up to its adaptation and validation to the current GERB and Spinning Enhanced
Visible and InfraRed Imager (SEVIRI) instruments. We pursue with a proposal for a nighttime
cloud detection algorithm which will provide valuable information once included in the end–
user products for the next Edition processing. Finally, we conclude this work by providing a
critical review of the Edition 1 scene identification and suggesting various improvements of
its current weaknesses which will benefit future GERB product editions.
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derniers chats perchés au bord de son aquarium. . .
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mis d’être préparé aux enseignements volumineux de la Faculté des Sciences Appliquées de
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Chapter 1

Introduction

1.1 Once upon a time. . .

THE Royal Meteorological Institute of Belgium (RMIB) has been active since the end of the
fifties in the study of the radiation balance of the Earth–atmosphere coupled system. This

so–called Earth radiation budget (ERB) is simply the difference between the incoming and
the outgoing energies of such system as illustrated in figure 1.1. While the incoming source
is almost exclusively the incident solar radiation in the shortwave region (0.3 to 4 µm) of
the electromagnetic spectrum, the outgoing term is coming from two distinct phenomena: a
reflection of a fraction of the solar energy and a thermal emission of an associated imperfect
black body∗. Both terms are modulated according to the surface geotype and conditions as
well as the state of the atmosphere including the presence of clouds and dust.

At a regional scale, the variation of this difference or net energy is the motor of the atmo-
spheric circulation. It is commonly assumed that this balance should be close to zero† over
the whole globe. However, even nowadays, space metrology can still not guarantee a suffi-
cient accuracy on these three components to verify the closure of this budget equation in the
assumption of an equilibrium climate. It is needless to say that solving this issue would repre-
sent a major breakthrough in the assessment and quantification as well as a definitive proof‡

of the global climate warning phenomenon which is observed since the end of the last century.

The incoming term of the budget has been studied for more than twenty years at RMIB
with spaceborne broadband radiometers (BBRs) [39–43, 50, 51, 106] measuring the solar irradi-
ance, i.e. the solar flux density [W ·m−2], and monitoring its temporal variation (the so–called
solar sunspot cycles which last about 11 years [187]).

Long–term and continent–scale measurements of the ERB have been done using wide
field–of–view (FOV) (with a diameter of about 1000 km) non–scanner instruments on National
∗The concept of emissivity describes this deviation from the ideal black body radiance modeled by the Planck response

function.
†Any discrepancy from this null value would result in a net heating (positive) or cooling (negative) of the Earth–

atmosphere system with time.
‡The increase of surface temperature time–series over the last 30 years together with the higher occurrence of extreme

weather events were the first indication of this warming.

1
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Figure 1.1 – The Earth’s annual global mean energy budget in W ·m−2. From [167].

Ocean and Air Administration (NOAA) satellites in the sixties and seventies. Nevertheless,
most scientific studies need regional–scale data which is only accessible through higher spatial
resolution narrow FOV measurements. Thus, medium and high resolution scanning radiome-
ters with narrow FOV were also placed on board of TIROS and Nimbus low Earth orbit (LEO)
platforms. They consist of broad– as well as narrowband spectral devices. However, for nar-
row FOVs, the directional measurement or radiance [W ·m−2 · sr−1] has to be converted into a
hemispheric quantity, i.e. the flux (density), which is the integration of the energy leaving the
top of the atmosphere (TOA) in all the directions.

The Earth Radiation Budget Experiment (ERBE) mission which was launched in 1984
played a pioneering role in such conversion. Its science goal was to measure both outgoing
components at a monthly accuracy of 15 W ·m−2 over 2.5◦ × 2.5◦ regions. ERBE’s radiative
fluxes were estimated on a monthly basis from several measurements of a given target with
a radiance–to–flux conversion scheme. This was performed, for the first time, using a set of
12 angular dependency models (ADMs) [154] to fulfill ERBE’s science goal. These models
were statistically built to contain information about the anisotropy of the radiance field above
typical scenes (4 surface geotypes and 4 fractions of cloudiness). But the poor temporal sam-
pling of the measurements over a given region prevented to use them on less than a monthly
mean basis. Nevertheless, the contribution of these results was invaluable and opened new
perspectives to climate research. Analysis of the conceptual limitations of ERBE led to the
advent of new LEO instruments which improved the temporal and spatial samplings as well
as the accuracy of the measurements: the Scanner for Radiation Budget (ScaRaB) [54, 79] on
board of Meteor–3/7 and RESURS and more recently the Clouds and the Earth’s Radiant En-
ergy System (CERES) [184] on board of the Tropical Rainfall Measuring Mission (TRMM) [89],
Earth Observing System (EOS) Terra and Aqua satellites. CERES experiment aims to decrease
the uncertainty on monthly regional fluxes to 5 W ·m−2 while providing instantaneous flux
measurements at about 10 W ·m−2 [183].



1.2 Your mission, should you choose to accept it. . . 3

However, it is only since the launch of the first Geostationary Earth Radiation Budget
(GERB) instrument [66] in 2002 that the outgoing component of the ERB is routinely mea-
sured several times per day over the same scene while polar orbiting instruments are only
able to sample the diurnal cycle twice a day. This instrument is part of the GERB mission [67]
which consists in putting on board of the four European Organisation for the Exploitation of
Meteorological Satellites (EUMETSAT) Meteosat Second Generation (MSG) satellites∗ [148]
a broadband radiometer as co–passenger to their main payload, i.e. the Spinning Enhanced
Visible and InfraRed Imager (SEVIRI). The latter is a multispectral narrowband imager deliv-
ering observations every 15 minutes at a spatial resolution of about 3 km at nadir in 11 spectral
channels.

The aim of this mission is to take benefit from the geostationary orbit of these platforms to
accurately estimate the TOA solar reflected and thermal emitted broadband fluxes from their
associated directional measured radiances at high spatial resolution (about 45 km at nadir)
and unprecedented temporal sampling (a little more than 15 minutes). To achieve such a goal,
it was decided to split this task into two sequential parts [67]:

1. the level 1.5 processing consisting in converting the instrument counts into geolocated†

filtered radiances in W ·m−2 · sr−1,

2. the level 2 processing consisting in estimating the unfiltered fluxes in W ·m−2 from these
radiances.

While the Rutherford Appleton Laboratory (RAL) is the prime contractor of the whole pro-
cessing, the expertise of RMIB in the ERB field was recognized by sub–contracting to RMIB the
development of the level 2 processing which is also called the RMIB GERB Processing (RGP).
Another aspect of this mission is the near–realtime data dissemination which constraints that
level 2 TOA fluxes should be delivered to the science community not more than 3 hours after
the measurements. This is a major difference as well as a challenge compared to the CERES
project which is only delivering offline products.

1.2 Your mission, should you choose to accept it. . .

As mentioned previously, the GERB team at RMIB is responsible for the development and the
operational implementation of the level 2 processing. This is achieved through the synergistic
use of SEVIRI to fully characterize each GERB footprint or pixel in terms of multispectral
scene analysis at a spatial resolution of 3 km (at nadir) [52]. Such scene analysis allows to
perform the unfiltering of the GERB measured radiances, the unfiltered broadband GERB–like
radiance estimation using only SEVIRI measurements, the scene identification to adequately
select the ADM for the radiance–to–flux conversion and the resolution enhancement. The
specific design of this processing allows to deliver several products from the close–to–the–
instrument measurements, i.e. convoluted with its point spread function (PSF), up to the
higher 10 km resolution and at SEVIRI acquisition times, without any influence of the GERB
PSF.
∗starting with Meteosat–8
†which means knowing the geographical coordinates on Earth surface of each footprint
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However, one has to be aware that the TOA broadband (BB) radiances field can change
drastically depending on the spectral and anisotropic characteristics of the surface (ocean or
land), the cloud properties and the presence of aerosols. This results in large variations of
the flux according to the observed scene within the footprint. Therefore, the radiance–to–flux
conversion scheme must use a typical ADM adapted to each scene. Building such ADMs is
not possible from the geostationary orbit using solely measured radiances due to the fact that
specific areas in the FOV are always observed with the same scene geometries. Indeed, this
would introduce a systematic bias in these models. In contrast, LEO precessing BBRs coupled
with high spatial resolution multispectral imagers can overcome this limitation∗. Indeed, this
configuration guarantees that each area of the Earth gives BB radiance measurements for sev-
eral scene geometries.

While the CERES instruments represent the state–of–art of LEO BBRs, only ADMs derived
from CERES measurements on board of the TRMM satellite meet the precessing constraint.
Together with the Visible and InfraRed Spectrometer (VIRS) imager, a set of about 600 short-
wave and 2000 longwave ADMs were built according to a much more detailed description of
the atmospheric and surface conditions [98, 99] than for ERBE.

In this scope, I chose to accept the mission to develop the scene identification of the RGP
which has to be compatible with the CERES TRMM shortwave ADMs stratification. As stated
above, this step is only needed to select the best suited ADM according to the scene within
each GERB pixel. Since the CERES TRMM shortwave ADMs [98, 99] are classified according
to the surface geotype, cloud fraction, cloud optical thickness and thermodynamic phase, this
scene identification should at least retrieve those four features.

1.3 Plan of this thesis

The work presented in this thesis is limited to the development and validation of what was
considered to be the best–suited scene identification scheme for the Edition 1 of the RGP. It
follows a two step approach:

1. prior to the launch of Meteosat–8, the first satellite of the MSG series, the development
and validation of a near–realtime prototypal scene identification using the operational
data stream of the Meteosat–7 imager,

2. the adaptation and validation of this prototyping software to the enhanced capabilities
of Meteosat–8 once it became the prime imager.

Therefore, we propose the following structure for this manuscript which is naturally in-
spired from the published, accepted and submitted papers in the literature describing the
work of this thesis. It is worth pointing out that to avoid time–consuming paraphrasing of
these papers, we simply transcribed them in separate chapters.

We first briefly introduce in chapter 2 the concepts and definitions in atmospheric physics
which will be mentioned throughout this manuscript. The physics basis lying behind the
methods commonly used in passive atmospheric remote sensing will also be recalled.

∗A precessing orbit allows to sample each region of the globe at different local times over a couple of days as opposed
to the sun–synchronous trajectory.
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Chapter 3 tries∗ to give an up–to–date review of the literature on scene identification and
more specifically on cloud properties retrieval schemes. We investigate the strengths as well as
the weaknesses of the various methods if they had to be applied to the RGP. We then motivate
our choice on the adopted strategy for the GERB level 2 processing.

In the following two chapters, the prototyping software developed on Meteosat–7 (MS7)
imager data is described. We first present in chapter 4 an innovative method for the estimation
of the TOA clear–sky visible reflectances at the native imager spatial and temporal resolutions.
Then chapter 5 treats about the cloud properties retrieval as well as their comparison with
associated CERES products.

The next two chapters are dedicated to the adaptation (chapter 6) and validation (chap-
ter 7) of this prototyping scene identification to the SEVIRI MSG imagers. As one may note,
this adaptation raised some specific issues with the enhanced SEVIRI instruments compared
to their previous generation counterparts which had to be solved. As a matter of fact, it is not
the doubling of the spatial and temporal samplings but going from 3 broad channels (visible,
thermal infrared and water vapor) to 11 narrow bands, which required specific adaptation of
the algorithm due to the drastic change of spectral sensitivity to various scene properties.

Chapter 8 suggests a new method to detect clouds using solely thermal infrared infor-
mation from the imager without requiring realtime ancillary data such as numerical weather
prediction (NWP) model fields as it is usually the case in other approaches found in the liter-
ature. While this proposed scheme is not part of the Edition 1 processing, it is foreseen to be
included in the next Edition 2 software collection.

Finally, we summarize the work performed in this thesis in chapter 9. Future perspectives
as well as suggested improvements which should be investigated for a possible implementa-
tion in Edition 2 of the RGP close this chapter.

It is worth noting that, while all algorithms have been developed to be applied to the Me-
teosat constellation of geostationary satellites, they are versatile enough to be almost immedi-
ately transposed to similar observing platforms such as the NOAA Geostationary Operational
Environment Satellite (GOES) constellation.

∗Let us stay humble as it is still possible that we have missed some papers on the subject. . .





Chapter 2

Interlude in radiative physics

THIS chapter summarizes the main processes occurring when radiation propagates through
the atmosphere and introduces the various parameters which will be used throughout of

this manuscript. The material used for this summary is directly inspired from [93, 126, 165].

2.1 Radiative quantities

We start this chapter by briefly introducing the common terminology used in the remote sens-
ing community which will be mentioned in the following.

The flux is defined as the total energy per unit time [W] transported by any radiation.
However, in meteorological and climate remote sensing, a normalized quantity is of prime
interest to study the causes of the variation of radiation at various atmospheric levels. This
normalized quantity is the flux density defined as the flux per unit area [W ·m−2] passing
through a normal plane to the direction of propagation. It is usual to use the shorter term
flux instead of flux density since no ambiguity can arise. Therefore, from now on, we will use
such convention in this manuscript. The flux being a broadband quantity, a monochromatic
or spectral flux [W ·m−2 · µm−1] can be introduced as

F(λ) = lim
∆λ→0

F(λ, λ + ∆λ)

∆λ
, (2.1)

where F(λ, λ + ∆λ) is the flux contributed by radiation in the spectral range between λ and
λ + ∆λ.

The radiant intensity L also called intensity or radiance describes the amount of flux associ-
ated to a specific direction Ω, i.e. the flux per unit solid angle [W ·m−2 · sr−1],

L(Ω) =
δF
δΩ

, (2.2)

where δΩ designates a solid angle element in direction Ω. A spectral radiance can be defined
accordingly.

7
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One is generally interested in the incoming or outgoing radiation from either a real or
imaginary surface. Therefore, the definition of the outgoing flux follows

F↑ =
∫

2π
L↑(Ω) cos θ dΩ (2.3)

where the integration is over the upper hemisphere of the surface and θ designates the angle
between the normal to the surface and the outgoing direction Ω of the radiance L↑. Similar
expressions can be derived for incoming and spectral quantities.

Finally, it is convenient to express all these quantities in spherical polar coordinates where
the z–axis is aligned with the normal to the surface, the principal plane being defined by the
normal and incoming source (sun) vectors which allows to measure the relative azimuth ϕ
between the principal and the sensor planes as illustrated in figure 2.1.

θθ0

Target

ϕ

Sun 

Satellite

Forward 
Scattering 

Backward 
Scattering 

Zenith

Principal plane

Figure 2.1 – Scene geometry definition.

2.2 Energy sources

Radiation in the atmosphere is issued from two emission sources. The first, extraterrestrial,
source is the sun while the second is any object in the Earth–atmosphere system at a tempera-
ture above the absolute zero, i.e. the Earth surface, clouds, atmosphere, etc. . .

2.2.1 Solar radiation

Most of the sun’s energy reaching the Earth originates from a layer about 500 km thick which
is called the photosphere and is generally referred to as the surface of the sun, even if it is a
gaseous body. The spectral distribution of its emitted energy can be approximated by the the-
oretical Planck function of a black body at a temperature of about 5800 K which is an average
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over the temperature range of the photosphere. However, the true solar spectrum is more
complex, consisting of this continuous emission with a superimposed line structure known as
the Fraunhofer spectrum. This line structure can be explained from the fact that the radiation
inside the sun can be absorbed by atoms according to electronic transitions. The solar constant∗

or flux which is the total power per unit surface area over all wavelengths reaching the Earth
at the mean Earth–sun distance, i.e. 1 A.U., is generally assumed to be 1366± 0.65† W ·m−2.
However, this experimental value is still subject to debate in the scientific community and
its measurement uncertainty is commonly assumed to be ±3 W ·m−2 [90]. As a matter of
fact, recent measurements from the Solar Radiation and Climate Experiment (SORCE) Total
Irradiance Monitor (TIM) suggest lower values of about 1361 W ·m−2 [86].

From the left plot of figure 2.2 which represents the approximated continuous spectrum
incoming on top of the atmosphere (TOA), we can see that it is extending from the ultraviolet
to the infrared regions. It can be shown that about 10 % of the total solar irradiance lies in
wavelengths shorter than the visible (λ < 0.4 µm), 40 % corresponds to the visible region
(0.4 < λ < 0.7 µm) and 50 % to the infrared region (λ > 0.7 µm), while less than 1 % is
associated to wavelengths above 4 µm.
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Figure 2.2 – Blackbody radiance incoming on TOA as a function of wavelength for the average temperature
of the sun’s photosphere (left) and black body radiation for a typical terrestrial temperature (right).

2.2.2 Thermal radiation

Since the Earth–atmosphere system absorbs part of the incoming solar radiation, it has to re–
emit energy to space to fulfill the global temperature equilibrium condition. The upper bound
of this spectral emission is given by the spectrum of the associated ideal black body at the same
averaged temperature T. However, a black body is only a theoretical construct since no object
is a perfect emitter. This deviation of the emitted spectrum L(λ) from the Planck function
B(λ; T) is characterized by the spectral emissivity defined as

ε(λ, T) =
L(λ)

B(λ; T)
, (2.4)

∗The term constant is a misnomer since this quantity varies with time.
†temporal variability over the 3 last 11–years sunspot cycles
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which is ranging between 0 and 1 and is function of other variables such as the geometry and
surface, atmosphere or cloud properties, etc. . . Bodies associated to ε < 1 are called gray bodies.
However, it may be worth noting that most surfaces on Earth emit close to a black body (e.g.
oceans). Similarly, the absorptivity a(λ) can be defined as the ratio of the absorbed radiation
to the Planck function. For a system at thermodynamic equilibrium, the Kirchhoff law applies
and states that

ε(λ) = a(λ). (2.5)

The right plot of figure 2.2 represents the upper bound of spectral emission for a typical
terrestrial temperature of 288 K. One can notice a clear cut between the solar and the ther-
mal spectra at about 4 µm due to their limited overlap where more than 99 % of the total
emitted energy corresponds to wavelengths above 4 µm. This fact implies a considerable sim-
plification for any radiative transfer (RT) problem since both types of radiation can be treated
separately with distinct sources.

Finally, we can define the concept of brightness temperature (BT) which is central in infrared
(IR) remote sensing. Based on the fact that only gray bodies exist in nature, their brightness
temperature [K] is defined as the equivalent black body temperature corresponding to the
same observed spectral radiance L(λ), i.e.

BT = B−1(λ; L(λ)), (2.6)

where B−1 designates the inverse of the Planck function.

2.3 Propagation in clear atmosphere

In this section, we review the three main processes occurring when radiation propagates
through a clear atmosphere.

2.3.1 Transmission

The variation of the spectral intensity or radiance L(λ) of the radiation along its propagating
path s into the atmospheric medium can be described locally by the Beer–Lambert law, i.e.

dL(λ) = −L(λ) βe(λ; s) ds, (2.7)

where βe [m−1] is called the (volume) extinction coefficient of a specific constituent. This
reflects that radiation is attenuated when it propagates through the atmosphere. It can be
related to an associated intrinsic quantity, the mass extinction coefficient ke

∗, whose product
with the constituent density ρ [kg ·m−3] in the air must equal the extinction coefficient βe. It
is also convenient to express the volume extinction coefficient relatively to the number density
or concentration N [m−3] of the atmospheric constituent particles. Thus, the extinction cross–
section σe [m2] can be defined accordingly. To summarize

βe = ρke = Nσe. (2.8)

∗Its dimensions are an area per unit mass, so it can be seen as the extinction cross–section per unit mass.
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The last equality of the previous equation allows to express the mass extinction coefficient
ke [m2 · kg−1] of a spherical particle constituent as

ke =
Qe(r)πr2

ρ 4
3 πr3

, (2.9)

by introducing the extinction efficiency Qe whose dependency on the wavelength is implicitly
assumed and where r designates the particle radius. This extinction efficiency can be seen
as a corrective factor to the geometric cross–sectional area of a particle. Mass absorption and
scattering coefficients can be defined similarly with their corresponding efficiency.

The extinction coefficient βe is the sum of the absorption and scattering contributions, i.e.
βe = βa + βs and thus similar equalities hold between βa,s, ka,s and σa,s. To quantify the
relative importance of scattering compared to absorption, one usually introduces the single
scattering albedo as

ω =
βs

βe
. (2.10)

The value of this parameter ranges from 0 for strictly absorbing to 1 for purely scattering
medium, while its functional dependence with the wavelength is implicitly assumed.

Reconsidering equation 2.7 and solving for L along a path s1 → s2, we get

L(λ; s2) = L(λ; s1) e−τ(λ; s1 ,s2) , (2.11)

where
τ(λ; s1, s2) =

∫ s2

s1

βe(λ; s) ds (2.12)

is called the optical path (dimensionless) and its exponential the transmittance t(λ; s1, s2). If the
integral of the optical path is along the vertical axis of the atmosphere, τ is called the optical
depth or thickness.

Finally, the generalization of the concept of volume extinction, scattering and absorption
coefficients associated to a mixture of constituents as it is the case in the atmosphere is simply
the sum of the respective volume coefficient of individual species. Thus, it results that the
overall transmittance is the product of the individual constituent transmittances.

2.3.2 Scattering

Radiation experiences various scattering processes depending on the atmospheric constitu-
ents. More specifically, the kind of interaction depends on the size of the particle relatively
to the typical wavelength of the radiation. The sizes of the atmospheric materials implied in
scattering processes cover several orders of magnitude, typically from 10−4 µm for gaseous
molecules to 1 µm for aerosols, 10 µm for water droplets and 100 µm for ice crystals. For
spherical particles, the size parameter

x =
2πr

λ
(2.13)

can be defined, where r is the particle radius and λ is the wavelength of the radiation. It also
has to be stressed that scattering is a highly directional dependent process. This directional
dependency is characterized by the so–called scattering phase function p(Θ) where Θ designates
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the angle between the directions of incidence and observation (see figure 2.3). It is convenient
to assess the amount of forward versus backward scattering of a phase function. Thus, the
asymmetry parameter g is defined as

g =
1

4π

∫
4π

p(Θ) cos Θ dΩ, (2.14)

where the integration is over the whole unit sphere and dΩ designates the solid angle element.
This parameter is ranging between -1 and 1, g > 0 meaning that the forward scattering hemi-
sphere is prominent, g < 0 that the backward directions have a higher probability and g = 0
that scattering in both hemispheres is likely probable. However, it is worth pointing out that
if isotropic scattering is characterized by a null asymmetry parameter, different non–isotropic
phase functions can also correspond to g = 0.

Particles whose size is small compared to the incident wavelength (x � 1) result in an
elastic scattering of the photons, i.e. the incoming energy is completely transferred to the
scattered radiation. It can be shown that the intensity of such scattering follows an inverse
fourth power law of the wavelength and it is generally referred to as Rayleigh or molecular
scattering. It results that the intensity of this scattering is the highest at small wavelengths∗.
This kind of scattering does not only happen along the incoming radiation path. Instead, it
follows a directional dependence known as the Rayleigh scattering phase function. It can be
demonstrated that for natural unpolarized incident light, this phase function has the form

pRay(Θ) =
3
4

(
1 + cos2 Θ

)
. (2.15)

while corresponding to a null asymmetry parameter. In clear atmosphere, Rayleigh scatter-
ing is the major source of scattering for visible wavelengths due to the typical size of the air
constituent molecules. Figure 2.3 illustrates the Rayleigh scattering phase function.
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Figure 2.3 – Polar plot of the Rayleigh scattering phase function (r, θ) = (pRay, Θ). The direction of
propagation (horizontal axis) is an axis of symmetry of the phase function.

When the atmospheric particles are large compared to the wavelength of the incident ra-
diation (x � 1), the theory of geometric optics or ray–tracing can be applied to describe its
propagation through the medium. This case is typically occurring with large cloud particles
in the visible part of the spectrum and it can be shown that the wavelength dependence of this
type of scattering can be neglected.

In the intermediate case where x & 1, the theory of geometric optics cannot be applied
anymore. Instead, the scattering phase function can only be computed through complex for-
malisms such as the Lorenz–Mie theory for spherical particles which considers the Maxwell
equations for an electromagnetic wave solution. However, this theory is not applicable to

∗This explains the blue color of the sky.
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non–spherical bodies such as ice crystals or some aerosols. A unified theory dedicated to ice
crystals was developed as a combination of the geometric optics and finite–difference time
domain (FDTD) methods while for aerosols, the FDTD or T–matrix methods can be applied.
The interested reader who is not afraid to dive back into the Maxwell electromagnetic formal-
ism∗ will find more details on these techniques in [93]. It has to be noted that most of the size
distribution of cloud particles falls within that case.

The domain of applicability of these distinct scattering regimes can be summarized in
figure 2.4 where the particle radius and wavelength plane is partitioned according to the size
parameter x.
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Figure 2.4 – Partition of the wavelength and atmospheric particle radius plane into the various scattering
types according to the size parameter x. From [126].

In passive atmospheric remote sensing, it is commonly assumed that scattering does not
alter the wavelength of the incident radiation. Moreover, the molecules and particles can be
considered as independent scatterers, i.e. that each body scatters light in exactly the same way
as if all other particles did not exist. This drastically simplifies the multiple scattering problem
by a collection of particles since the intensity of the radiation can be used for its propagation
into the atmospheric medium instead of its electromagnetic field description.

2.3.3 Absorption

Absorption by the various constituents of the atmosphere varies according to their molecu-
lar structure. The incident radiation can lead either to the deformation of the atomic links
through translational, vibrational or rotational modes of the gaseous molecules. Moreover,
electronic transition can result from the absorption of a photon associated to a specific energy.

∗No way for me !
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More details can be found in [93]. Since these three phenomena can happen altogether, the
absorption spectrum is usually characterized by regions with complex patterns of thin lines
and also significantly large spectral absorption bands.

This is illustrated in figure 2.5 where the vertical transmittance of the whole cloud– and
aerosol–free atmosphere according to the wavelength as well as for selected gaseous con-
stituents is plotted. It has to be stressed that the overall spectral transmittance curve of the
atmosphere is of prime interest for the remote sensing community since it drives the location
of the various channels in the design phase of all instruments. Indeed, it is obvious that for me-
teorological and climate monitoring imagers, absorption regions of the gaseous constituents
of the atmosphere should be avoided to accurately observe clouds, aerosols and surfaces. The
most noticeable fact from figure 2.5 is that the cloud–free atmosphere is significantly transpar-
ent over visible wavelengths.

2.4 Propagation in cloudy atmosphere

This section begins with the definition of a cloud as well as its associated macrophysical pa-
rameters. It is followed by an overview of the three main interactions of radiation through
a cloudy medium. The expected spectral and spatial signatures of clouds for meteorological
remote sensing is then summarized.

2.4.1 What is a cloud ?

Clouds are defined in the literature as visible bodies of condensed water droplets or frozen
ice particles found in the atmosphere at altitudes between sea level up to the top of the tro-
posphere (about 11 km). It is obvious that such definition is highly subjective due to the use
of the word visible. Indeed, the perception of the visibility of a cloud will vary according to
the kind of observing instruments, from the human eye to passive or active remote sensing
apparatus. One may argue that to some extent clouds are always present in the atmosphere
and that what is called clear–sky conditions are only a theoretical construct.

If their definition raises some questions, their formation is well known. Clouds form when
the air becomes saturated by water vapor. This saturation is either achieved when the air
mass cools or moisture is locally added. Lithometeors such as sea salt, sand dust or soot
present in the air then act as condensation nuclei where water vapor tends to aggregate, if
their concentration is large enough. Depending on the temperature, i.e. the altitude, water
droplets or ice crystals will be formed around such hygroscopic aerosols.

Liquid water clouds are usually assumed to be formed by spherical cloud droplets. Typical
droplet sizes vary between 1 and 100 µm even if their mean diameter is about 10 µm. Thus it
is common in the literature to refer to the effective radius re defined as

re =

∫ +∞

0
n(r) r3 dr∫ ∞

0
n(r) r2 dr

, (2.16)

where n(r) [m−3 · µm−1] denotes the cloud droplet size r distribution and its integral over r is
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tions for selected atmospheric gaseous constituents and as a whole. Molecular scattering is not considered.
From [126].

equal to the concentration N of all droplets used in equation 2.8. This distribution is generally
unknown in real life cases. However, when radiative transfer model (RTM) simulations are
performed, these theoretical models normally assume that it follows a log–normal or a gamma
distribution as observed by measurement field campaigns.
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Ice cloud particles on the contrary cannot be assumed spherical. They consist instead of
mixtures of crystals with varying shapes∗. Their larger size generally varies between 10 and
2000 µm with a mean diameter ranging from about 10 µm for thin cirrus to 120 µm for cirrus
uncinus. Ice particle size distribution can be similarly characterized like liquid water clouds
with the effective size De

De =

∫ Lmax

Lmin

n(L) L D(L)2 dL∫ Lmax

Lmin

n(L) L D(L) dL
, (2.17)

where D(L) designates the ice crystal width, n(L) the ice particle length distribution, Lmax
and Lmin the maximum and minimum lengths of ice particles, respectively. Nevertheless, for
convenience, we will use the term radius indistinctly for liquid water and ice particles in the
following of this manuscript.

Having defined these two quantities re and De, the liquid water content (LWC) [g · cm−3]
can be defined for spherical droplets as

LWC =
4π

3
ρl

∫ +∞

0
n(r) r3 dr, (2.18)

where ρl is the density of water. A similar expression holds for the ice water content (IWC),
i.e.

IWC =
∫ Lmax

Lmin

ρi n(L) L D(L)2 dL, (2.19)

where ρi designates the density of ice.

2.4.2 Scattering

The optical properties of polydisperse clouds, i.e. clouds with particles of different sizes, are
easily generalized from their definition of monodisperse clouds by integrating them over the
size distribution. Indeed, recalling the similar relationship between the scattering coefficient
βs and the scattering cross–section σs as in equation 2.8, one gets in the case of a distribution
of particles

βs =
∫ +∞

0
n(r) Qs(r)πr2 dr. (2.20)

Similar expressions of βe,a hold. The combined scattering phase function p(Θ) is given by
the scattering cross–section weighted average of the individual phase functions over the size
distribution, i.e.

p(Θ) =
1
βs

∫ +∞

0
n(r) Qs(r)πr2 p(Θ; r) dr, (2.21)

and similarly for the asymmetry parameter g.

As shown in figure 2.4, cloud particles typically have sizes where geometric optics can
only be applied to the tail of their distribution for the visible wavelengths. Therefore, the
Lorenz–Mie formalism for spherical and its counterpart for non–spherical particles must be
used to compute the cloud scattering phase function as well as the other scattering param-
eters. It results from such computations that for visible wavelengths the associated phase

∗hexagonal plates, rough aggregates, hollow columns, planar rosettes, spatial rosettes and solid columns
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function is rather complex with strong forward scattering and diffraction peak and it cannot
be expressed analytically. This is illustrated in figure 2.6 where the phase functions associated
to two extreme effective particle radii are plotted for liquid water and ice clouds for a given
visible wavelength.
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Figure 2.6 – Polar plots of the scattering phase functions (r, θ) = (log p, Θ) for (a) liquid water (spherical
particles) [188] and (b) ice (mixture of crystal habits) [13–15, 192] cloud at a wavelength of 0.6 µm. The
sizes designate the effective particle radii and the direction of propagation (horizontal axis) is an axis of
symmetry of the phase functions.

RT theory demonstrated the usefulness to decompose this complex phase function into a
truncated series of Legendre polynomials since it drastically simplifies the formulation of the
RT equation. This parameterization ”simply” consists in evaluating the coefficients of the se-
ries according to the wavelength and particle microphysical properties. Since such evaluation
can be time–consuming, approximation of the true phase function has been suggested for flux
RT simulations. The mostly used is the Henyey–Greenstein phase function whose parameter g
playing a similar role than the asymmetry parameter is tuned to have some resemblance to
the shape of the real phase function. It is defined as

pHG(Θ, g) =
1− g2

(1 + g2 − 2g cos Θ)3/2 , (2.22)

with g > 0. However, even if this function is adequate for the forward scattering peak, it fails
to capture the backward peak. Therefore, the double Henyey–Greenstein phase function was
introduced to address such issue:

pHG2(Θ, b, g1, g2) = b pHG(Θ, g1) + (1− b) pHG(Θ, g2), (2.23)

where g1, g2 > 0 and 0 < b < 1. Such empirical phase functions are also used by convenience
for radiance computations in RTMs due to the complexity required to accurately parameterize
p(Θ) for ice clouds. However they are unable to capture the detailed structure of the true
phase function (see figure 2.6) thus leading to high uncertainties.

2.4.3 Absorption

As it will be reviewed in the following chapter, all major cloud phase detection algorithms
found in the literature and based on multispectral threshold techniques rely on the spectral
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differences between liquid water and ice properties. The propagation of light in any homo-
geneous medium in the absence of diffraction is characterized by the dimensionless index of
refraction n. This spectral parameter allows to describe such propagation in purely geometrical
terms. This index can be separated into a real and imaginary part. The real part nr defined
as the ratio of the speed of energy propagation in vacuum to that in the medium rules the
transmission of the radiation within the medium∗. But it is the imaginary index of refraction
ni which characterizes the absorption through its relationship with the absorption coefficient
and the wavelength of the radiation

βa =
4π ni

λ
. (2.24)

In figure 2.7, we have plotted the imaginary index of refraction of both liquid water and ice
according to the wavelength.
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Figure 2.7 – Imaginary index of refraction ni for liquid water [65] and ice [178] according to the wave-
length.

Even if a cloud cannot be considered as a homogeneous medium, figure 2.7 gives a quali-
tative insight of the spectral behavior of clouds according to their thermodynamic phase. It is
obvious why cloud phase detection algorithms mainly rely on brightness temperature differ-
ences (BTDs) of the 11 µm channel with one of the 8.5 and 12 µm channels. This is due to the
fact that the spectral absorptions of liquid water and ice are almost identical around 8.5 µm
while being significantly different at about 11 and 12 µm. Since liquid water absorption in-
creases more between 11 and 12 µm than between 8.5 and 11 µm while it is the opposite for
ice, BTD11−12 and BTD8.5−11 can further be used together to delineate liquid water and ice
clouds. From the near–infrared (NIR) perspective, measurements around 1.6 and 3.7 µm are
also promising candidates for liquid water and ice clouds separation even if the 3.7 µm chan-
nel signal contains both reflected solar as well as emitted thermal radiation during day–time
(see figure 2.2).

By keeping in mind the atmospheric spectral transmission curve of figure 2.5, the sign of
BTD8.5−11 allows to separate clear–sky from cloudy conditions. Indeed, around the 8.5 µm

∗Gradient of nr results in ray bending.
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region, both liquid water and ice absorption are minimal and atmospheric water vapor ab-
sorption is moderate, while particle absorption is maximal with minimal water vapor absorp-
tion in the 11 µm region. Thus, clear–sky conditions are usually characterized by negative
BTD8.5−11 compared to positive values associated to clouds.

2.4.4 Transmission

Once the absorption and scattering properties are resolved, the single scattering albedo of
clouds can be computed with equation 2.10. Its spectral behavior is illustrated in figure 2.8
where it is plotted for liquid water and ice clouds characterized each by two particle size
distributions, i.e. different effective radii. This is in agreement with the fact that clouds are
almost exclusively scattering radiation in the visible wavelengths∗ and therefore justifies to
neglect absorption in this region of the spectrum when performing RTM calculations. On the
contrary, scattering and absorption are occurring both in the IR domain.
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Figure 2.8 – Single scattering albedo ω for liquid water [188] and ice (composed of a mixture of crys-
tal habits) [13–15, 192] clouds according to the wavelength and various effective radii for particle size
distribution.

Knowing the geometric thickness of the cloud layer ∆z, the liquid water path (LWP) and
ice water path (IWP) are simply defined by the product of ∆z with the associated water con-
tent for a homogeneous plane–parallel cloud, i.e. a cloud whose distribution of particles does
not vary along the vertical axis z. Recalling the definition of the cloud optical depth in equa-
tion 2.12 and the expression of the extinction coefficient similar to equation 2.20 with the pre-
vious assumption, we get

τ(λ) = ∆z
∫ +∞

0
n(r) Qe(r; λ)πr2 dr. (2.25)

In the visible part of the spectrum, one generally assumes that the extinction efficiency Qe is
approximately equal to 2 irrespectively of r for water droplets. Therefore, by further combin-
ing equations (2.16) and (2.18), an approximate expression of the cloud optical depth in the

∗This explains why we observe clouds as white objects.
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visible is given by

τ ≈ 3 LWP
2ρl re

(2.26)

for liquid water clouds. However, outside of the visible domain, one usually considers empir-
ical regressions for various spectral intervals, such as

τ ≈ LWP(arb
e + c) (2.27)

which are faster to compute than equation 2.25. Similarly for random oriented non–spherical
ice particles, empirical expressions have also been derived for various crystal habits and spec-
tral intervals, such as

τ ≈ IWP
3

∑
i=0

ai

Di
e

(2.28)

through non–linear regressions [83]. These parameterizations are generally used in general
circulation models (GCMs) and RTMs such as STREAMER [82] which is used extensively
in chapters 5 and 6 for the Geostationary Earth Radiation Budget (GERB) cloud properties
retrieval algorithm.

2.4.5 Cloud spectral signature

If we consider plane–parallel cloud properties, the TOA radiance can be predicted by known
asymptotic expressions for optically thick layers overlying a lambertian surface [84]. For non–
absorbing wavelengths, the associated expression of the reflection of such thick clouds is es-
sentially depending on the surface albedo α and the scaled optical thickness τ′ defined by

τ′ = (1− g)τ (2.29)

where g is the asymmetry parameter. It results that for wavelengths below 1 µm characterized
by ω ≈ 1 (see figure 2.8), the radiance of a cloud only exhibits limited sensitivity to cloud
particle size (through g) but instead is highly dependent on the cloud optical depth τ. In
contrast, for wavelengths where absorption is occurring (ω < 1), the expression given by
the asymptotic theory is fundamentally varying with the surface albedo and the similarity
parameter s defined by

s =

√
1−ω

1−ωg
(2.30)

where ω is the single scattering albedo. Since this similarity parameter is primarily dependent
on the cloud effective particle size re [118], the reflection function is also primarily sensitive to
the cloud particle size for specific radiance measurements around 1.6 and 2 µm.

This is illustrated in figure 2.9 which summarizes the relationship between RTM sim-
ulations performed at the non–absorbing 0.6 or 0.8 µm and the absorbing 1.6 µm wave-
lengths for various cloud optical depths, particle effective radii and both cloud thermody-
namic phases. The dashed curves represent iso–τ cloudy conditions while the solid lines
denote iso–re cloudy conditions. The minimum value of the reflectance in each wavelength
is associated to TOA clear–sky conditions over the underlying surface. It is obvious from
this figure that the nearly orthogonality between equi–τ and equi–re curves implies that non–
absorbing channels can be used to retrieve the cloud optical depth with little influence of the
cloud effective particle radius while measurements in absorbing bands are mainly affected
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by cloud effective particle radius. Such fact is directly used in all major algorithms to esti-
mate the cloud optical depth and cloud particle size. From figures 2.9 and 2.10, one can note
that the accuracy of such technique is directly linked to the difference between clear–sky and
cloudy conditions. Since the response to cloudy conditions tends to saturate for high values
of the cloud optical depth, Earth surfaces associated to low spectral signature will decrease
the uncertainty on the cloud retrievals. Nevertheless, one can notice that conditions associ-
ated to thin clouds (τ < 2) cannot be anymore retrieved unequivocally. Indeed, as the cloud
optical depth decreases, the iso–re curves associated to low cloud effective particle radius are
converging. This results in multiple pairs of (τ, re) which are all compatible with the same
spectral reflectance measurement pair at (0.6 µm, 1.6 µm) or (0.8 µm, 1.6 µm).

0.0

0.2

0.4

0.6

0.8

R
ef

le
ct

an
ce

 a
t 1

.6
 µ

m

0.0 0.2 0.4 0.6 0.8 1.0

Reflectance at 0.6 µm

2 µm
3 µm
4 µm

6 µm
8 µm

12 µm
16 µm
24 µm

re

2
4

7
10

20 40 70 128

τ

(a)

0.0

0.2

0.4

0.6

0.8

R
ef

le
ct

an
ce

 a
t 1

.6
 µ

m

0.0 0.2 0.4 0.6 0.8 1.0

Reflectance at 0.8 µm

2 µm
3 µm
4 µm

6 µm
8 µm

12 µm
16 µm
24 µm

re

2
4

7
10

20 40 70 128

τ

(b)

0.0

0.2

0.4

0.6

R
ef

le
ct

an
ce

 a
t 1

.6
 µ

m

0.0 0.2 0.4 0.6 0.8 1.0

Reflectance at 0.6 µm

5 µm

10 µm

15 µm

20 µm

30 µm
40 µm

60 µm

De

2 4 7 10 20 40 70128

τ

(c)

0.0

0.2

0.4

0.6

R
ef

le
ct

an
ce

 a
t 1

.6
 µ

m

0.0 0.2 0.4 0.6 0.8 1.0

Reflectance at 0.8 µm

5 µm

10 µm

15 µm

20 µm

30 µm
40 µm

60 µm

De

2 4 7 10 20 40 70128

τ

(d)

Figure 2.9 – RTM [105] simulated relationship between the reflectance at 0.6 or 0.8 and 1.6 µm for liquid
water (blue) and ice (cyan) clouds. Solid lines represent iso–re curves while dashed lines designate iso–τ
curves for various cloud optical depths and cloud particle effective radii. Scene geometry is θ0 = 26◦,
θ = 40◦ and ϕ = 42◦. Surface albedo α is set to 0.05. Ice crystals are solid–column habit.

The spectral response of clouds is commonly exploited for their detection in major thresh-
old techniques found in the literature. Indeed, thick high clouds are generally associated to
significantly colder temperatures than their underlying Earth surface thus allowing them to
be easily identified by brightness temperature (BT) threshold tests from IR window measure-
ments around 11 and 12 µm. Since such measurements vary according to the water vapor pro-
file and the surface emissivity, channels impacted by H2O and CO2 absorption can be a good
alternative over polar regions because most of the measured signal is coming from the upper
part of the atmosphere. Thin clouds and cloud edges on the contrary can not be detected using
a single BT measurement due to their small impact on satellite measurements. Their detection
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can usually be performed by the so–called split window technique which relies on the BTD of
a pair of IR bands such as BTD11−12 or BTD8.5−11. The physics behind such method is based
on the differential water vapor absorption in both channels. If low water clouds characterized
by a similar temperature than the surface can also be detected using BTD11−3.7, visible and
NIR measurements at non–absorbing wavelengths around 0.8 µm provide a simpler method
during day–time. Indeed, thick clouds are generally associated to higher visible reflectances
than their underlying Earth surface∗ but depending on the geotype, this contrast can be re-
duced. Nevertheless, single visible and NIR reflectances at 0.6 and 0.8 µm, i.e. associated
to low Rayleigh scattering by air molecules, as well as their ratio ρ0.8/ρ0.6 exploiting the fact
that thick clouds do not exhibit large spectral differences efficiently manage to detect these
clouds†. However, specific geotypes may require to use other combinations of channels as for
example the 0.8 and 1.6 µm for bright desert. Of course, refinements of these basic detection
recipes are used depending on the spectral characteristics of the imagers to achieve a higher
sensitivity towards specific cloud objects.
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Figure 2.10 – RTM [105] simulated relationship between the reflectance at 0.6 or 0.8 and the cloud optical
depth τ for liquid water (blue) and ice (cyan) clouds for various surface albedos α. Cloud particle effective
radius is 8 µm for liquid water clouds and 50 µm for ice clouds (solid–column crystal habits). Scene
geometry is θ0 = 26◦, θ = 40◦ and ϕ = 42◦.

∗the exception being snow/ice covered surfaces
†for regions unaffected by the sun–glint
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2.4.6 Cloud spatial signature

Local variance within a given channel can also be used to discriminate different cloud types.
At 11 µm, cirrus are associated to large variance due to the fact that the signature of these
thin objects is perturbed by the underlying surface response while for low stratiform cloud
fields, their BT is more homogeneous locally resulting in small variance. However, in the
visible part of the spectrum (0.6 and 0.8 µm), it is the opposite with low variance for cirrus
while high variance values correspond to low stratus since it is the roughness of the cloud top
which is constraining the reflected radiation towards the instrument. Broken cloud fields are
also associated to high variance of their 11 µm BT signal. Therefore, this justifies why some
cloud detection techniques found in the literature are making use of spatial uniformity tests on
neighboring pixels within specific channels.

However, local variance is only one of possible textural features available from general im-
age analysis theory. Indeed, features such as entropy, homogeneity, angular second moment,
contrast, cluster shade and prominence are generally used in supervised as well as unsuper-
vised cloud detection and classification algorithms [11, 55]. We will not detail such textural
features since it is beyond the scope of this work.

2.5 Surface boundary conditions

Once the incoming radiation has passed through the atmosphere and the clouds and has
gone through various interactions (scattering and absorption) in clear and cloudy atmospheric
parts, it reaches the surface of the Earth. For most applications in remote sensing, such surface
can be considered as a non–transmissive medium∗. When observing a scene from a satellite
platform, i.e. where a pixel can be considered as the average of the outgoing radiation from a
large area, its detailed characteristics and physics parameters are not needed even if this area
is far from being either smooth or homogeneous. In fact, a precise theoretical treatment of the
interaction between the incoming radiation and the surface would be too complex to handle.
Instead, we have to rely on empirical determination of its radiative properties.

We can generally assume, no matter how strongly irregular or inhomogeneous a surface is,
that it can be approximated by a plane located just above the irregularities. The region below
that plane can then be considered as a black box. Therefore, the interaction of radiation with
this imaginary plane simply consists of the absorption of some fraction of it, while the other
part is reflected up in the atmosphere. By defining the absorptivity a(λ) and the reflectivity r(λ)
as the absorbed and the reflected fraction, respectively, we have for any direction of incident
radiation Ω0 in the virtue of the principle of energy conservation†

a(λ, Ω0) + r(λ, Ω0) = 1. (2.31)

Recalling the Kirchhoff law applying to the medium at thermal equilibrium, one gets with
equation 2.5

ε(λ) + r(λ) = 1, (2.32)

linking the emissivity (thermal radiation) and the reflectivity (solar radiation) of any surface
where the dependence on the direction of incoming radiation is implicitly assumed.

∗except for those interested in oceanography and atmosphere–ocean coupled systems
†Since the medium is opaque, there is no transmission.
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Due to the complex nature of the surface, the reflected radiation usually exhibits an an-
gular dependency behavior Ω according to the direction of incidence Ω0. Such angular rela-
tionship is expressed by the spectral bidirectional reflectance distribution function (BRDF) ρ [sr−1]
defined as [146]

ρ(λ, Ω0, Ω) =
dL↑(λ, Ω0, Ω)

dL↓(λ, Ω0)
(2.33)

where L↑ is the upwelling radiation while L↓ is the downwelling radiation on the surface.
Typical examples of reflective behavior are illustrated in figure 2.11. One can notice the two
extreme cases which are normally not observed in remote sensing: (a) the specular reflection
wherein the reflected and incident direction are uniquely related and (c) the lambertian reflec-
tion wherein the angular distribution of the reflected radiation is uniform.

(a) specular (b) quasi-specular (c) Lambertian

(d) quasi-Lambertian (e) complex

Figure 2.11 – Examples of various types of surface reflection as polar plots where the radius represents the
fraction of reflected intensity for an associated direction. From [126].

To assess to overall reflective characteristic of a surface, one usually introduces the albedo∗

α as the ratio of the reflected flux to the incident flux

α(Ω0) =

∫
2π

dL↑(Ω0, Ω) dΩ∫
2π

dL↓(Ω0) dΩ0

(2.34)

where the integrals run over the upper hemisphere relative to the surface [146]. Similarly, we
can introduce the spectral albedo α(Ω0, λ) of a surface. Both concepts ease the comparison of
the reflectivity between various surface types. Such spectral albedos of typical natural surfaces
are given in figure 2.12. One can note that snow has one of the highest albedos over the visible
spectrum which can be larger than the response of thick clouds, while it drastically decreases
around 1.6 µm to reach an even lower value at about 3.7 µm. Desert and dry vegetation on
the other hand exhibit a gradual increase of their albedo up to the NIR domain and are the
only surface types with a significant albedo (≈ 20 %) around 4 µm. This implies a specifically
lower emissivity at those wavelengths for these surfaces in virtue of equation 2.32. Even

∗also called the bihemispherical reflectance
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if vegetation has a pronounced peak at about 0.55 µm∗, its higher response around 0.8 µm is
typical. Finally, one can observe that the albedo of water and by extension of ocean is very low
at 0.4 µm (< 5 %) while slowly decreasing up to 2.7 µm. However, for sun–glint geometries
between the sun and the observer, quasi–specular reflection occurs on the water surface which
results in intense reflected radiation in a narrow viewing direction† (its reflective profile is
illustrated by figure 2.11(b)).
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Figure 2.12 – Albedos of various natural surfaces as a function of wavelength. From [8].

The various spectral behaviors of the surface types implies a variation of the dynamical
range between the clear–sky and the cloudy signal measured by the instrument. Therefore,
cloud optical depth retrieval algorithms generally rely on measurements in the 0.6 µm channel
for land geotypes while the 0.8 µm band is used over the ocean to maximise their sensitivity
and obviously reduce the uncertainty of the retrievals.

2.6 Imagers spectral design

The previous sections demonstrated that to properly characterize cloud properties such as
their thermodynamic phase and their optical depth, measurements must be performed around
specific wavelengths. These generally avoid absorption bands of atmospheric constituents
while trying to maximize their sensitivity to some specific feature.

This is therefore why all contemporary multispectral imagers targeted for meteorological
and climatological monitoring include the following basic set of spectral channels for which
we have summarized the main purposes:

∗corresponding to the green portion of the visible spectrum and due to the chlorophyll
†This direction is modulated by the size and orientation of the waves according to the wind at the surface.
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0.6 µm clouds detection and optical depth retrieval over the land, aerosols optical
depth retrieval

0.8 µm clouds detection and optical depth retrieval over the ocean, aerosols opti-
cal depth retrieval

1.6 µm cloud thermodynamic phase and effective particle size retrieval

3.7 µm cloud thermodynamic phase and effective particle size retrieval, low wa-
ter clouds detection

8.5 µm thick cold clouds at altitude z1, cloud thermodynamic phase

11 µm thick cold clouds at altitude z2 (z2 > z1), thin cirrus and cloud edges
detection, low water clouds detection, cloud thermodynamic phase

12 µm thick cold clouds at altitude z3 (z3 > z2), thin cirrus and cloud edges
detection, low water clouds detection, cloud thermodynamic phase

To this basic set, imagers from the latest generation include additional channels provid-
ing an increased sensitivity to specific conditions or phenomena such as clouds over polar
regions∗.

In this chapter, we only have introduced the basic prerequisites of radiative physics which
are needed to comprehend the following chapters. As suggested throughout this chapter, we
are far from having performed an exhaustive review of such a complex field. However, this
should be sufficient to understand the principles behind the various cloud properties retrieval
techniques, as well as their strengths and weaknesses, which are discussed in the following
chapter.

∗Indeed, at wavelengths commonly used to retrieve cloud properties these regions are characterized by high albedo
snow or ice covered surfaces which are colder than clouds above them.



Chapter 3

Cloud properties retrievals

IN this chapter, we try to give the most up–to–date overview of the techniques found in the
literature to detect clouds and retrieve their physical properties from an air– and satellite–

borne platform using only passive sensors∗. In the next section, we briefly perform a critical
analysis of the three main strategies which can be adopted for these retrieval schemes. We then
focus in the following sections on the 3 cloud parameters which are required to properly select
a Clouds and the Earth’s Radiant Energy System (CERES) Tropical Rainfall Measuring Mission
(TRMM) shortwave angular dependency model (ADM) for the Geostationary Earth Radiation
Budget (GERB) solar flux processing, i.e. the cloud detection, the cloud thermodynamic phase
and the cloud optical depth retrievals†. Finally, the last section (3.7) justifies the strategy that
we have chosen for the RMIB GERB Processing (RGP).

3.1 General approaches

Since the transmission of the first image of the Earth from the TIROS–1 satellite in 1960, there
has been a growing interest in the use of space instruments to collect cloud cover data and
in building cloud climatologies datasets. In 1964, the first successful attempts to derive cloud
amounts from satellite imagery required human expertise in a time–consuming process [6, 31].
Fortunately, with the advent of modern computers, numerous automated techniques have
been developed to extract cloud physical parameters. Even if the majority and their under-
lying concepts were and are still developed for LEO imagers, they have been successfully
adapted to geostationary instruments and to their specific scene geometries. These techniques
are mainly relying on the typical spectral characteristics of the clouds compared to cloud–free
conditions while some of them additionally make use of textural knowledge as, for example,
spatial coherence information within a given channel. As already mentioned, multispectral
imagers are designed to provide spectral bands which allow maximum discrimination be-
tween cloudy and cloud–free scenes based on their underlying physics, thus similar spectral

∗During the last decade, several active instruments have been launched on board of low Earth orbit (LEO) platforms
to supplement passive sensors. Indeed, their synergistic use improves drastically the vertical characterization of the
atmosphere along their swath, both in terms of cloud and aerosol information, as for example in [45].
†The fourth parameter which is the surface geotype is defined as the fixed CERES surface map projected on the

Spinning Enhanced Visible and InfraRed Imager (SEVIRI) field–of–view (FOV).
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features are used in almost all techniques. They can generally be divided into three classes:

• those which rely on supervised methods,

• those relying on unsupervised frameworks,

• those based on comparisons with radiative transfer model (RTM) computations com-
bined with some threshold tests to detect cloudy pixels.

3.1.1 Supervised techniques

Supervised methods are rarely developed. A maximum likelihood estimator technique has
been implemented for cloud typing in polar regions using textural and spectral features from
the four bands (a visible, two near–infrared (NIR) and an infrared (IR)) of Advanced Very
High Resolution Radiometer (AVHRR) on National Ocean and Air Administration (NOAA)–
7 [55]. A similar estimator demonstrated its applicability to Moderate Resolution Imaging
Spectroradiometer (MODIS) data [91]. It consists in using the MODIS official cloud mask
product to derive an initial learning dataset and then successively use the output classifica-
tion as training set for the next iteration. A similar learning approach was adopted to train a
discriminant analysis classifier to perform cloud detection on SEVIRI [4]. Another approach
using AVHRR on NOAA–11 is based on the fuzzy logic formalism to detect single– as well
well as multi–layer clouds using spectral (including ratio of reflectances and brightness tem-
perature differences (BTDs)) as well as textural features [11]. A training dataset of such fea-
tures is used to build the membership functions for each targeted cloud class. The result of
the classification is a probability to belong to every class, calculated for pixel tiles, thus at a
lower spatial resolution. The neural network (NN) formalism [37] allows to consider hori-
zontal inhomogeneous cloud fields and to estimate the mean and standard deviation of cloud
parameters. It has been successfully applied to SEVIRI to estimate a probability of cloud cover
using spectral and temporal features derived from 8 SEVIRI channels [133]. The main asset
of this algorithm is its independence to numerical weather prediction (NWP) ancillary data
even if it relies on a cloudy and a clear–sky training dataset, the latter being inferred from the
analysis of 10.8 µm brightness temperature (BT) time–series∗. A temporally adaptive classi-
fier has also been developed for Geostationary Operational Environment Satellite (GOES)–8
visible and IR channels [143, 175]. Basically, it relies on a probabilistic NN. This NN is trained
by the classification result of the previous repeat cycle of the satellite using Bayesian theory
on the spatial and temporal neighborhood of every pixel while the initial training dataset is
classified by human experts. It is obvious that such approach is defeated in case of a missing
repeat cycle and that errors in classification tend to exhibit a memory effect with time.

Usually, the main drawback of supervised methods is the need to firstly extract a repre-
sentative training database which can be a time–consuming manual process while the logic
of the classification is buried inside the classifier black box. These methods also suffer from
several drawbacks such as the sensitivity of the classifier to the training samples with the risk
to overfit them and thus delivering poor results for real life cases.

∗Basic comparison was performed on synoptic data. However, it was recognized that such comparison is uncertain
due to the ambiguity in the definition of octa and human observations.
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3.1.2 Unsupervised techniques

Unsupervised techniques are not considered for operational purpose. However, already in
1982 a clustering algorithm using the three Meteosat channels (visible, infrared and water
vapor) was investigated for potential cloud type classification [48]. This classifier was also
used to develop a cloud detection scheme on Meteosat–4 data [5]. It consists in applying
a k–nearest neighbours (kNN) clustering technique on directional textural features for the
segmentation of the data. It was demonstrated that such method is especially efficient over
snow and ice covered surfaces to detect clouds, when compared to multispectral threshold
algorithms which are hampered by the lack of spectral contrast between the clouds and the
surface. Another approach based on the spatial clustering of Medium Resolution Imaging
Spectrometer (MERIS) pixel tiles has been tested [59]. The features used are based on the
spectral behavior of clouds in the visible region of the spectrum (high and relatively constant
albedo) and on the distinct atmospheric transmission when a cloud is observed in the O2
and water vapor bands. Moreover, clustering techniques have been proved to be specifically
suited in the case of partially cloudy pixels as it is the case for low resolution radiometers [7].

Nevertheless, they suffer from inherent issues such as sensitivity to initialization, the need
to adequately choose the number of representative clusters, the significant increase of comput-
ing power due to an iterative scheme or the a posteriori identification of meaningful classes
from the final clusters.

3.1.3 Comparison techniques

The vast majority of algorithms are based on comparisons of the multispectral measurements
to radiative transfer (RT) simulations. As mentioned previously, the photon transport in a
cloudy atmosphere is a complex problem depending on the 3–dimensional (3–D) description
of the surface–atmosphere system. Therefore, the retrieval ”simply” reduces to infer the pa-
rameters associated to 3–D fields from RTM simulations by matching them to the measured
radiances at the top of the atmosphere. It is obvious that such problem is ill–posed because the
unknown parameters drastically outnumber the measurements (instrument channels). More-
over, even if the complete 3–D structure could be known, 3–D RTMs which are usually based
on probabilistic Monte Carlo formalisms [75, 102, 121] can not be used extensively due to
the tremendous computing time requirements. Thus, most of the routine retrievals are based
on the simplified plane–parallel or 1–dimensional (1–D) theory which models the atmospheric
medium as horizontally homogeneous slabs with vertically varying parameters. To quote
A. Davis [44]

”Homogeneous plane–parallel clouds may not exist in nature but they are the only ones for
which we know how to solve the radiative transfer in a small amount of computer time.”

These algorithms treat each pixel within the FOV independently. They assume that every pixel
can be considered either as completely cloudy or clear and that the cloud field is horizontally
homogeneous within the pixel. These assumptions imply that horizontal photon transport is
neglected as well as the radiative contribution of cloud edges and oblique illumination of 3–D
cloudy structures. It is expected that results from such algorithms exhibit a dependence on
the resolution of the instrument. Specifically, for high resolution imagers (less than 1 km at
nadir), the 3–D effects become significant for cloud detection [193] and large errors can result
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when estimating cloud optical depth and effective radius [81] or top of the atmosphere (TOA)
solar albedos [25] over broken clouds or convective cells. Even if the implementation of a
3–D cloud properties retrieval scheme is unpractical due to the fact that the 3–D cloud fields
are unknown and that it would be computationally prohibitive, it is worth pointing out that
several correction schemes for the 1–D theory are available in the literature [76, 103, 122, 191].
Moreover, approximations of the horizontal photon transport exist and allow to estimate the
domain of validity of the plane–parallel assumption [128].

Recently an optimal cloud analysis (OCA) approach based on optimal parameters estima-
tion has been developed [179] for SEVIRI data. This technique is still based on what is called
the independent pixel approximation (IPA) but it is not relying anymore on threshold tests.
Instead, it consists in searching the optimal input parameters (cloud optical depth, phase and
cloud particle size and pressure) of a simplified forward RTM for its simulated TOA radiances
to match as close as possible the multispectral measurements of each imager pixel. However,
the huge amount of computing power required by this 1–D variational method currently pre-
vents its use in an operational environment even if its main advantage is to deliver consistent
parameters with all the multispectral measurements of each pixel which are spatially coher-
ent∗.

In the following of this chapter, we will be focussing on the schemes based on comparisons
between multispectral radiance measurements and plane–parallel RT computations. Since
these schemes are almost all relying on a prior cloud detection [115, 117, 134], we first start by
investigating cloud masking techniques in the literature. We then review the common meth-
ods to discriminate between liquid water and ice clouds to finally end on the cloud optical
depth retrieval algorithms.

3.2 Cloud masking

This section gives an overview of the common cloud detection algorithms found in the liter-
ature associated to projects or programs dedicated to climate studies. These schemes are im-
plemented either on LEO or geostationary Earth orbit (GEO) instruments. It has to be noted
that depending on the targeted applications of each project or program, the cloud detection
scheme is either cloud– or clear–sky conservative. More precisely, a cloud conservative algorithm
tries to minimize false cloud detection with an increased probability to miss thin clouds, so
that scenes which are flagged cloudy can be fully trusted. In contrast, a clear–sky conserva-
tive algorithm tries to minimize false clear–sky detection with the risk to falsely identify some
clear–sky scenes as cloudy. Such algorithm classifies clear–sky scenes with the highest confi-
dence. Nevertheless, as stated in section 2.4.1, there is no absolute criterion to decide whether
a scene is clear–sky or cloudy. Such relative classification depends in fact on the purpose of the
cloud mask within each experiment.

3.2.1 LEO instruments

The AVHRR Processing scheme Over cLoudy Land and Ocean (APOLLO) was developed to
detect clouds initially over western Europe area in AVHRR imagery [144]. Its processing con-
∗No discontinuities are foreseen in areas of geotype transition as it can be the case for threshold techniques, the latter

making use of specific values according to the surface type.
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sists of threshold tests on 2 visible, a NIR and 2 IR channels during day–time while only the
NIR and IR bands are used during night–time. These tests are grouped according to their pur-
pose and sequentially applied. The cloud–free group uses the visible reflectance ρ0.6, BT12,
BTD10.8−12 (thin cirrus and cloud edges), ratio of reflectances ρ0.8/ρ0.6 and spatial uniformity
on BT12. Then, the remaining pixels are tested by the totally–cloudy group using ratio of
reflectances ρ0.8/ρ0.6 and spatial uniformity on BT12. The remaining unclassified pixels are
flagged as partially cloudy. Finally, a snow/ice detection is applied to cloudy pixels using
the NIR reflectance ρ1.6. The logic of the night–time algorithm still exploits BTD10.8−12, BT12
and spatial uniformity on BT12 in the threshold tests in addition to BTD10.8−3.7 (fog and low
stratus) and BTD3.7−12 (medium– and high–level thick clouds). The various thresholds are dy-
namically computed from the analysis of histograms over pixel tiles in the processed imagery.
From the previous description, this scheme can be categorized as clear–sky conservative. It
was further improved for robustness over the entire globe and specifically over non–vegetated
surfaces by updating the computation of the dynamic thresholds [88, 145].

Another algorithm is also available for AVHRR. The NOAA Cloud Advanced Very High
Resolution Radiometer (CLAVR) scheme in its most current version relies on a sequential de-
cision tree of multispectral threshold tests [156, 166]. These include: (1) contrast signature
tests using visible and NIR reflectances and IR BTs, (2) spectral signature tests using ratio of
reflectances and BTDs and (3) spatial signature tests based on uniformity of reflectances and
BTs. The thresholds are again dynamically estimated using clear–sky radiance statistics com-
puted from the previous 9–days repeat cycles∗ of NOAA satellite. The results of such scheme
is either clear, cloudy, mixed–cloudy or mixed–clear. The mixed–cloudy class is assigned to
pixels satisfying the contrast and spectral signature cloudy tests while being spatially non–
uniform. The mixed–clear class is associated to clear–sky scenes according to the contrast and
spectral signature tests which exhibit a spatial uniformity.

The launch of MODIS instruments on board of the Terra and Aqua satellites represents a
major milestone in the design of cloud detection algorithms. Indeed, such imagers provide
an extensive number of spectral channels which were carefully chosen among others to be
sensitive to specific characteristics of the surface, atmosphere, aerosols and clouds.

The MODIS Atmosphere Science Team (MAST) developed a cloud mask based on thresh-
old tests [2, 85, 130]. These tests use 20 out of the 36 available spectral bands either individ-
ually when applied on reflectances and BTs, or combined when applied on BTDs and ratios
of reflectances. Basically, they are organized into 5 successive groups, each group being de-
voted to detect a specific cloud type: thick high, thin, low, upper tropospheric thin and cirrus
clouds. The thick high clouds are detected using single BTs (11, 13.9 and 6.7 µm) while thin
clouds are characterized with BTD11−12, BTD8.6−11, BTD11−3.9 and BTD11−6.7. Low warm
clouds are then usually detected using solar channels by means of single reflectances (0.6, 0.8
and 0.9 µm) and reflectances ratio tests ρ0.8/ρ0.6 as well as BTD3.9−3.7. The upper tropospheric
thin clouds are further identified by a single threshold test on the NIR channel sensitive to
H2O absorption located around 1.38 µm. Finally similar BTD tests than the thin clouds group
are used for cirrus with specifically tuned threshold values. Even if the thresholds used in the
various tests are static, their values are varying across the FOV. In fact, each test is defined by
a low and high threshold allowing to estimate a confidence level of being clear†. Within each
group, these confidence levels are combined by considering the minimum value. The over-
all confidence ”probability” is then computed as the geometric mean of the group confidence

∗i.e. the 9 previous acquisitions at the same time of the day
†The confidence level is a linear function between the two thresholds.
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levels. The final result of the cloud mask follows by partitioning this probability: confident
clear, probably clear, uncertain and cloudy. It is obvious that such approach is clear–sky con-
servative because any test which has a null clear confidence, i.e. which is totally sure of the
occurrence of a cloud, will propagate its value up to the overall confidence probability.

Recently, another cloud mask scheme was suggested for MODIS [74]. The motivation for
its development was to design a neutral cloud detection algorithm that is neither clear–sky–
nor cloud conservative. Even if it is inspired from the MAST cloud mask scheme by using
similar threshold tests and the concept of confidence level, these have been reorganized into
two distinct groups. The first group is composed of the cloud conservative set of threshold
tests and delivers a clear confidence level accordingly while the second group is clear–sky con-
servative. Both clear confidence levels are then combined by a geometric mean and therefore
the result of this cloud mask is a continuous clear confidence level between 0 and 1 allowing
the user to select the sensitivity of the algorithm according to its needs. Moreover, to avoid
any false identification of bright surfaces as clouds, a minimum surface albedo map over one
month is used as threshold for the single reflectance tests instead of a static value.

The launch of the series of CERES broadband radiometers on board of the TRMM, Terra
and Aqua satellites triggered the development of a cloud detection scheme on their compan-
ion Visible and InfraRed Spectrometer (VIRS) (on TRMM) and MODIS (on Terra and Aqua)
imagers. Since the CERES project aims to monitor the climate of the Earth on a several–decade
basis as well as providing a set of constraints for climate model assessment and improve-
ment, the whole CERES processing including its cloud detection must use time consistent
algorithms, ancillary data and calibrations across instruments. Since the MAST scheme uses
many MODIS channels preventing its application to VIRS and ancillary data which may not be
consistent with time, it was decided to implement a distinct scene identification (sceneID) for
the CERES processing system. Such sceneID must remain versatile as this system ingests LEO
and GEO imager products through complex time–space averaging to derive radiative fluxes
at various levels of the atmosphere. Thus, the main purpose of the CERES cloud mask is to
(1) detect clouds with the greatest radiative impact on the radiation budget, (2) suitably apply
anisotropic directional models, i.e. ADMs, to CERES radiance measurements and (3) allow to
quantify the direct and indirect aerosol effects through the identification of clear–sky scenes.
As one may expect, an inter–calibration must first be performed across the LEO and GEO im-
ager data to ensure that all derived cloud properties will give consistent results [112, 113]. The
cloud detection algorithm is based on different cascading multispectral threshold techniques
for day– and night–time [116]. Basically, it relies on the 0.6, 1.6, 3.7, 10.8 and 12 µm measure-
ments and uses them either alone or through ratios of reflectances and BTDs. Its ancillary in-
put data include vertical profiles of temperature, water vapor, wind, ozone and aerosols from
re–analysis of NWP models allowing to estimate the skin surface temperature. A daily map
of the snow/ice extent is also used as auxiliary input data. Clear–sky reflectances in visible
and NIR channels are computed from associated monthly derived clear–sky albedos and di-
rectional modeling [160] while monthly surface emissivities allow to infer clear–sky radiances
in IR spectral bands. Even if the cloud detection scheme is run at the pixel–level, its ancillary
clear–sky properties and atmospheric corrections are constant over 16× 32 and 32× 32 km2

tiles for VIRS and MODIS, respectively∗. It results that uncertainties on the clear–sky thresh-
olds can be estimated, and hence a good or weak cloudy flag and clear flag can be provided
based on the BT, reflectance, BTD and reflectance ratio tests and depending on the availability
of the visible and NIR channels. Moreover, it has to be noted that the resulting clear–sky pixels
are not only used in the following cloud properties retrieval module but also in updating the

∗This in fact corresponds to an area of 8× 16 pixels.
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ancillary clear–sky data within their respective tile for the cloud detection scheme. However,
using constant ancillary data over such tiles has also a drawback since artifacts at tile borders
can appear in the resulting cloud mask.

3.2.2 GEO instruments

In 1983, the World Climate Research Program (WCRP) initiated the International Cloud Cli-
matology Project (ISCCP). Its main objective was ”to obtain more information on how clouds
alter the radiation balance of Earth” [147]. Specifically, ISCCP was developed to collect and
analyze weather satellite radiance datasets to produce a global cloud climatology [137, 139,
140, 147]. To identically process all these GEO and LEO instruments, only a visible 0.6 and
an IR 11 µm channels common to all platforms were retained for the processing. Prior to any
analysis a careful inter–calibration of the imagers is required. Then, a cloud detection based
on threshold tests is performed. These thresholds are dynamically derived from composite
clear–sky values. Thus, the ISCCP processing relies on an accurate composite clear–sky esti-
mation scheme. This scheme consists of 5 steps: (1) a spatial contrast test in a single IR image,
(2) a time contrast test on 3 successive IR images at a given day–time, (3) a merge of space
and time statistics for both channels, (4) the estimation of clear–sky composites for both bands
every 5 days at a given day–time as well as their uncertainties. The cloud mask thresholds are
then computed as the sum of the clear–sky values and their associated uncertainties. Finally,
each scene is flagged cloudy provided that at least one of its visible and IR radiances is above
the corresponding threshold while it is declared clear otherwise. It is obvious that this algo-
rithm is cloud conservative, i.e. it minimizes false cloud detection but it misses thin clouds
whose signal is lower than the inherent noise of the clear–sky estimation.

Minnis et al. [108] proposed a bispectral threshold technique to estimate clear–sky radi-
ances and infer an associated cloud mask on GOES imager data. A minimum reflectance
approach is used for the visible 0.65 µm channel to derive a global clear–sky bidirectional
reflectance distribution function (BRDF) model for ocean and a set of longitudinal and latitu-
dinal clear–sky BRDF models for land. Such approach is augmented by a clear–sky diurnal
cycle BT modeling for the IR 11.5 µm measurements. Then, visible and IR cloudy thresholds
are estimated based on their respective clear–sky models and the bidimensional visible and
IR local histogram.

An operational cloud detection technique was also developed for Meteosat–7 whose aim
was to initialize a short–term cloud forecasting scheme [57]. It relies first on an 11 µm BT
threshold test. The threshold is estimated using the skin surface temperature field from a
NWP model. These temperatures are corrected for bias between clear–sky BT and skin surface
temperature by using selected cloud–free synoptic measurements. Another test is performed
on the 0.7 µm visible channel. The associated threshold is computed using a two–week time–
series frequency distribution to build a surface reflectivity map based on IR cloud–free flagged
pixels. Finally, both tests are repeated once with lower threshold values to detect thin clouds
near cloud edges.

Even more recently, European Organisation for the Exploitation of Meteorological Satel-
lites (EUMETSAT) initiated their Satellite Application Facility (SAF) program focussing on
meteorology and climatology. Among the SAF network, the Nowcasting and Very Short–
Range Forecasting SAF (NWCSAF) aims to provide data for nowcasting purpose. To achieve
such goal, an operational cloud detection scheme has been implemented [47]. Its logic relies
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on a cascade of multispectral threshold tests which are similar to those used for MODIS and
are based on BTs, sea surface temperature (SST) estimation, reflectances, BTDs and spatial tex-
ture analysis. A significant difference between MODIS and NWCSAF methods lies in the fact
that NWCSAF thresholds are dynamically computed according to the scene geometry, using
look–up tables (LUTs) from RTM calculations as well as ancillary NWP model profiles and
various climatologies. Moreover, an objective tuning of these thresholds has been performed
based on a training dataset manually generated by human experts. The processing is ended
by a spatial filtering which reclassifies isolated pixels with a different cloud flag from their
neighbors. This scheme has successfully been applied to LEO imagers such as AVHRR or
MODIS, even if it was initially designed for the Meteosat Second Generation (MSG) geosta-
tionary platform.

3.3 Cloud thermodynamic phase

An accurate cloud phase detection is of prime interest for climate studies because liquid water
clouds and ice clouds influence differently the surface energy balance. While liquid water
clouds tend to reflect much of the shortwave radiation, ice clouds tend to absorb and re–
emit thermal radiation back to the surface. In this section, we review common approaches
found in the literature to determine the cloud thermodynamic phase at a macrophysical scale
from satellite imagery. It turns out that these techniques can usually be divided into 3 groups
depending on the kind of spectral information used:

• those using thermal IR radiances,

• those utilizing visible and NIR reflectances,

• those combining visible, NIR and IR radiances.

Nevertheless, all approaches consider the differential absorption behavior between liquid wa-
ter and ice (see figure 2.7) in selected spectral regions.

3.3.1 IR channels retrieval

The main advantage of using exclusively thermal measurements lies in the fact that such
schemes provide cloud phase both during day– and night–time. However, the thermal con-
tribution of the Earth surface can be a significant part in the satellite’s measured signal when
observing thin or broken clouds. Warm surfaces underneath such clouds can mask them and
even lead to cloud phase misclassification as it is the case, for example, for thin cirrus clouds
overlying desert. Moreover, thresholding on BTs assumes a sudden transition between liq-
uid water and ice clouds at a given value while the transition between the two states does
not normally occur at some unique value in real life. Instead it is merely dependent of the
cloud dynamic and microphysical properties and therefore varies from case to case. Finally,
it is demonstrated that cloud phase retrieval from IR channels is more representative of the
phase near the cloud–top since these BTs are good estimators of the cloud–top temperature.
It is expected from thermal RT theory [126] that IR window channels around 11 µm have the
highest sensitivity to clouds altitude. This explains why such channels have been historically
used for that purpose.
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The ISCCP project uses in its processing a threshold test on the estimated cloud–top tem-
perature derived from the 10.8 µm BT to separate liquid water from ice clouds [140, 147]. This
estimation is based on the computation of the cloud emissivity according to the cloud opti-
cal depth at 10.8 µm [110] and on the clear–sky radiance. However, the cloud optical depth at
10.8 µm needs to be inferred from its associated value at 0.6 µm, thus requiring the availability
of day–time visible measurements.

The usefulness of the 3.7 µm channel was later demonstrated on AVHRR data [7]. Indeed,
the use of the 3.7 jointly with the 10.8 µm channel allows to select the most adequate mi-
crophysical cloud particle model and thus to reduce the uncertainty on the estimation of the
cloud–top temperature.

The trispectral method was first introduced on High–spectral resolution Interferometer
Sounder (HIS) data to detect cirrus clouds [1]. Such technique relies on the difference of mi-
crophysical and optical properties between water droplets and ice crystals in specific spectral
bands located in the 8–12 µm window allowing to discriminate liquid water and ice clouds
using their BTD. Indeed, the absorption efficiency of liquid water and ice is almost identical
around 8 µm while ice is more absorbing around 11 and 12 µm resulting in a lower BT (see
figure 2.7). Moreover, from the latter figure, one sees that the absorption efficiency of ice is
larger between 8 and 11 µm than between 11 and 12 µm while it is the opposite for liquid
water. It is therefore possible to partition a BTD8−11 versus BTD11−12 scatter diagram accord-
ing to the cloud thermodynamic phase, liquid water clouds being generally identified below
the unit slope, ice clouds above, mixed–phase clouds around and clear–sky conditions ex-
hibiting negative BTD8−11 and small BTD11−12. This method was also applied to collocated
High–Resolution Infrared Sounder (HIRS) and AVHRR as well as on MODIS Airborne Simu-
lator (MAS) data [157]. This last study demonstrated that the trispectral technique efficiently
allows to discriminate clouds with emissivities below 1 (typically thin clouds), while high
emissivity (thick) clouds are expected to exhibit almost zero BTDs. However, their thermo-
dynamic phase can be easily inferred according to their 11 µm BT. It was also noted that the
BTD8−11 threshold associated to clear–sky conditions is varying with the total column water
vapor amount.

If the trispectral method seemed promising for the operational MODIS processing when
applied to the MAS, it was not implemented due to issues which were raised during its op-
erational testing. Indeed, it turns out that scenes containing clouds at multiple levels where
never observed at the high spatial resolution of MAS (about 50 m) while they were in the large
MODIS swath width. Moreover, slopes between BTD8.5−11 and BTD11−12 values were often
close to zero leading to confusion in the scatter diagram. Thus, the MAST decided to opt for
a simplified bispectral algorithm using the 8.5 and 11 µm channels which can be applied to
any individual pixel without relying anymore on an analysis of a scatter diagram [85, 130].
It is still based on optical and physical properties through thresholds on BTD8.5−11 and BT11,
respectively, allowing to partition the (BT11, BTD8.5−11) space into 4 classes: liquid water, ice,
mixed and undefined. Moreover, this algorithm and its threshold values have been success-
fully adapted to the SEVIRI instrument [190].

3.3.2 Visible and NIR channels retrieval

The retrieval methods based on visible and NIR reflectances exploit the optical properties
of liquid water and ice cloud particles in this region of the spectrum. The behavior of the
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NIR reflectances is dominated by the cloud thermodynamic phase and particle size through
absorption (see figure 2.7) and scattering (see figure 2.8), whereas it is almost independent in
the visible wavelengths.

Such concept is considered in a method which jointly retrieves the cloud thermodynamic
phase together with the cloud particle size from a non–absorbing 0.67 and an absorbing 1.6 µm
channel [77]. Even if it has been initially developed on Along Track Scanning Radiometer
(ATSR) data, it was designed to be applied to AVHRR and SEVIRI. It assumes that the cloud
type is homogeneous over small pixel boxes and assigns a cloud phase according to the scatter
diagram between ρ0.67/ρ1.6 and ρ0.67 of the pixels in each box. Such assignment is performed
through a matching of the shape of the scatter diagram with RT simulated curves of varying
cloud particle type∗ and effective radius.

However, simpler approaches have also been considered using threshold tests on single
reflectance ratios. The cloud phase discrimination of the Multispectral Thermal Imager (MTI)
processing relies on a threshold test on the ratio ρ0.86/ρ1.62 [29] while the ratio ρ2.13/ρ0.66
was initially investigated by the MAST. Comparisons of these two techniques with the MAST
bispectral BTD method on MODIS data pointed out that the MTI algorithm gives consistent
results and the one based on the ratio ρ2.13/ρ0.66 is biased toward the ice phase [30]. Spec-
tral threshold tests were also investigated on single AVHRR 1.65 and 3.75 µm channels [124].
These tests manage to correctly detect the thermodynamic phase of thick clouds due to differ-
ent spectral behavior (see figure 2.7), but they cannot discriminate thin clouds (τ < 1) since
thin liquid water and ice clouds tend to exhibit similar reflectances at these NIR wavelengths.

3.3.3 Visible, NIR and IR channels retrieval

Methods relying on the combination of visible, NIR and IR measurements offers the best accu-
racy because they allow to exploit cloud properties from various perspectives, i.e. according
to their solar and thermal characteristics. However, the asset of these techniques is also their
major limitation as these can only be applied during day–time.

The Cloud Physical Properties algorithm which is part of the Climate Monitoring SAF
(CMSAF) operational processing chain falls in that category [134, 190]. The cloud thermody-
namic phase is iteratively inferred together with the cloud optical depth and effective particle
size. Such retrievals are performed through comparison between measured and simulated
RTM reflectances in the 0.6 and 1.6 µm SEVIRI bands. Once the scheme has converged, a
threshold test is applied on the emissivity–corrected cloud–top temperature to ensure that no
cloudy pixel is assigned to ice phase while its temperature exceeds 265 K.

The MAS trispectral method was further enhanced by the addition of the visible 0.65 as
well as the NIR 1.63 and 1.9 µm bands [12]. This proved to increase its reliability in regions
of mixed cloud thermodynamic phases and of thin cirrus overlying low–level liquid water
clouds. It is achieved through the use of threshold tests exploiting locally measurements as-
sociated to neighboring clear–sky pixels. Another study demonstrated that the addition of a
single threshold test on the 1.63 µm channel also improved the thin cirrus identification for
MODIS [28].
∗liquid water droplets or ice crystal habits
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3.3.4 Thin cirrus and multi–layer cloud detection

When retrieving the cloud thermodynamic phase of any pixel, we generally assume that the
cloud field within this footprint is single–layered and sufficiently thick to modulate the re-
sponse from the surface contribution in specific spectral channels. However, recent studies
tend to show that multi–layer cloud configurations do occur frequently at all latitudes. Oth-
ers estimated that thin cirrus can be present as much as 80 % of the time over the tropics while
covering over 50 % spatially [27, 177]. Thin cirrus and multi–layer cloud detection are still
an active research field since their radiative effect is significantly different from clear–sky and
single–layer cloudy conditions. Currently, most multi–layer cloud detection algorithms man-
age to detect such clouds, but no detailed analysis on the phase of each layer is performed.

Cirrus clouds are composed of ice crystals at high altitude. While thick cirrus are easily
detected, the identification of thin cirrus due to their optically semi–transparent nature still
represent nowadays a challenge. Their signal is usually masked by the contribution of the
surface radiation or the response of lower water clouds. Nevertheless, specific techniques are
proposed.

The detection of single layer configurations of thin cirrus can be achieved by applying the
split–window test, i.e. a threshold test on the BTD between the 10.8 and 12 µm AVHRR chan-
nels, according to 10.8 µm BT and the scene geometry [145]. However, this simple approach
has to be supplemented since it suffers from misidentification of fractional liquid water cloud–
filled pixels as thin cirrus while its accuracy is reduced over land geotypes.

Combination of the previous technique [145] with a thresholding on the AVHRR bispectral
reflectance ratio ρ3.7/ρ0.6

∗ increases the accuracy of thin cirrus detection over the ocean and
vegetated surfaces but tend to miserably fail over sparsely vegetated areas such as desert [72].
Moreover, the use of the 1.6 µm channel for thin cirrus detection is limited since the cirrus
contribution is almost completely overwhelmed by the response of highly reflective surfaces
in that band.

The MODIS 1.38 µm spectral band is designed for its sensitivity to thin cirrus. Indeed,
the strong water vapor absorption band in the vicinity of 1.38 µm (see figure 2.5) implies that
the reflectance measured around this wavelength is almost entirely resulting from upper tro-
pospheric clouds since all of the atmospheric water vapor is located below common cirrus
altitude. Thus, the 1.38 µm channel can be used instead of the 3.7 µm one in the bispectral re-
flectance ratio technique together with the BTD between 8.6 and 11 µm channels [135] which is
sensitive to the cloud thermodynamic phase through the differential absorption. By using the
1.38 µm channel the influence of the Earth surface geotype is removed. However, in this study
the adopted logic was to combined into a single index, the high cloud screening parameter, both
the reflectance ratio ρ1.38/ρ0.6 and the BTD8.6−11 and use a single threshold test on this index
to identify thin cirrus clouds. A modified method considering only the 1.38 µm channel with
the BTD8.6−11 and threshold values estimated from RTM computations was also investigated
with success [136].

Recently, a novel cirrus detection technique was specifically developed for SEVIRI [87].
It is based solely on thermal IR channels which allows it to be applied day and night. Ba-
sically, it relies on two split–window tests on BTD10.8−12 and BTD8.7−12. To decouple the
surface contribution from these BTD values, the BTD for every pixel is subtracted by the asso-

∗where the thermal component of the 3.7 µm radiation is priorly removed
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ciated cloudless value determined either from NWP fields or from the pixel’s neighborhood.
Furthermore, additional morphological high–pass filter tests are performed on SEVIRI water
vapor channels. Indeed, due to the strong water vapor absorption in these bands, the sur-
face and low clouds will have only a limited impact compared to high cirrus clouds. Their
occurrence will result in significant small–scale variability patterns. Split–window threshold
values are estimated from comparisons to comprehensive RT calculations while those for the
morphological tests are empirically fixed by visual inspection of satellite images.

Multi–layered cloud configuration can be detected using the method initially developed
on MAS data [10] and applied to the MODIS instrument [120]. This method uses tiles of
neighboring pixels (typically 200× 200) and starts to identify single layer liquid water and ice
clouds using the bispectral technique on the 8.5 and 11 µm BTs. Then, cloud layer discrimina-
tion relies on the analysis of the scatter diagram of a NIR (1.6 or 2.1 µm) and IR (e.g. 11 µm)
band together with clear–sky pixels information from a cloud mask. Specifically, single–layer
liquid water and ice cloudy as well as clear–sky pixels clusters are identified. Then, average
cluster centers are computed in this diagram and a region is defined where pixels could be
associated to multi–layer clouds. Finally, the robustness of this technique is increased by not
only performing a single pass analysis for every pixel, but by staggering the tiles for each pixel
to be analyzed up to 100 times but at the expense of an increased computation time.

Another approach developed for AVHRR uses solely single pixel’s measurements and ap-
plies RTM thresholds on 0.6 µm and BTD between 11 and 12 µm channels [123]. It assumes
that a cirrus cloud overlap significantly deviates from the predicted plane–parallel behavior
of a single liquid water cloud in the BTD11−12. This method was further extended for the
Visible–InfraRed Imaging Radiometer Suite (VIIRS) by adding threshold tests on the 1.65 and
1.38 µm reflectances [124].

3.4 Cloud optical depth

As we mentioned in the beginning of this chapter, we will only investigate methods based on
comparisons with RTM computations. Nevertheless, these are representing the vast majority
of implemented techniques for commonly used datasets in the climate and meteorological
community. We know from section 2.4.5 that both cloud optical depth τ as well as the effective
particle radius re or De can be retrieved simultaneously from two spectral measurements, one
at water non–absorbing wavelengths and the other at absorbing wavelengths. Moreover, as
illustrated in figure 2.9, properly selected channels allow to almost completely decouple one
cloud property from the other and associate the variability of each spectral measurement to
either τ (see figure 2.10) and re or De, providing that the cloud optical depth is not too small∗. It
has to be noted that such result is derived from theoretical RT modeling and thus illustrates the
usefulness of RTMs. The common approach is usually to retrieve the cloud optical depth for
all pixels flagged as cloudy from a previous cloud detection processing by applying specific
LUTs according to an a priori cloud thermodynamic phase estimation.

These retrieval schemes can generally be grouped into non–iterative and iterative meth-
ods. While direct, i.e. non–iterative, approaches can be used to estimate the cloud optical
depth by making assumptions on the cloud effective particle radius, iterative schemes are
developed to overcome the need of such approximations.

∗It could not be more vague. . .



3.4 Cloud optical depth 39

3.4.1 Non–iterative retrieval

A pioneer study was performed in 1980 and consisted in inferring the effective particle radius
re of liquid water clouds [168]. It demonstrated that this quantity can be estimated using
reflectance measurements at water absorbing wavelength (1.6 or 2.2 µm) provided that the
cloud optical depth is priorly known. Such knowledge was achieved with measurements at a
non–absorbing wavelength.

The joint retrieval of the cloud optical depth and top temperature was performed for the
first time on NOAA TIROS–N AVHRR data [7]. This retrieval is based on RTM comparisons
with the 0.73 and 11 µm channels through the selection of the LUT for this inversion. Such
selection is first achieved by the 3.7 µm band to estimate the most adequate microphysical
model of cloud particles, i.e. the effective radius size of spherical liquid water and ice droplets,
used to stratify the LUTs.

The derivation of asymptotic analytical expressions from RT plane–parallel theory has
later proved that such relations accurately predict the reflected solar measurements for thick
clouds (τ ≥ 9) [84]. Thus, their inversion can be used to retrieve the scaled cloud optical depth,
i.e. (1− g)τ (see equations 2.12 and 2.14 in chapter 2). Moreover, these expressions give an
insight about the dependence of the reflectance of thick clouds with the cloud optical depth,
surface albedo and asymmetry factor. It results in a significant reduction of the size of the
LUTs required for the inversion. Moreover, this study stressed that the choice of a realistic
cloud phase function for the RTM LUT computations is of prime interest.

The adopted approach for Polarization and Directionality of the Earth’s Reflectances (POL-
DER) processing as well as initially for the ISCCP cloud analysis was to retrieve the cloud
optical depth using a single visible channel and a prior cloudy knowledge [23, 139]. Assuming
that all clouds can be modeled as homogeneous plane–parallel layers composed of liquid
water droplets with an effective particle radius of 10 µm, RTM LUTs are used to invert the
measured reflectance into the associated cloud optical depth according to the surface albedo
and scene geometry. Nevertheless, it is worth pointing out that assuming spherical particles
for ice cloud parameterization leads to relative discrepancies up to 70 % on the cloud optical
depth retrievals [56].

An improved version of the previous method was developed and applied globally on
NOAA–5 data [138, 141]. It consists in retrieving the cloud optical depth through RTM LUTs
using ancillary NWP temperature and water vapor profiles but without any prior cloudy
knowledge. Instead, the cloud optical depth is estimated for all pixels and a cloud flag is
set for pixels associated to values above some threshold τth. However, as any cloud optical
depth retrieval scheme, this approach requires first to estimate the clear–sky surface visible
reflectance and window IR BT. This is achieved through the collection of monthly statistics
from locally homogeneous reflectances and BTs around each pixel which allows to generate
clear–sky surface maps together with an estimation on their uncertainties. Specifically, the
error on clear–sky surface reflectance is used to compute τth. Finally, this study demonstrated
that a significant increase in cloud detection sensitivity directly results from a more accurate
clear–sky signal estimation compared to fixed climatological datasets of surface albedos.

It was during the First ISCCP Regional Experiment (FIRE) aircraft campaign that for the
first time a technique was developed to simultaneously retrieve the cloud optical depth τ and
effective particle radius re of stratiform liquid water clouds [118]. To achieve such goal, two
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measurements around 0.75 and 2.16 µm are used. This technique relies on the minimization
of the cost function χ2 defined by

χ2 = ∑
λ

[
log ρλ

meas(µ0, µ, ϕ)− log ρλ
theo(τ, re , µ0, µ, ϕ)

]2
, (3.1)

where the summation extends over the two measurement channels λ, µ0 and µ are the cosine
of the solar and viewing zenith angles and ρλ

theo is the theoretical reflectance of channel λ for a
specific plane–parallel cloud cover (τ, re). Due to the non–linear dependence of the reflectance
on τ and re, no analytical solution can be derived. Instead of using RTM computations for all
cloudy configuration, the method combines such calculations for thin clouds with the asymp-
totic radiative relationships for thick clouds to assume a parameterization of τ as a function
of re. Thus, the minimization of χ2 over the two unknowns (τ, re) reduces to a non–linear
least–squares problem in re. Nevertheless, this simplification does not mitigate the fact that
multiple solutions do exist for thin clouds and that additional channels (e.g. 1.65 or 3.7 µm)
do not remove this ambiguity in the retrievals. Furthermore, a detailed theoretical analysis
showed that the underlying surface albedo is directly related to the uncertainty of the cloud
optical depth retrievals of this method.

This approach was selected by the MAST in the MODIS operational cloud product algo-
rithm [85, 130]. Depending on the underlying geotype, a non–absorbing channel is selected to
minimize the surface reflectance, i.e. the 0.65, 0.86 or 1.2 µm band for land, ocean or ice/snow
covered surfaces, respectively. The cloud optical depth and effective radius are then retrieved
independently for each of the 1.6, 2.1 and 3.7 µm absorbing bands, thus allowing to estimate
the uncertainties on the retrievals. However, it has to be noted that a climatological surface
albedo map is still currently used for the selection of the RTM LUTs.

3.4.2 Iterative retrieval

One of the first iterative methods to retrieve simultaneously the cloud optical depth and ef-
fective particle radius from semi–transparent to thick clouds was developed for the NOAA
AVHRR multispectral imager [119]. It is relying on the visible 0.63 and NIR 3.7 µm bands,
while the IR 11 µm channel is used to remove the thermal contribution to the 3.7 µm mea-
sured signal. The iterative scheme is based on a theoretical plane–parallel RT formalism of the
expected radiance in these 3 channels where the surface is modeled by a lambertian reflector
(see figure 2.11). This parameterization allows to decouple the contribution of the cloud layer
from the thermal and ground radiance components in the measurements. Thus, by using RTM
LUTs to model the reflectivities and transmissivities of the 3 channels according to a limited
set of τ and re values, the algorithm iterates on τ with fixed re until the 0.65 µm observed
and LUT radiances reach similar values. Then, the iteration is run on re with fixed τ where a
similar criterion on the 3.7 µm radiances is tested, and so on. . . The convergence is met when
measured and RT modeled radiances in the 0.65 and 3.7 µm bands do not significantly differ
anymore.

While relying on the SEVIRI 0.6 and 1.6 µm channels, the cloud optical depth and effec-
tive particle radius retrieval scheme developed for the CMSAF processing is also proceeding
iteratively [134]. The retrieval consists of a direct comparison between RTM LUT simulated re-
flectances with the measurements of cloudy flagged pixels. Previously, pixels were flagged as
cloudy when the observed TOA 0.6 µm reflectance was higher than the LUT simulated clear–
sky reflectance from fixed ocean and land albedos. The NWCSAF cloud mask [47] is now
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used as input. The iterative approach retrieves simultaneously both cloud properties from
previous guesses since the updated cloud optical depth estimated from the 0.6 µm reflectance
is used to update the cloud particle size from the 1.6 µm reflectance. If initially, this scheme
was assuming constant albedos for ocean and land surfaces in the 0.6 and 1.6 µm bands, its
most recent version [190] relies on the MODIS white–sky surface albedo product [130].

As mentioned previously, a specific sceneID has been implemented for the CERES project.
This is motivated to guarantee that all products are generated by similar algorithms relying
on controlled ancillary data even when the co–passenger imager to the CERES radiometer is
changed from VIRS to MODIS. Similarly to the cloud mask, two dedicated retrieval schemes
have been developed for day– and night–time [117]. The day–time Visible Infrared Solar–
Infrared Split Window Technique (VISST) relies on measurements from 4 channels located
around 0.65, 3.9, 10.8 and 12 µm, hence the name of the method. It aims to retrieve a detailed
description of the cloud layer, including the cloud optical depth and effective radius together
with its thermodynamic phase, the liquid water and ice paths, the cloud top and base pres-
sures and temperatures and the cloud emittance. It is based on the comparison between ob-
servations and RTM LUT radiance computations through an iterative scheme. Basically, from
an initial guess on the cloud effective particle size re for a water cloud, the cloud optical depth
τ is computed according the 0.65 µm reflectance measurement. Next, the cloud temperature
is estimated from the 3.9 and 10.8 µm channels and the previous two cloud properties τ and
re. The cloud thermodynamic phase is then assumed once and for all from a threshold test
on the cloud temperature. This allows to compute from LUTs the BTD3.9−10.8 for the current
re or De and τ values according to the proper cloud microphysical model. By matching the
measured BTD3.9−10.8 with their RTM counterpart, one is able to update the cloud effective
particle radius re or De. This updated radius allows to update τ according to the assumed
cloud phase from the 0.65 µm measured reflectance and so on. . . The convergence criterion
is met when the updated cloud particle size does not significantly change anymore. As one
may expect, the VISST algorithm relies on ancillary input data including the CERES cloud
mask [116] as well as dynamic clear–sky estimations of the 0.65 µm reflectance and of the IR
BTs over tiles of 16× 32 and 32× 32 km2 for VIRS and MODIS, respectively [160]. Moreover, it
has also successfully been adapted to other imagers on geostationary orbiting platforms such
as MSG and GOES.

3.5 Retrieval over snow and ice covered surfaces

As one may expect, snow and ice covered surfaces are mainly occurring over polar and moun-
tainous areas but also during wintertime over temperate regions. The lack of contrast between
cloudy objects and such surfaces in the visible as well as in the window IR part of the elec-
tromagnetic spectrum implies the development of dedicated cloud detection and thermody-
namic phase retrieval schemes. However, this subject which is still currently under investi-
gation is beyond the scope of this literature review. The reader may simply note that, over
non–polar regions, it is common to detect snow and ice covered surfaces without attempting
to further retrieve any cloud properties.

The cloud optical depth retrieval canvas consisting in using a non–absorbing visible chan-
nel such as the 0.6 or 0.8 µm to derive cloud optical depth cannot be applied anymore to snow
and ice covered surfaces. As we already mentioned, this is due to the fact that such surfaces
have a response of the same order of magnitude than clouds while exhibiting large variability.
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This results in a significant increase of the uncertainty of cloud properties retrieval (see fig-
ure 2.10). However, these surfaces are characterized by a much lower response in NIR bands
(see figure 2.12) and thus the standard cloud optical depth retrieval canvas can be adapted by
using the 1.6 and the more absorbing 3.7 µm channels [129]. However, the relative orthog-
onality between the measurements and the cloud optical depth and effective radius, that is
observed for 1.6 µm versus 0.6 and 0.8 µm in figure 2.9, is lost.

3.6 Uncertainties in retrievals

Several sources are contributing to the errors on the various cloud properties retrievals from
satellite measurements. These can either be categorized depending on their intrinsic physical
nature, due to the instrumental design or the assumptions made for their retrievals.

3.6.1 Physics–based sources

3.6.1.1 Rayleigh scattering

As defined in section 2.3.2, the magnitude of the Rayleigh scattering is wavelength dependent,
varying as its inverse fourth power. It results that this phenomenon can only significantly con-
tribute to the measured signal at low wavelengths. Transposed in the context of meteorolog-
ical space–borne instruments and cloud properties retrieval algorithms, it is mainly affecting
channels around 0.6 and to a smaller extend 0.8 µm∗.

A detailed analysis was performed during the Atlantic Stratocumulus Transition Exper-
iment (ASTEX) campaign on the expected errors from retrieved cloud optical depths when
Rayleigh scattering is not considered in the retrieval scheme [176]. It turns out that such scat-
tering in the 0.6 µm channel can result up to an error of 60 % on the cloud optical depth for
thin clouds and for all clouds at high solar zenith angles. Moreover, even if its contribution
decreases in the 0.8 µm channel, errors as high as 25 % can be observed when retrieving cloud
optical depth at high solar zenith angles. Therefore, Rayleigh scattering must be taken into
account in RTM LUTs when these are used to perform retrievals from direct comparison with
TOA measurements. For other retrieval approaches based on the estimation of intermediate
cloud parameters such as their emissivity, top temperatures or radiances, an iterative method
is suggested to correct the TOA measurements using the cloud albedo and cloud top pressure
before ingesting them in any retrieval scheme [176].

3.6.1.2 Aerosols

Aerosols generally designate suspended matter or liquid particles in the atmosphere. Such
particles can be made from dust–like, water–soluble, soot, oceanic, sulfate, mineral, water and
organic materials [93]. Depending on their nature, aerosols exhibit distinct behaviors in the
visible, NIR and thermal IR. While dust–like aerosols are mostly reflective, biomass burning
aerosols tend to be more absorptive in the visible wavelengths.

∗Lower MODIS spectral bands which are designed for aerosols and ocean state monitoring are, of course, increas-
ingly affected, but these are not used in cloud properties retrieval.
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If such aerosols are located above clouds, cloud properties retrievals such as cloud optical
depth and effective particle radius are impacted. This is observed during austral winter off
the coast of southern Africa due to the transport of smoke from biomass burning [186]. It
results that satellite measurements in the visible part of the spectrum is decreased compared
to unpolluted scenes, thus leading to a negative bias on the cloud optical depth retrievals
whose magnitude is directly proportional to these retrievals.

On the contrary, dust–like reflective aerosols tend to increase visible measurements. If this
has only a limited impact over high albedo land surfaces, major dust outbreaks can exhibit
a larger signal than clear–sky ocean in the 0.8 µm channel (see figure 2.12). Thus, cloud de-
tection techniques solely based on visible information will falsely detect such outbreaks as
”water clouds” and flag them accordingly. Nevertheless, a dedicated method to recover these
false cloudy scenes based on the specific spectral behaviour of dust–like particles compared
to water clouds in the IR have been developed for SEVIRI [21].

3.6.1.3 Cloud shadowing

Shadowing of the ground or clouds by clouds systematically occurs for specific scene ge-
ometries which are common for both LEO as well as GEO imagers. This effect results in a
drastic extinction of the measured signal over such regions for the solar radiation domain.
Cloud shadows casted over a cloud field due to their roughness (cloud bumps) can be falsely
detected as clear–sky over the ocean. Hence, techniques have been developed for the detec-
tion of cloud shadows over land surfaces [150, 152]. Their strength relies on the fact that no
assumption is made on the cloud height. Instead, once cloud location is known from a clus-
tering approach on the visible and thermal IR AVHRR channels, the extent of cloud shadows
is derived from geometrical (relative position of the Sun, cloud and satellite) and spatial IR
homogeneity considerations over neighboring regions to the cloud edges. Finally, the cloud
shadow extent allows to estimate the cloud top height from basic geometric formulas [151].

3.6.1.4 Surface albedo

To accurately retrieve the cloud optical depth, the surface contribution to the measured signal
has to be assessed carefully. Indeed, as illustrated in figure 2.10, simulated plane–parallel
RTM relationships between the TOA visible radiances and the cloud optical depth exhibit a
strong dependence on the surface albedo. It was demonstrated that any uncertainty on the
surface albedo leads to systematic bias on cloud optical depth retrievals [84, 118] as well as to
a reduction of the cloud detection sensitivity [138, 141]. Moreover, for optically thick clouds
(τ ≥ 9), asymptotic theory demonstrated that any uncertainty in the surface albedo ∆α results
in a systematic offset on cloud optical depth retrievals by an amount given by

∆τ =
4

3(1− g)(1− α)2 ∆α, (3.2)

where g is the asymmetry factor of the cloud scattering phase function [84]. This implies that
RTM LUTs used for the cloud optical depth inversion must be parameterized accordingly.
Furthermore, it results that the surface albedo must be estimated for each observed scene
prior to any inversion.
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From the previous literature review, we can note that various assumptions are being made
for the estimation of the surface albedo in the cloud properties retrieval techniques which
have been reviewed previously. Some approaches use climatological surface albedo maps [85,
130] which are usually only available at lower spatial resolution while their temporal sam-
pling is either monthly or seasonal. Others assume constant behaviour at a given time over
pixel tiles [116, 117] which result in geometric ”patchy” artifacts and discontinuity of cloud
properties at tile borders, but are dynamically refreshing surface albedo with time by us-
ing detected clear–sky scenes. However, a cruder approximation has also been used by some
schemes [134]. It consists in assuming a fixed surface albedo for both ocean and land.

3.6.2 Instrumental sources

3.6.2.1 Digitization

The energy measured by the sensor at TOA is converted as discrete brightness levels or counts
by the on board acquisition electronics. Therefore, every measurement has an intrinsic uncer-
tainty of ±0.5 count. Such uncertainties result in errors on the cloud optical depth retrievals
reaching up to 20 % for an 8–bit digitization∗ and showing a strong dependence on cloud
optical depth and solar zenith angle [127].

3.6.2.2 Calibration

To relate discrete voltage measurements from sensors to a physics quantity, i.e. the radiance,
one needs an equation between the radiance and the counts. This relationship is usually called
the calibration of the instrument. Unfortunately, even nowadays, visible channels of meteoro-
logical imagers are not calibrated in an absolute sense as it is the case for their IR bands†.
Since sensors suffer from aging due to the extreme space weather conditions, any pre–launch
calibration must be replaced by its vicarious counterpart. Such calibration is based on the
comparison between measurements of clear–sky regions associated to almost constant sur-
face albedos such as bright desert and ocean and RTM simulations of the associated TOA
radiances (see [63] for SEVIRI). This obviously introduces errors to the converted imager ra-
diances. It can be shown that a 5 % uncertainty in the calibration results in errors on the cloud
optical depth retrievals reaching up to 50 % and showing again a strong dependence on cloud
optical depth and solar zenith angle [127].

3.6.3 Assumption sources

3.6.3.1 Scene geometry and spatial resolution

It is obvious from a purely geometrical point of view that the viewing zenith angle has an
influence on the estimated cloud fraction of a scene. Indeed, this subject has been addressed
in a study using coincident GOES–E and GOES–W measurements [107]. It was demonstrated

∗SEVIRI uses a 10–bit digitization [148].
†This is generally achieved by a controlled black body cavity within the instrument which is checked regularly

during its lifetime to monitor any drift from the pre–launch measured specifications.
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that the cloud fraction can be enlarged up to 30 % for all cloud types due the resolution change
of the footprints according to the viewing zenith angle. However, distinct parameterization of
the cloud fraction according to the viewing zenith angle have been derived for various broken
cloud shapes to reduce such bias in climatological datasets.

Besides any scene geometry considerations, the spatial resolution of the instrument has
also a direct effect on the estimated cloud fraction [182]. Landsat thematic mapper (TM) data
were used to test this hypothesis allowing to simulate various spatial resolution imagers up to
meteorological instruments. While the impact of sensor resolution is small for pixel sizes less
than 0.25 km, it is significantly larger for pixel sizes above 1 km due to the increase of partially
cloud filled pixels and thus, the estimated cloud fraction exhibits a dependence according to
the cloud type.

3.6.3.2 RTM input atmospheric parameters

As mentioned previously, RTM LUTs are generated for a small set of ideal scenes. Such scenes
assume fixed background tropospheric and stratospheric profiles of aerosols, cloud effective
particle radii and standard atmospheric gaseous profiles. However, observed scenes exhibit
natural variations of these parameters which thus lead to errors in the cloud optical depth
retrievals. By using realistic uncertainties on these 3 parameters, it was shown that the error
on the cloud optical depth is not larger than 5 % for the atmospheric parameters. In contrast, a
variation of cloud effective particle radius from 10 to 22 µm leads to errors reaching up to 15 %
and showing again a strong dependence on cloud optical depth and solar zenith angle [127].

3.6.3.3 Cloud phase function

As noted in section 2.4.2, the cloud phase function used in the RTMs plays a central role
when LUTs computations are performed at high angular sampling. Indeed, any accurate ra-
diance calculation requires a detailed modeling of the cloud phase function. Moreover, it is
obvious from figure 2.6 that liquid water and ice clouds exhibit significantly different angu-
lar scattering behaviors. Therefore, any parameterization of the cloud phase function using
the Henyey–Greenstein approximation or the assumption of spherical particle for ice clouds
results in discrepancies of the simulated radiances. Recent studies demonstrated that the in-
fluence of ice crystal shape results in relative differences of up to 70 % for cloud optical depth
retrievals [56]. This can be explained by the fact that the asymmetry parameter as well as the
single scattering albedo are more sensitive to crystal shape than to particle size distributions,
especially at non–absorbing visible wavelengths [101].

3.6.3.4 RTM LUT nodal interpolation

All cloud properties retrieval algorithms based on RTM comparisons for the inversion of ra-
diances or reflectances are relying on a fixed set of LUTs parameterized according to selected
scene geometries∗. But the retrieval of the cloud optical depth from a satellite scene requires to
interpolate the LUTs to its specific geometry for the inversion. Therefore, this step necessarily

∗They are generally chosen linearly in the angle or the cosine of the angle.
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introduces some level of uncertainty in the retrievals [110]. It turns out that the largest errors
occur for scattering angles where the cloud phase function is rapidly varying (see figure 2.6)
since no interpolation scheme is able to capture its complex features from a coarse angular
sampling. It was demonstrated that the linear interpolation method on the scene geometry
and logarithm of the cloud optical depth is the best trade–off between the reflectance errors
due to interpolation and computational requirements.

3.6.3.5 Plane–parallel modeling

As already mentioned in section 3.1.3, the plane–parallel assumption can result in significant
bias with respect to the exact 3–D RT formalism. From the previous literature review, the vast
majority of cloud properties retrieval schemes based on comparison with RTM simulations
assume the validity of the IPA, i.e. that each pixel within the FOV can be treated independently
from its neighbors. However, horizontal photon transport from adjacent pixels can affect the
TOA measurements in various ways:

• The radiance of clear pixels located in the vicinity of cloud edges can be enhanced due
to the extra scattering of radiation from the side of the cloud.

• Inversely, the radiance of cloudy pixels located in the vicinity of cloud edges can be
reduced due to the fraction of the radiation exiting from the side of the cloud.

• The radiance of cloudy pixels can be reduced due to the shadowing from neighboring
higher cloudy pixels.

• The radiance of cloudy pixels can be enhanced due to the extra scattering from neigh-
boring illuminated sides of clouds.

It is therefore obvious that 3–D effects tend to increase the uncertainty of any cloud detection
and cloud properties retrieval scheme.

Depending on its ”conservativeness” (see section 3.2), a cloud detection scheme will be bi-
ased differently with respect to the true cloud amount. Indeed, cloud conservative algorithms
underestimate the cloud fraction, while clear conservative approaches highly overestimate
it [193].

The systematic enhancement of clear–sky pixel reflectances in the vicinity of cloud edges
due to 3–D effects has been demonstrated by several studies. The analysis of a large MODIS
dataset has shown that such enhancement can extend to about 15 km from the cloud edges and
is larger near illuminated than shadowy cloud sides [173]. Moreover, these enhancements are
stronger at shorter wavelengths and in the neighborhood of optically thicker clouds. It results
that any IPA aerosol optical depth retrieval scheme will exhibit spurious correlation between
cloud optical depth and overestimated aerosol concentrations in those clear–sky areas.

Theoretical simulations of 3–D cloud fields for typical MODIS footprints have shown that
1–D cloud optical depth retrievals almost exhibit no bias from their true values for spatial
resolutions of meteorological imagers∗ [171]. It was also demonstrated that the magnitude
of the uncertainty on 1–D cloud optical depth retrievals due to 3–D effects tends to increase

∗from a few hundred meters to a couple of kilometers
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with cloud optical depth and solar zenith angle. Such increase of the uncertainty with respect
to the solar zenith angle as well as its decrease according to the viewing zenith angle is also
found for overcast marine stratus layers due to their undulating cloud tops even if they are
generally considered as the prototypical plane–parallel clouds [80, 94]. Finally, analysis of one
year of MODIS global cloud optical depth retrievals illustrated a stronger dependency of these
retrievals to the viewing zenith angle for inhomogeneous than homogeneous cloud fields∗ at
oblique sun illumination [172].

3.7 Adopted strategy for GERB

As already mentioned in section 1.2, the purpose of this work is to adapt or develop a sceneID
for the RGP allowing to select the CERES TRMM shortwave ADMs for the radiance–to–flux
conversion scheme. Since these ADMs have been stratified according to 4 features — a fixed
surface map, the cloud fraction, the cloud optical depth and cloud thermodynamic phase
— any implemented sceneID must at least retrieve this minimal set of parameters for every
observed scene.

The most obvious strategy would consist in adapting the complete CERES sceneID to the
SEVIRI imager characteristics. Indeed, this would guarantee almost no discrepancy between
CERES scenes used to compute the ADMs and GERB scenes on which the ADMs are applied.
Unfortunately, the CERES sceneID cannot meet the operational near–realtime constraint of the
GERB processing. Such constraint requires that the complete processing should not last more
than the time between two SEVIRI repeat cycles, i.e. 15 minutes†. Similarly, the implemen-
tation within the RGP of other iterative cloud optical depth retrieval approaches is discarded
for the same reason. It is thus clear that the sceneID, at least in its first version‡, will only es-
timate the four features needed to adequately select the ADMs through a non–iterative cloud
properties retrieval scheme.

Since the sceneID is primarily used for the ADM selection, a systematic bias could be
introduced in the GERB fluxes if the GERB and CERES estimations of the cloud fraction sig-
nificantly differ due to distinct spatial resolutions of their imager. Indeed, it would mean
considering different scenes§ for the computation of the CERES TRMM ADMs and their use
in the GERB radiance–to–flux conversion. Nevertheless, such problem is mitigated by the fact
that the VIRS imager (on board of TRMM) used to build these ADMs and SEVIRI have simi-
lar spatial resolutions of 2.4 and 3 km (at nadir), provided that both cloud detection schemes
exhibit compatible results.

Since the GERB project was created to perform climate studies and monitoring, it aims
to produce long records of data with a constant accuracy¶. This can only be achieved by
controlling all processing steps, from the acquisition to the delivery of end–user products.
Therefore, this does not require the best but the most stable and robust sceneID with respect to
ancillary data and changes of imager calibration. It results that any sceneID relying on external

∗based on the local gradient of 11 µm BT
†In fact, the current implementation of the CERES sceneID on SEVIRI data takes about 3 hours to process a single

repeat cycle.
‡Edition 1 software collection
§i.e. associated to different cloud fractions
¶This is needed to detect any trend on TOA fluxes over a decade which could result from the global warming.
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data such as NWP fields does not meet this stability criterion∗. We do not even mention the
philosophical dilemma which could arise if the RGP would rely on any NWP model since the
GERB experiment is also aiming to validate NWP and climate models.

These constraints pushed us to develop a home–made sceneID satisfying all these require-
ments. We choose to rely on non–iterative retrieval of the cloud optical depth from direct
comparison between TOA visible measurements and RTM LUTs assuming fixed effective par-
ticle radii for liquid water and ice clouds. Moreover, for consistency, we decide to rely on a
threshold test in the cloud optical depth retrieval for the cloud mask which thus implicitly
classifies our approach among the cloud conservative algorithms. However, it was demon-
strated in the section 3.6.1.4 that a significant part of the uncertainty in the cloud optical depth
retrievals arises from the misestimation of the TOA clear–sky surface signal. Therefore, we
have developed a dedicated technique to estimate composite TOA clear–sky reflectances for
GEO imagers at pixel–scale resolution. The prototype of this method is detailed in the next
chapter. It was developed and validated on Meteosat–7 data.

∗For example, the operational NWP model can be updated anytime.



Chapter 4

Pixel–scale composite TOA clear–sky
reflectances for Meteosat–7 visible data∗

This chapter describes the development and validation of an algorithm applied to the Meteosat–7 imager and allowing
to estimate composite top–of–the–atmosphere clear–sky visible reflectances at native pixel–level.

Abstract

A new method to estimate composite top of the atmosphere (TOA) visible clear–sky re-
flectances for wide narrowband geostationary satellites such as the Meteosat constellation
is presented. This method relies on a priori knowledge of angular variations of TOA broad-
band reflectances associated with clear–sky conditions above mean surface types through
the use of the clear–sky Clouds and the Earth’s Radiant Energy System (CERES) shortwave
broadband angular dependency models (ADMs). Each pixel (or Earth location) viewed from
such geostationary imager at a given day–time is associated with a reflectance time–series
made up of its chronological daily measurements. This time–series can be seen as a clear–sky
visible narrowband reflectance curve of the associated pixel surface plus an additive ran-
dom noise modeling cloudy conditions above it. Based on this assumption, TOA clear–sky
broadband reflectances extracted from the CERES ADMs are used to compute curve driven
5th percentiles on these time–series in order to estimate the TOA clear–sky visible narrow-
band reflectance curves for all pixels while the percentile approach exhibits only a reduced
sensitivity to cloud shadows. Benefits of our method are discussed towards its application
to 7 months of Meteosat–7 day–time visible narrowband measurements. Finally, the perfor-
mance of our algorithm is assessed through comparisons with its predicted and associated
International Cloud Climatology Project (ISCCP) DX clear–sky values with respect to a visu-
ally generated clear–sky pixels database.

∗Adapted transcription of Ipe, A., N. Clerbaux, C. Bertrand, S. Dewitte, and L. Gonzalez, Pixel–scale com-
posite top–of–the–atmosphere clearsky reflectances for Meteosat–7 visible data, J. Geophys. Res., 108(D19), 4612,
doi:10.1029/2002JD002771, 2003.
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4.1 Introduction

INFERENCE of the top of the atmosphere (TOA) visible clear–sky reflectances from satellite
narrowband imagers is crucial in remote sensing. Such a scheme is the first step of nearly

all cloud algorithms which aim to retrieve cloud parameters (see [141] for a non–exhaustive
historical survey of cloud algorithms) in order to study, for example, cloud radiative feed-
backs. The TOA visible clear–sky reflectances are usually used by these algorithms to detect
the presence of clouds in the observed scenes. Moreover, with the use of radiative transfer
models, these TOA visible clear–sky reflectances can be inverted to derive surface properties
such as biomass estimation over vegetation through vegetation indices and surface albedos.
In addition, a monitoring of these surface properties may also be indicative of climate varia-
tions.

A number of algorithms devoted to perform this clear–sky determination can be found in
the literature. These are generally based on the common assumptions that (a) clear–sky visi-
ble reflectance variations are smaller in time than in space (especially over land), and (b) sur-
face reflectance variations are smaller than variations associated with the cloud reflectances.
As an example, [108] generated composite clear–sky images from the Geostationary Opera-
tional Environment Satellite (GOES) data by applying a minimum reflectance threshold cri-
terion to identify clear scenes as a function of surface type and geographic region. Unfortu-
nately, to avoid cloud contamination, the threshold values have to be extracted from some
sub–sampling of minima values in the reflectance time–series with respect to some standard
deviation criteria. This therefore requires more information on the reflectance distributions
than simply the minimum values. Moreover, as pointed out by [104] such a technique of
clear–sky determination is sensitive to the scene geometry variations and to the atmospheric
noise such as cloud shadows. Regarding the International Cloud Climatology Project (ISCCP),
[137] developed an algorithm based on a spatial and temporal homogeneity test (as well as
several geotypes) to be applied at the regional grid cells. In addition, scene geometry vari-
ations are corrected to the first order according to the solar zenith angle. ISCCP also relies
on the empirical bidirectional reflectance model from [108] for clear–sky ocean and assumes
isotropic clear–sky reflectance over land although it has been established that the anisotropy
of the land scenes is significant [109].

Being involved in the Geostationary Earth Radiation Budget (GERB) radiometer ground
segment (which aims to deliver near–realtime estimates of the TOA radiative broadband
fluxes at the high spatial resolution of 10 km at nadir with the help of the Spinning Enhanced
Visible and InfraRed Imager (SEVIRI) for the limited geographical area covered by Meteosat
Second Generation (MSG) satellite), one of Royal Meteorological Institute of Belgium (RMIB)
pre–operational activities was to test the RMIB GERB Processing (RGP) on Meteosat–7 (MS7)
data and to derive GERB–like products without any associated broadband radiometer infor-
mation. Such data after adequate validation with real GERB products will certainly prove
to be valuable to the future GERB users by extending back in time the availability of GERB
data prior to the routine exploitation of MSG. In order to process MS7 data by the RGP as
suggested, we need to generate clear–sky images for the MS7 visible narrowband channel at
every 30 minutes sampling day–time. Algorithms as previously developed to deal with the
Scanner for Radiation Budget (ScaRaB) data [159] and/or the ISCCP data are not suited for
GERB data processing since we need to retain the high spatial resolution of MS7 visible im-
ages (2.5 km at nadir). Moreover, the composite clear–sky images as produced by using such
algorithms are time–averaged over a couple of hours which is incompatible with the high
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temporal resolution of MS7 (30 minutes) and the geostationary platforms (large variations in
the Sun–Earth–satellite viewing geometry).

This chapter aims therefore to present an innovative method which accounts for high Sun–
Earth–satellite (or scene) viewing geometry variations (see figure 4.1(b)) and a high spatial
resolution of the imager when estimating composite TOA clear–sky visible reflectances from
narrowband geostationary satellite measurements. The benefits and simplicity of this new
approach are discussed towards its application to 7 months of MS7 day–time visible mea-
surements. In order to assess the performance of this new method compared to region–based
algorithms found in the literature, comparisons are performed between those two approaches
and a database of MS7 clear–sky pixels.

In the following visible has to be understood as visible narrowband and shortwave refers to
the spectral interval of 0.3− 4.0 µm.

4.2 Clear–sky detection algorithm

As noted by [141], grassland and desert surface reflectances can exhibit large spatial varia-
tions. Thus, considering each pixel (i.e., fixed location on Earth surface) independently, we
only have to deal with a visible reflectance distribution affected by the surface temporal varia-
tions, the illumination and the cloudiness. Surface variations are mainly known to occur over
vegetated surfaces and are a function of the vegetation age and fractional coverage. According
to [104] the seasonal surface reflectance variations over Africa (which is located in the center
of the field–of–view (FOV) of MSG) are small due to the presence of large areas of desert and
evergreen forests. Therefore, assuming that vegetated surfaces are stable over a restricted time
period, the signal measured by the instrument during this period can be considered as only
a function of the scene viewing geometry and cloudiness. For a given day–time hour (i.e.,
time slot) and a given pixel viewed from a geostationary imager we can associate the visible
reflectance time–series made up of its chronological daily visible measurements. This time–
series can then be split into two components: (1) a base curve representative of the clear–sky
conditions, and (2) a noise component representing the clouds contributions above the ground
surface associated to the pixel. Note that for areas with broken clouds, an additional effect has
to be taken into account: the cloud shadows on neighboring pixels decrease the reflectance
below the expected clear–sky value. Such an effect is well highlighted in figure 4.1 where
the sudden and abrupt decrease of the reflectance value measured on day 343 compared to
the other displayed MS7 reflectances can easily be explained by the neighboring pixels cloud
shadow contamination, when looking at the images.

MS7 visible narrowband images have been used to illustrate the performance of our algo-
rithm, but this technique is obviously applicable to any geostationary imager with a similar
wide visible channel. Registered visible MS7 count images (coded on 8 bits) were retrieved
from the Meteosat Archive and Retrieval Facility (MARF) in 5000× 5000 pixels. These count
values were then converted into reflectances with the help of the EUMETSAT time–dependent
count–to–radiance calibration scheme from [63]. This scheme provides coefficients which are
linearly and continuously varying with time, thus it is expected that no discontinuities in the
measured reflectances are introduced, due to updated calibration information as could be the
case for other imagers.

Here, we propose to use the clear–sky Clouds and the Earth’s Radiant Energy System



52 Pixel–scale composite TOA clear–sky reflectances for Meteosat–7 visible data

0.3

0.4

0.5

0.6

0.7

160 180 200 220 240 260 280 300 320 340 360
1998 Julian day

MS-7
ERBE
CERES

(a)

25

30

35

40

45

50

55

60

θ 0
 [°

]

160 180 200 220 240 260 280 300 320 340 360
1998 Julian day

140

150

160

170

180

ϕ 
[°

]

θ = 45.9°
θ0 
ϕ

(b)

Figure 4.1 – (a) Meteosat–7 visible reflectance time–series, ρm, and associated clear–sky shortwave ERBE
and CERES reflectances, $, according to (b) scene viewing geometry variations (θ0 = solar zenith angle,
θ = viewing zenith angle and ϕ = relative azimuth angle) from the 12:00 UTC daily measurements over
a bright desert pixel (27.18◦N, 30.12◦E).

(CERES) shortwave broadband angular dependency models (ADMs) [99] and their associ-
ated geotype classification (see figure 4.2) to extract the visible clear–sky base curve from the
MS7 signal. ADMs used in this chapter follow the definition from [163]. They are built for
some scene stratifications—surface geotypes, cloud fractional covers, cloud phase and cloud
optical depth for CERES, coarser surface geotypes and cloud fractional covers for Earth Ra-
diation Budget Experiment (ERBE)—and some angular bins for scene viewing geometry (see
table 4.1). Basically, an ADM is constituted by an anisotropic function R

R(θ0, θ, ϕ) =
π L↑(θ0, θ, ϕ)

F↑(θ0)
(4.1)

and a broadband albedo A

A(θ0) =
F↑(θ0)

E0 cos θ0
(4.2)

where, θ0, is the solar zenith angle, θ, is the viewing zenith angle, ϕ, is the azimuth angle
relative to the solar plane (ϕ = 0 corresponds to forward scattering), L↑, is the mean TOA
outgoing broadband radiance for given scene type [W ·m−2 · sr−1], F↑, is the mean TOA out-
going broadband flux for given scene type [W ·m−2] and E0, is the solar constant corrected
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for Sun–Earth distance [W ·m−2]. By multiplying equation 4.1 and 4.2, we obtain

R(θ0, θ, ϕ) · A(θ0) =
π L↑(θ0, θ, ϕ)

E0 cos θ0
= $(θ0, θ, ϕ)

where, $, is the TOA shortwave bidirectional reflectance distribution function (BRDF) for the
associated mean scene type. Thus, clear–sky ADMs allow us to compute mean TOA short-
wave BRDFs associated with some surface types under clear–sky conditions.

Figure 4.2 – CERES ADMs surface geotypes as seen by Meteosat–7 imagers (1 = ocean, 2 = moderate–
to–high vegetation cover, 3 = low–to–moderate vegetation cover, 4 = dark desert, 5 = bright desert, 6 =
snow or ice) [99]. ERBE ADMs surface classification is obtained by grouping dark and bright deserts in
one desert class and low–to–moderate and moderate–to–high vegetation covers in one land class.

Table 4.1 – ERBE [162] (first of each pair of columns) and CERES [99] (second of each pair of columns)
ADM angular bin definitions in degrees.

Solar zenith Viewing zenith Relative azimuth
angle (θ0) angle (θ) (ϕ)

0–26 0–10 0–15 0–10 0–9 0–10
26–37 10–20 15–27 10–20 9–30 10–30
37–46 20–30 27–39 20–30 30–60 30–50
46–53 30–40 39–51 30–40 60–90 50–70
53–60 40–50 51–63 40–50 90–120 70–90
60–66 50–60 63–75 50–60 120–150 90–110
66–73 60–70 75–90 60–70 150–171 110–130
73–78 70–80 70–80 171–180 130–150
78–84 80–90 80–90 150–170
84–90 170–180

While ERBE and CERES ADMs are built from shortwave measurements, they provide
some qualitative knowledge on angular variations of TOA visible BRDFs for associated sur-
faces. This is illustrated in figures 4.1(a) and 4.1(b), where we plotted TOA Meteosat–7 visible
reflectance and ERBE and CERES clear–sky shortwave reflectance time–series for a given pixel
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and its associated scene viewing geometry variations. We can observe that ERBE and CERES
curves have shapes similar to the clear–sky visible reflectance base curve that we want to es-
timate, although they are offset from each other. As shown in figure 4.1(a), the use of CERES
ADMs leads to a TOA broadband reflectance time–series which is less broken than when us-
ing ERBE ADMs due to their coarser angular resolution. The offset between the CERES and
ERBE curves can be explained from differences in surface type classification and in clear–sky
conditions (cloud fractional cover up to 5 % for ERBE and 0.1 % for CERES) for the ADMs. By
contrast, the offset between Meteosat–7 and these shortwave reflectance curves is due to the
fact that the ADMs were built from shortwave measurements and global averaging of each
geotype’s responses. For a given day (d?= current Julian day) and time slot (t?= hour) we
build the composite TOA visible clear–sky image ρcs by using for each pixel the following
formulation:

ρcs(x, y, d? , t?) = α(x, y, d? , t? , N) · $c(x, y, d? , t?)

where, x and y, are the pixel coordinates in images and α, is a multiplicative factor determined
for a given time period of N days. This factor is used to shift the shortwave CERES reflectance
curve, $c, in such a way that only 5 % of the measured visible reflectances over the given time
period, ρm, are kept below the CERES curve. This can be seen as a curve driven 5th percentile
search which reduces to estimate:

α(d? , t? , N) = 5th percentile of
ρm(d, t?)
$c(d, t?)

for d = d? − N, . . . , d?.

(Note that we implicitly assumed the pixel coordinates dependence in our formulation). It
must be noted that such a scheme relies on the assumption that clear–sky shortwave CERES
BRDF, $c, curve and clear–sky visible Meteosat–7 base curve, ρcs, only differ by a constant
multiplicative factor over some temporal extent, N, (i.e., some limited range in the scene
viewing geometry). Restating differently the previous assumption, we are supposing that
these two curves only differ by their respective albedos, A, and not by their anisotropy func-
tions, R. Note that cruder approximations can be found in the literature. As an example, [64]
assume equality of narrowband and broadband albedos. [109] derive regression equations
from coincident measurements of narrowband and broadband reflectances according to scene
conditions. However, as suggested by [92], no significant improvement is found on the re-
gressions of either viewing and solar zenith angles. In figure 4.3, we have plotted the ratio
between ρm and $c associated to the values of figure 4.1. As one can see in figure 4.1(b), the
maximum variation of θ0 over 60 days is about 20◦ while the corresponding variation of the
base curve of the ratio (associated to clear–sky conditions) is limited to about 6 %.

4.3 Choice of parameters

It is worth pointing out that the time period, N, over which the percentile is computed can not
be too short, otherwise the method reduces to a search for the minimum value of ρm(d, t?)/
$c(d, t?). This will therefore lead to an unacceptable sensitivity towards cloud shadows (char-
acterized by an abrupt and sudden decrease of the measured reflectance) as previously men-
tioned. On the other hand, a too large time period could violate our assumption regarding
the stability of vegetation. According to [104] some portions of the African tropical land area
present persistent cloudiness over more than 30 days. This can lead to large errors in the
retrieved clear–sky reflectances from algorithms using a base period of time lower than 60
days. The influence of the time period length on the computed visible clear–sky reflectance
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Figure 4.3 – Ratio of the Meteosat–7 visible reflectances, ρm, and associated clear–sky shortwave CERES
reflectances, $c, for the same pixel as in figure 4.1.

values is displayed in figure 4.4. As we can see, the smoothness of the clear–sky curve in-
creases with increasing N. This is a direct effect of our statistical approach. Moreover, our
implicit assumption regarding the proportionality between the shortwave CERES and the vis-
ible clear–sky reflectance curves over a given time period is not necessarily valid for large N.
Indeed, figure 4.4 clearly indicates that as the value of N increases, the computed clear–sky
visible reflectances tend to be underestimated. For all these reasons, setting N equal to 60 days
appears to be a good compromise.

Figure 4.4 – Reflectance time–series, ρm, of the same Meteosat–7 pixel as in figure 4.1 and TOA visible
clear–sky values, ρcs, for several N as predicted by our algorithm.

In the previous section, we chose 5 % as the percentile value for our algorithm. As al-
ready mentioned, the measured signal can be seen as the clear–sky base curve plus a random
additive noise representing the clouds contribution (positive) and the cloud shadows effect
(negative). A too small threshold on the percentile value would lead to unacceptable sensi-
tivity to shadow occurrences, while a too high value would result in the selection of a cloudy
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α value to compute the clear–sky reflectance. Thus, fixing the threshold to 5 % guarantees
that we will successfully filter in our scheme up to 3 measurements associated to cloud shad-
ows within 60 days, while requiring at least 4 clear–sky reflectances on the same time period.
Qualitative tests have shown the spatial and temporal robustness of this value.

Nevertheless, in the following section, these values will be implicitly validated. Note that
the applicability of our algorithm is not limited to land surfaces. Figure 4.5 illustrates its
results over an ocean surface pixel.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

160 180 200 220 240 260 280 300 320 340 360
1998 Julian day

MS-7
Clear-sky

Figure 4.5 – Meteosat–7 visible reflectance time–series, ρm, and TOA visible clear–sky values, ρcs, as
predicted by our algorithm (N = 60 days) from the 12:00 UTC daily measurements over an ocean pixel
(4.42◦S, 1.28◦E).

4.4 Algorithm performance

In order to assess the improvement of our method with regards to region–based algorithms
such as the one implemented in ISCCP, we have built a clear–sky pixels database by visually
selecting cloud–free pixels. However, it is almost impossible to guarantee that such pixels are
truly clear (see chapter 2, section 2.4.1). But cloud contamination is expected to be limited
since the selection of these pixels was carried out by enhancing the contrast of both the MS7
visible and thermal infrared (IR) channels and considering neighboring textural information
to discard thin clouds in the FOV. Contamination by aerosols on the other hand implies a
larger impact on the visible measurements over the low albedo ocean surfaces. However, this
issue is difficult to overcome due to the limited aerosol estimation capabilities of MS7. Due to
the exhaustive manual work this step requires, we only have selected 3 days with one month
interval between each others, i.e. the firsts of August, September and October 1998. Those
clear–sky pixels were selected from 8:00 to 16:00 UTC on a hourly time step basis and in every
surface geotype. For convenience, we have chosen to stratify them according to the simple
ERBE surface classification (ocean, vegetation and desert). Note that the day and hour sam-
plings in this database does not decrease its generality because we are capturing during these
three months the main temporal changes in the reflectance of vegetation coverage. However,
to easily compare our results with ISCCP, we only considered pixels belonging to ISCCP time
slots, i.e., 9:00, 12:00, and 15:00 UTC (reduced database). Table 4.2 gives the population within
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each ERBE surface class. Finally, for each pixel of this database, we have computed its clear–
sky reflectance as estimated by our algorithm with the 5th percentile and N = 60 days. The
comparisons between these values and the real ones are shown in tables 4.3 and 4.4.

Table 4.2 – Number of pixels for each ERBE geotype in the clear–sky reduced database.

Geotype Number of pixels Fraction [%]

ocean 8030 13
vegetation 18575 31
desert 33492 56

To directly compare our results with ISCCP, we have selected the associated MS7 ISCCP
Pixel Level Cloud Products with a native spatial resolution of 30 km [142]. From these data,
we have converted the extracted composite (on 10 days) clear–sky radiances into reflectances
using the absolute ISCCP calibration across all satellites participating in this project [20]. Then,
for every clear–sky pixel in our reduced database, we have taken the reflectance value asso-
ciated to the nearest ISCCP data point. To cope for possible differences between ISCCP and
EUMETSAT calibrations, we recomputed our cloud–free reflectance database according to IS-
CCP calibration. The comparisons of both results are given in the second part of tables 4.3
and 4.4, and the associated scatter plots are given in figures 4.6.

Table 4.3 – Statistics (bias, standard deviation and root mean square deviation) on absolute errors of
clear–sky reflectances according to the RGP and ISCCP algorithms for the reduced database.

RMIB GERB Processing ISCCP Processing

Geotype bias stddev rmsd bias stddev rmsd

ocean 0.003 0.004 0.005 0.017 0.005 0.017
vegetation -0.012 0.011 0.016 -0.002 0.024 0.024
desert -0.017 0.016 0.023 -0.004 0.043 0.043

Table 4.4 – Statistics (bias, standard deviation and root mean square deviation) on relative errors of clear–
sky reflectances according to the RGP and ISCCP algorithms in percent for the reduced database.

RMIB GERB Processing ISCCP Processing

Geotype bias stddev rmsd bias stddev rmsd

ocean 8.4 11.9 14.6 43.0 15.7 45.8
vegetation -7.0 5.7 9.0 0.4 14.1 14.1
desert -5.9 5.2 7.9 -0.2 16.2 16.2

As errors for each method have been computed according to a priori two different cali-
bration schemes, we should first check and account for possible discrepancies between them
before proceeding with any conclusion based on these results. It can be demonstrated by
simply plotting (not shown) the measured reflectances for all (reduced) database clear–sky
pixels that ISCCP and EUMETSAT calibration are almost identical. Indeed, such pairs of val-
ues have a correlation coefficient of 0.999885 while a linear best fit on these gives the law
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Figure 4.6 – (a) Estimated RGP and (b) ISCCP clear–sky reflectance vs. clear–sky (reduced) database
value.

ρE = 0.9927× ρI . Thus, the above errors in these tables can be directly compared. We no-
tice that the overall error (rmsd) of our method is significantly smaller than for ISCCP. This
is also illustrated in figures 4.6 where the ISCCP plot exhibits a larger scatter. Looking at
the standard deviation of the relative error in table 4.4, we notice that the scatter due to our
method is about 10 % lower than ISCCP for vegetation and desert (surface types associated
with large reflectance values), while for ocean which has usually a minimal response in the
visible spectrum (≤ 0.05) it is about 4 % lower.

However, except for the ocean, where there seems to be some problem with ISCCP clear–
sky algorithm, our scheme systematically has a larger bias than ISCCP. This could result from
the three additional effects occurring and contributing to some extent to the signal: (a) vari-
ability due to changes in aerosol content, (b) variability induced by the discrete quantification
of the detectors (8 bits for MS7) and (c) variations due to the movement of the satellite which
are compensated in the image registration process (interpolation) on a fixed geolocation grid.
These three effects are clearly illustrated in figure 4.4 before the 240th Julian day where all
the previous days have cloud–free conditions while the reflectance time–series exhibits some
random fluctuations around its mean clear–sky value. These perturbations can reach up to
10 % of the mean value for desert pixels and other surfaces with high reflectance values such
as vegetation. Investigating more closely the sign of the bias in table 4.4, we notice that our
method tends to underestimate the clear–sky values over land. This would suggest to increase
the threshold above the 5th percentile over these surfaces∗.

Moreover, our method was checked to perform well on other time slots. In table 4.5, we
have given the statistics on the relative error distribution between RGP clear–sky estimates
and associated values of the complete database (including all day–time hours from 8:00 to
16:00 UTC). One can notice these values are nearly identical compared to the ones found in
table 4.4. We also performed a sensitivity study (not shown) on the percentile and time period
N using the complete database which demonstrated that the chosen values from visual image
inspection are giving the overall best results.

However, our database is not adequate to estimate the optimal percentile and time period,
N, for each major surface class due to the difficulty of selecting pixels where cloud shadows

∗Finding the optimal threshold would be an interesting study object, which has however not been done yet.
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Table 4.5 – Statistics (bias, standard deviation and root mean square deviation) on relative errors of clear–
sky reflectances according to the RGP for the complete database.

RMIB GERB Processing Population

Geotype bias stddev rmsd Number of pixels Fraction [%]

ocean 8.7 11.8 14.7 18855 10
vegetation -6.5 6.8 9.4 60186 33
desert -5.9 5.5 8.0 106494 57

occur in their associated time–series. It is primarly due to the fact that our clear–sky database
was only built on three days of data. A possible future improvement of our method could
be the estimation of such optimal parameters, but this step will need a clear–sky database
covering a large temporal period (ideally one year).

4.5 Final remarks and perspectives

The new statistical method we develop to determine the composite clear–sky reflectance im-
ages in the visible part of the spectrum uses a priori knowledge of angular variations of sur-
faces reflectance through the clear–sky CERES broadband ADMs. The strength of these mod-
els is that they have been built from experimental data around the world over a long period
of time, accounting therefore for correct averaged spatio-temporal responses for each of their
surface classes.

Nevertheless, as illustrated in figure 4.7, some limitations appear in the presence of high
occurrence of cloud shadows within the considered period of time. As we see, the 60–day
values are moved down due to several minima in the recorded radiance time–series. A possi-
ble way to solve this weakness could rely on the determination of the optimal percentile and
time period, N, for each surface geotype and according possibly to location. However, this
requires further investigations through the building of an exhaustive spatial and temporal
clear–sky pixels database∗. Another technique could be the use of a cloud shadows detection
scheme such as the one found in [152] in order to discard the associated reflectance values in
the percentile computation.

Moreover, fresh snow covers due to their high visible reflectance responses (same order
of magnitude as thick clouds) can lead to a misevaluation by our algorithm of the associated
clear–sky values and the cloud properties retrievals. To remedy to this, a snow detection pro-
cedure is generally applied in the a posteriori cloud identification scheme, but this is beyond
the scope of this chapter.

Finally, this method was shown to perform better than the ISCCP scheme on MS7. This
should also hold for other geostationary satellites having similar MS7–like wide visible chan-
nels. Nevertheless, this technique should be applicable to both SEVIRI visible narrowbands
(0.6 µm and 0.8 µm) by simply substituting in our method the CERES shortwave ADMs by
the visible Polarization and Directionality of the Earth’s Reflectances (POLDER) TOA ADMs
as generated by [97].

∗This requires visual image interpretation which is beyond the capabilities of a small team.
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Figure 4.7 – Meteosat–7 visible reflectance time–series, ρm, and its associated clear–sky broadband CERES
reflectances, $c, according to the scene viewing geometry variations from the 12:00 UTC daily measure-
ments over a bright desert pixel (28.13◦N, 29.19◦E) and our algorithm visible clear–sky predicted values
ρcs for several N.
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Chapter 5

Cloud optical depth and cloud fraction
retrievals using Meteosat–7 data∗

This chapter describes the developement of a cloud optical depth retrieval and cloud mask algorithm applied to the
Meteosat–7 imager and the comparison of its results to a polar retrieved datatset.

Abstract

The Geostationary Earth Radiation Budget (GERB) instrument was launched during the
2002 summer together with the Spinning Enhanced Visible and InfraRed Imager (SEVIRI)
on board of the Meteosat Second Generation satellite. This broadband radiometer will aim
to deliver near–realtime estimates of the top of the atmosphere radiative fluxes at high tem-
poral resolution thanks to the geostationary orbit. To infer these fluxes, a radiance–to–flux
conversion needs to be performed on measured radiances. Since we plan to carry out such
a conversion by using the angular dependency models (ADMs) developed from the Clouds
and the Earth’s Radiant Energy System (CERES) experiment, the GERB ground segment will
have to rely on some scene identification on SEVIRI data which mimic as close as possible
the one from CERES in order to select the proper ADM. In this chapter, we briefly present
the method we used to retrieve cloud optical depth and cloud fraction on footprints made of
several imager pixels. We then compare the retrieval of both features on the same targets us-
ing nearly time–simultaneous Meteosat–7 imager and CERES Single Satellite Footprint data.
The targets are defined as CERES radiometer footprints. We investigate the possible discrep-
ancies between the two datasets according to surface type and cloud phase and, if they exist,
suggest some strategies to homogenize GERB retrievals based on CERES ones.

5.1 Introduction

TO derive the most accurate top of the atmosphere (TOA) solar fluxes from the measured
Geostationary Earth Radiation Budget (GERB) [49, 66] broadband radiances, the Royal
∗Adapted transcription of Ipe, A., N. Clerbaux, C. Bertrand, S. Dewitte, and L. Gonzalez, Validation and homog-

enization of cloud optical depth and cloud fraction retrievals for GERB/SEVIRI scene identification using Meteosat–7
data, Atmos. Res., 72, 17–37, doi:10.1016/j.atmosres.2004.03.010, 2004.
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Meteorological Institute of Belgium (RMIB) is planning to use the new angular dependency
models (ADMs) from the Clouds and the Earth’s Radiant Energy System (CERES) experi-
ment [99]. They are due to replace and outperform the accuracy of the previous Earth Ra-
diation Budget Experiment (ERBE) models [162]. To reach the highest level of confidence in
the derived fluxes from the radiance–to–flux angular conversion, it is needed to select and
use the corresponding ADM that would be applied by CERES to the measured scene types of
each GERB footprint’s pixel. This requires to perform a scene identification (sceneID) which
gives similar results (i.e. features values) than those used to stratify the CERES ADMs. More
precisely, it is crucial to remove any systematic bias between these two sceneID schemes.

As the GERB experiment aims to deliver products on a near–realtime basis (i.e. within 3
hours after the acquisition time), the overall RMIB GERB Processing (RGP) should not take
more than the time period between two GERB/SEVIRI series of images (i.e. 15 minutes). In
order to cope with this major time constraint, such a sceneID scheme for GERB is commit-
ted to remain simple and only extract the smallest needed set of features. It turns out that
the minimal set required to select the more relevant ADM is defined by the cloud fraction,
the cloud phase, the cloud optical depth and the surface type for each GERB pixel, or more
specifically the mean of the feature values of all the Spinning Enhanced Visible and InfraRed
Imager (SEVIRI) pixels (3 km at nadir) within this GERB footprint’s pixel. The use of CERES
ADMs in connection with measured footprints of similar spatial resolution than those used to
build these ADMs (i.e., about 10 km at nadir, [184]) certainly avoids any new error source in
the radiance–to–flux conversion which could arise from distinct spatial extents of GERB and
CERES footprints. Hence, in the following, the term GERB pixel or footprint will not refer to
the native spatial resolution of the instrument (50 km at nadir), but to a pixel’s size of about
10 km. To reach such a resolution the GERB broadband measured radiances are being inter-
polated by some data fusion algorithm with the help of the Spinning Enhanced Visible and
InfraRed Imager (SEVIRI) multispectral imager on board of the Meteosat Second Generation
(MSG) satellite [148]. Briefly, the high spectral accuracy of GERB is combined with the high
spatial resolution of SEVIRI. This is achieved by correcting the broadband radiance estima-
tions from the 11 SEVIRI spectral channels with GERB measurements and by interpolating
these correction coefficients to footprints of 3× 3 SEVIRI pixels [60].

In this chapter, we shall focus on the determination of the cloud optical depth and cloud
fraction. We will present a fast cloud optical depth retrieval algorithm which is not based on
an iterative scheme as it is the case for the CERES experiment. Instead, it only uses visible
narrowband radiances from an imager to estimate the cloud optical depth. Moreover, it does
not require to priorly flag cloudy pixels by some cloud detection scheme (generally based
on threshold tests applied to imager narrowband measurements). However, look–up tables
computed using a radiative transfer (RT) model are still needed in order to link the measured
quantities to cloud optical depth, but an innovative way to parameterize them will be given.
The cloud fraction estimation is based on cloudy imager pixels detection within some de-
fined footprint (typically of the size of GERB pixel); the cloudy test being simply a threshold
on their associated cloud optical depth. Then, we will illustrate both retrieval schemes by
applying them to Meteosat–7 (MS7) visible images. We will show comparisons of the RGP
retrieved cloud optical depth and cloud fraction from Meteosat–7 simulated footprints and
CERES associated features’ values. We will then suggest some correction schemes on GERB
cloud optical depth and provide the optimal threshold for cloudy/non–cloudy pixels which
mimic as close as possible the CERES cloud optical depth and cloud fraction estimates. Fi-
nally, we will propose some strategies for more in–depth future comparisons of CERES and
SEVIRI cloud properties’ retrievals.
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5.2 Cloud properties retrieval algorithms

5.2.1 Cloud optical depth

A cloud optical depth retrieval scheme is usually part of a larger cloud properties inference
algorithm which is based on multi–wavelength radiance measurements. Such algorithms can
generally be divided into two classes: (a) those using RT calculations combined with a thresh-
old test to detect cloudy pixels and (b) those relying on some clustering techniques in the
multidimensional radiance space constituted by several bands. However, due to problems
inherent to clustering techniques, the majority of cloud remote sensing studies are based on
comparisons with RT computations. Nevertheless, clustering schemes are specifically aimed
to deal with only partially cloudy pixels, i.e. low spatial resolution measurements, as shown
in [7].

Threshold techniques treat each pixel independently and assume that the pixel can be con-
sidered as either completely cloudy or clear–sky. According to the SEVIRI spatial resolution
of 3 km (at nadir), this independent pixel approximation (IPA) can be considered as valid in
our case. However, it is worth pointing out that correction schemes exist in order to cope with
3–dimensional (3–D) cloud structure and their associated horizontal transport of radiation
which can not be anymore neglected at higher spatial resolutions, as it is illustrated in [191].
IPA algorithms rely on the fact that the reflection function of clouds at a non–absorbing nar-
row band in the visible part of the electromagnetic spectrum is primarily dependent on the
cloud optical depth. These schemes can further be divided into two groups: (1) those mak-
ing use of asymptotic relations for the reflection and transmission functions of optically thick
layers (τ & 9) as shown in [84] and (2) those using a large set of precomputed values of the
reflection function according to various scene viewing geometries and cloud optical depth, τ,
as for example in [118].

From the previous considerations, it turns out that the simplest algorithm which still en-
sures the broadest range of applicability for cloud optical depth retrievals is based on simu-
lated radiances from RT models properly convoluted with the visible narrowband filters of
the imager under consideration. For simplicity we have simulated the outgoing radiances
L(θ0, θ, ϕ) [W ·m−2 · sr−1] for a small set of ideal scene types, i.e. pure ground surfaces with
spectrally uniform lambertian albedos and two cloud conditions (water or ice) with fixed pa-
rameters (altitude and particle size). The scene observing conditions are defined relatively to
the local normal to the ground surface where, θ0, is the Sun’s zenith angle, θ, is the satel-
lite’s zenith angle and, ϕ, is the relative azimuth angle defined as the angle between the
principal plane (made by the Sun, the surface and its local normal) and the satellite–surface–
normal plane (ϕ = 0 corresponds to forward scattering). We selected for this work the
STREAMER [82] RT code. The definition of the scenes simulated by the RT code, as well
as its input parameters, are given in table 5.1. We used for planetary boundary layer standard
atmospheric profile the mid–latitude summer properties and we set the aerosol optical model
to maritime for ocean and rural for land, both with background tropospheric and stratospheric
vertical profiles and finally we used a 50 km visibility. Gaseous absorption and Rayleigh scat-
tering were also included. The cloud optical depths, τ, given at 0.65 µm are chosen according
to a pseudo–logarithmic scale. The optically opaque cloudy condition, τ = 128, we used
is identical to the one chosen in the CERES experiment, as well as the particle shape for ice
clouds. Note that we are only considering single uniform cloud layers in these computations.
Moreover, the reflectance model of the ground surfaces used is Lambertian as it is also the case
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for a majority of algorithms found in the literature [7, 84, 118, 119, 137] and in particular for
CERES.

Table 5.1 – Scene parameters used as inputs for the STREAMER code simulations where, α, is the broad-
band surface albedo, z, is the bottom cloud altitude, h, is the cloud geometrical thickness, re, the cloud
particle mean effective radius and, τ, the cloud optical depth at 0.65 µm.

α 0→ 0.8 by 0.05 steps

maritime ruralAerosols
background tropos. and stratos. prof.

Std prof. mid–latitude summer

θ0 [◦] 0→ 90 by 5◦ steps
θ [◦] 0→ 90 by 5◦ steps
ϕ [◦] 0→ 180 by 10◦ steps

Cloud water ice
z [km] 3 9
h [km] 3 1
Shape spheric hexagonal
re [µm] 8 70

τ 0, {10−2, 10−1, 1, 10} × {1, 2, 4, 7}, 100, 128

The common approach found in the literature is, first, to apply a cloud detection scheme
using threshold tests on multispectral measurements as, for example, the APOLLO algo-
rithm [144]. Then, for so flagged cloudy pixels, RT computed radiances are used directly
as look–up tables to extract the cloud optical depth according to the scene viewing geometry
and the measured visible narrowband values (see for example [137]). Instead, we proceed
differently. As shown in [119], there is an empirical law between the visible radiance (thus
reflectance) and the cloud optical depth which is nearly insensitive to the cloud particle size
re for visible wavelengths. By introducing the mean cloud amount (or cloud coverage index),
C, defined as [24]

C(θ0, θ, ϕ, α, phase, τ) =
L(θ0, θ, ϕ, α, phase, τ)− L(θ0, θ, ϕ, α, τ = 0)

L(θ0, θ, ϕ, phase, τ = 128)− L(θ0, θ, ϕ, α, τ = 0)
,

which can be equivalently expressed in terms of the bidirectional reflectance distribution func-
tion (BRDF) ρ as

C(θ0, θ, ϕ, α, phase, τ) =
ρ(θ0, θ, ϕ, α, phase, τ)− ρ(θ0, θ, ϕ, α, τ = 0)

ρ(θ0, θ, ϕ, phase, τ = 128)− ρ(θ0, θ, ϕ, α, τ = 0)
, (5.1)

(where, τ = 0, represents clear–sky conditions above the ground surface, τ = 128, denotes the
opposite boundary limit associated with optically opaque cloudy conditions leading to simu-
lated radiance fields insensitive to surface albedo) this law is rescaled with C values ranging
from 0 to 1. This empirical law is easily built from our RT simulated data. The most notice-
able fact when plotting this law according to the cloud optical depth is its similar shape for all
scene viewing geometries (see figure 5.1). Note that the curve is not saturated at C = 1 when
τ = 128. This relies on the fact that the reflection function of the optically opaque clouds
generated by the RT code is still increasing with the cloud optical depth. Nevertheless, it can
be shown that saturation is reached for τ ≈ 400. However, to remain in accordance with the
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CERES retrievals, we have set τ = 128 as the highest possible cloud optical depth value which
can be given by our algorithm.

Due to this characteristic shape we parameterize this relation by using a modified sigmoı̈d
function of the logarithm of the optical depth∗, i.e. C = f (log τ), where f is defined as

f (log τ) =
A

B + 10−(log τ−log τ0)/χ

and relates on 4 parameters (A, B, τ0 > 0 and χ 6= 0). Note that, in the latter expression, the
dependency of C and of the 4 parameters with the scene viewing geometry (θ0, θ, ϕ), surface
albedo α and cloud phase is implicitly assumed. Some basic algebra leads us to the compact
form

C =
A

B +
( τ0

τ

)1/χ
. (5.2)

These 4 parameters can then be adjusted in order to get the closest match between the em-
pirical curve and our modified sigmoı̈d through a least square fit on the RT data. Practically,
the Powell multidimensional fitting method [131] is used. Finally, we end up with a set of
4 parameters (A, B, τ0 and χ) for each scene viewing geometry, surface albedo and cloud
phase instead of twice (C and τ) the number of optical depth values (according to table 5.1
this number is equal to 19). Moreover, the relation between C and τ can be seen as an implicit
non–linear interpolation on the discrete τ and C values computed by the RT code. We can
directly see the benefit of the simple formulation of our fitting function. Indeed, equation 5.2
can explicitly be solved for the cloud optical depth, leading us to

τ =
τ0 · Cχ

(A− B · C)χ , (5.3)

with the mathematical constraints of equation 5.2 (χ 6= 0, τ0 > 0) and setting the retrieved τ
value to 128 when C ≥ A/B (saturation condition).

Thus, our cloud optical depth retrieval algorithm immediately follows. For each imager
pixel:

1. We estimate its cloud phase from the 0.67 and 1.6 µm SEVIRI channels according to [77],

2. According to the clear–sky reflectance estimated as in chapter 4 and the pixel’s view-
ing geometry (θ0, θ, ϕ), we search the associated broadband surface albedo α̃ corre-
sponding to the closest match between the RT clear–sky imager simulated reflectances
ρ(θ0, θ, ϕ, α̃, τ = 0) and this estimated clear–sky value,

3. We compute its associated mean cloud amount value, C using equation 5.1, where the
optically opaque cloudy reflectance, ρ(θ0, θ, ϕ, α̃, phase, τ = 128) is from RT simulation
according to the pixel’s viewing geometry (θ0, θ, ϕ) and broadband surface albedo α̃
found in the previous step,

4. We compute its associated cloud optical depth value using equation 5.3 and the 4 fitted
parameters for the associated pixel’s viewing geometry, broadband surface albedo α̃ and
cloud phase.

∗It must be noted that the sigmoı̈d function of the optical depth only satisfies the boundary value problem of C = 0
for τ = 0 asymptotically.
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Figure 5.1 – Mean cloud amount C versus cloud optical depth τ RTM calculations (dot) and associated
sigmoı̈d fit (plain line) for (a) ocean surface albedo (α = 0.05) under water cloud and (b) land surface albedo
(α = 0.4) under ice cloud using the STREAMER RT code. The green curve is associated to θ0 = 10◦,
θ = 60◦ and ϕ = 0◦, while the blue curve is for θ0 = 45◦, θ = 15◦ and ϕ = 180◦. The stars (F) are
representing the optically opaque cloudy conditions (τ = 128) above the surfaces.

5.2.2 Cloud fraction

The cloud fraction or cloud cover f is always defined on some footprint (i.e. a set of pixels)
and simply consists in the computation of the relative fraction of cloudy pixels within that
footprint. Major cloud detection algorithms found in literature are based on threshold deci-
sion tests related to multispectral radiance measurements for each pixel (see for example [137]
or [144]). Moreover, such a cloudy/non–cloudy test is generally applied before any cloud
properties retrieval scheme. For GERB, we adopt a different approach. The cloud screen-
ing scheme requires that the cloud optical depth retrieval scheme described above has been
priorly applied. The pixel is then flagged as cloudy if τ > τthres where, τthres, is a constant
threshold value (see section 5.4). As mentioned in section 5.1, we are planning to deliver TOA
broadband fluxes at an increased spatial resolution of 10 km at nadir compared to the lower
native GERB resolution. Therefore, due to the spatial resolution of SEVIRI, the footprint size
on which cloud fraction needs to be estimated is 3× 3 SEVIRI pixels.

5.3 Data description

To uncover possible discrepancies between GERB and CERES cloud properties retrieval meth-
ods and suggest some correction schemes, we compare the cloud optical depth and cloud
fraction predicted by both instruments’ algorithms. However, during the commissioning pe-
riod of MSG, SEVIRI measurements will not be available on an operational basis (i.e. realtime
dissemination through receiving station). Therefore, the RGP will be tested with Meteosat–7
as the imager. Nevertheless, application of the GERB sceneID scheme on MS7 visible narrow-
band data and comparisons with CERES will prove useful for the validation of our adopted
methodology for cloud optical properties retrievals.

Due to the lack of a 1.6 µm channel on MS7, the cloud phase algorithm can not be directly
transposed to this imager. Note that we could use a cloud phase discrimination method based
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on brightness temperatures estimated from the MS7 11.5 µm thermal channel, but this would
require a further validation step. Therefore, as such a scheme would certainly not be used
for SEVIRI due to its uncertainties compared to its CERES counterpart, we will rely on the
determination of the cloud phase given in the CERES products.

Considering the relatively broad visible channel of MS7 extending up to 1 µm compared
to the narrower 0.6 and 0.8 µm SEVIRI bands (see figure 5.2), we are expecting an increase in
the amount of radiation absorbed with respect to the cloud particle size as illustrated in [77]
for the SEVIRI 1.6 µm channel. Therefore, it will certainly introduce some scattering in GERB
retrievals due to our adopted methodology (RT computed radiances were made with a fixed
effective particle size for each cloud phase). Rayleigh and aerosol scattering as well as sur-
face albedo tend to increase clear–sky measurements made in this wider visible channel, thus
leading to a decrease in sensitivity of the radiance towards cloud optical depth. However, for
SEVIRI, our cloud identification scheme will be applied for ocean on 0.8 µm data for minimal
sensitivity regarding the surface albedo, Rayleigh and aerosol scattering. For other surface
types the 0.6 µm channel will be considered in order to minimize the contribution of the sur-
face albedo in the signal.
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Figure 5.2 – Meteosat–7 and SEVIRI visible narrowband spectral responses.

Since CERES ADMs were built from the Tropical Rainfall Measuring Mission (TRMM)
satellite measurements using the Visible and InfraRed Spectrometer (VIRS) imager, we shall
use the CERES Single Satellite Footprint (SSF) TOA/Surface Fluxes and Clouds products
which are generated on a hourly basis. Indeed, this dataset was used for the ADMs produc-
tion [99]. As the operational phase of MS7 started in the beginning of June 1998, we used for
our comparisons 5000× 5000 MS7 visible images (about 2.25 km at nadir) from the Meteosat
Archive and Retrieval Facility (MARF) of EUMETSAT and CERES SSF data from June 1998 to
the end of August 1999 (15 months). Due to an anomaly of the CERES radiometer at the end
of August 1998, we priorly use SSF VIRS Edition 2A and VIRS–only Edition 2 a posteriori.
However, this change of data has no influence on the cloud parameters retrieval since CERES
algorithms are only relying on VIRS data which were still available after the discovery of the
anomaly.

To ensure measurements over similar scenes by both satellites (cloud motion due to the
wind), our comparisons only take into account CERES footprints and related MS7 pixels mea-
sured within 5 minutes around CERES acquisition time. Moreover, in order to limit sensitivity
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of our retrievals to parallax effects and 3–D cloud structures, we only select for our compar-
isons CERES footprints which have a maximum tilt angle of 5◦ between the vectors joining
the ground surface to each satellite. By this way, we select close scene viewing geometries
for both instruments. In addition, only CERES footprints which are completely characterized
by the VIRS imager are considered (i.e. the imager coverage within each footprint is 100 %).
Then, for each selected CERES footprint, we compute the mean cloud optical depth and cloud
fraction over an equivalent GERB footprint made up of the 5× 5 MS7 nearest pixels to the
geographical center of the CERES footprint. As previously mentioned, we rely on the CERES
sceneID scheme for the cloud phase determination. However, as this feature is an average over
the CERES footprint, we do not have access to its associated values at the imager pixel–scale.
Therefore, we only consider footprints with pure water or ice clouds according to CERES. Fi-
nally, to be able to easily bin our results according to the surface type, we further refine our
selection of CERES footprints to those characterized by homogeneous geotypes.

5.4 Comparisons of GERB and CERES cloud properties

As we have seen, the mean cloud optical depth and cloud fraction within each GERB foot-
print are both linked to the chosen threshold τthres used to distinguish between cloudy and
non–cloudy imager pixels. We already mentioned in the beginning of section 3.2 that such
classification is relative to its intended application. Since we want to apply the same ADMs
for the GERB radiance–to–flux conversion as CERES, we need to mimic as close as possible
the CERES cloud fraction retrievals. It is obvious that variations of τthres mainly affect low
cloud optical depth retrievals, i.e. the detection of thin clouds, while high τ values are nearly
insensitive. However, it is known that these thin clouds only have a limited radiative impact.
Requiring that the value of this parameter is taken in order that, on average on the studied
footprints, the cloud fractions computed by the CERES algorithm are nearly identical to those
computed by our scheme guarantees that we detect on average the same amount of cloud cov-
erage than CERES. Practically, we find that a value of τthres = 0.85 matches our requirement
regarding the mean cloud coverages for both instruments as it is shown in figure 5.3.
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Figure 5.3 – Difference between CERES and GERB mean fractional cloud cover versus of τthres.

To be consistent with the CERES methodology and thus to be able to perform meaning-
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ful comparisons between CERES and GERB results, we should convolve the cloud optical
properties from imager pixels within GERB footprints with the dynamic CERES point spread
function (PSF) as it is done for the retrievals in CERES SSF data. However, due to the increase
of programming complexity and computing time, we have discarded these calculations. Nev-
ertheless, it is expected that such an approximation is only introducing a slight bias [61].

5.4.1 Cloud optical depth

The average of cloud optical depth over the equivalent GERB footprint is performed by a
natural logarithmic mean on cloudy pixels based on the threshold value τthres. The range of
possible τ values is spreading across 3 decades, while log τ is varying almost linearly. This
methodology is also adopted in the CERES products. Moreover, to avoid any bias when com-
paring the cloud optical depths, we only take into account CERES footprints having a single
cloud layer as flagged so by the CERES sceneID scheme and corresponding to totally overcast
cloudy conditions within the CERES field–of–view (FOV).

Despite the huge set of data used, the selection criteria on the cloud layers, ground surfaces
and instruments tilt angle applied for the cloud optical depth comparisons only produce a
limited set of pairs of values τC and τG (see table 5.2). This table lists the different populations
according to their CERES surface type and cloud phase. The most noticeable fact is the limited
measurements above desert surface compared to others. This is not so surprising since deserts
are known to be dry areas, and thus with very low occurrences of clouds (which are the media
for precipitation).

Table 5.2 – Population of GERB and CERES cloud optical depth pairs according to their associated CERES
surface type and cloud phase. Only pure footprints according to the CERES mean cloud phase with homo-
gene surface are considered.

Water Ice Total

Ocean 12646 3645 16291
Vegetation 768 1770 2538
Desert 116 187 303

Total 13530 5602 19132

The comparisons between CERES and GERB cloud optical depth retrieval schemes are il-
lustrated in figure 5.4. For each panel in this figure we chose to plot the natural logarithm of
the retrieved τ values in order to display small and large τ with the same order of magnitude.
This comparison accounts for collocated footprints associated to nearly time–simultaneous
measurements and similar viewing geometries of both imagers. The most noticeable result
from these scatterplots is the good agreement between the two retrieval schemes. The corre-
lation coefficients are 0.894 for ocean with water clouds, 0.946 for ocean with ice clouds, 0.874
for vegetation with water clouds, 0.924 for vegetation with ice clouds and 0.886 for desert with
ice clouds, but only 0.576 for water clouds above desert (see figure 5.4(e)). The latter can be
explained by the fact that the associated dataset population is very small and thus not sta-
tistically representative. The same conclusion holds for the linear least square fit. Regarding
ice clouds cases, there is a larger scatter of the plots compared to the water phase cases as
illustrated by the χ2 values of the linear fits (as for example 0.094 versus 0.106 for ocean). A
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(b) Ocean with ice clouds
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log τG = 0.42 + 0.75 log τC
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(c) Vegetation with water clouds

Correlation  r = 0.874
log τG = 0.06 + 0.94 log τC
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(d) Vegetation with ice clouds
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(e) Desert with water clouds
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Figure 5.4 – Natural logarithm of cloud optical depth retrieval pairs (log τC , log τG) from collocated
CERES and GERB footprints according to the different considered surfaces and cloud phases. Plain line
represents the ideal case τG = τC while dashed line illustrates a robust linear least square fit with respect to
outliers [70]. Pink dashed line illustrates the most significant robust polynomial least square fits in terms
of confidence on the decrease of residuals [70].
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possible explanation of this effect could be related to the broader distribution of the ice particle
effective radii re for ice clouds than for water clouds (see figure 5.5). One can argue that using
visible radiance measurements, the impact of the ice particle size distribution on the cloud
optical depth retrievals should normally be less than the one we show. In fact, we strongly
question our assumption regarding the insensitivity of visible radiance to cloud particle size
when using MS7 due to its broad visible channel (see figure 5.2) which extends at least partly
in the near–infrared region. Moreover, this could also explain the deviation of the linear least
square fits relative to the ideal case line.
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Figure 5.5 – Normalized histograms of the CERES SSF cloud effective particle size for the selected foot-
prints used in the cloud optical depth comparisons.

As mentioned previously, the implementation of a scene identification within the RGP
is used to select the proper CERES ADMs for the broadband radiance–to–flux conversions.
These ADMs are defined over some ranges of cloud optical depth [99]. Hence, the crucial
constraint of our retrieval scheme is to select on average the same ADM as the CERES software
would (i.e. having a confusion matrix between the two classifications as close as possible
diagonal). Such a confusion matrix is shown in table 5.3 for ocean and ice cloud footprints∗.
As we could expect from the correlation between log τC and log τG (figure 5.4(b)) retrievals
are located around its diagonal while spreading away with increasing cloud optical depth
ranges. However, due to the deviation from the ideal line of the least square fit, the sub–
matrices associated to extreme cloud optical depth values are far away from the diagonal line.
If diagonal dominance would be fulfilled, then GERB cloud optical depth retrieval scheme
would lead on average to a similar selection of ADMs as CERES would. However, these
previous results suggest the need to develop some correction strategy in order to adjust GERB
retrievals to CERES ones. Such a scheme will be developed later in this chapter.

5.4.2 Cloud fraction

To avoid any bias when comparing the cloud fraction, we only take into account CERES foot-
prints having a single cloud layer as flagged so by the CERES sceneID scheme (there is no
restriction on cloud coverage). The population of footprints matching this criterion is given
in table 5.4 according to the surface type and cloud phase. We did not perform CERES PSF
∗Confusion matrices for figures 5.4(a),(c)–(f) will not be shown to spare space.
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convolution of our cloud retrievals on MS7 pixels within GERB footprints. Therefore, GERB
cloud fraction values are only part of the discrete set made of multiples of 1

5×5 = 0.04, while
they are continuously varying for CERES. To be able to perform meaningful comparisons, we
have plotted in figure 5.6 both cloud fractional cover retrievals for ocean footprints. These
results have been binned in squared regions according to a bin width of 0.04. It can be noted
that there is a good agreement for clear–sky and overcast footprints between both schemes
and that these cases are a major contribution to the total population of selected footprints
(notice the logarithmic scale of the colorbars in the graphs). Moreover, according to the gray
band joining these extreme cloudy conditions in figure 5.6(a), there is also a correlation for
intermediate cloud fraction values.

Table 5.4 – Population of GERB and CERES cloud optical depth pairs according to their associated CERES
surface type and cloud phase. Only pure footprints according to the CERES mean cloud phase with homo-
gene surface are considered.

Water Ice Total

Ocean 40599 4439 45038
Vegetation 4055 2008 6063
Desert 1507 430 1937

Total 46161 6877 53038

However, results are also more scattered than for the cloud optical depth. A horizontal
scatter is due to the fact that CERES retrievals are convoluted with the CERES dynamic PSF
which is stretching around 72 VIRS pixels [153] and thus taking into account a larger footprint
than the expected 5 × 5 VIRS pixels when estimating cloud fraction. This is clearly illus-
trated in figure 5.6 where fG = 0 and fG = 1 while fC ∈ (0 − 1). While τthres has only a
limited impact on the low cloud optical depth retrievals, it is a highly sensitive parameter for
cloud fraction estimation (which is totally relying on the cloudy/non–cloudy test). In contrast,
CERES methodology based on multispectral radiance threshold tests is not directly depend-
ing on the retrieved cloud optical depths. This can therefore result in cloudy footprints for
which the mean cloud optical depth is below the GERB chosen threshold. This contributes to
the horizontal scatter and also to its vertical component as shown in the figure where fC = 1
while fG ∈ (0− 1). But we can question the validity of such low CERES cloud optical depth
retrievals with regards, for example, to the sensitivity in the estimation of the surface albedo.

As the CERES ADMs are also stratified according to some ranges of the cloud fraction [99],
the confusion matrix for ocean and water cloud footprints is given in table 5.5∗. From this
table, it can be noted that while about 34 % of the footprints are identified as totally overcast
by CERES, it reaches up to 45 % for GERB. Moreover, GERB is also overestimating the number
of footprints in the clear–sky class (15 %) compared to CERES (0.42 %). In fact, it can be noticed
that the majority of these GERB retrievals are classified in CERES class 2. This is certainly due
to (1) the range used to define classes 1, 2, 12 and 13 on extreme cloud fraction values, (2) the
convolution of CERES retrievals which tend to spread their values compared to GERB results,
(3) probable CERES cloud optical depths which are below our chosen threshold. As previously
mentioned, a possible solution to correctly compare CERES and GERB cloud fractional covers
would be to perform CERES PSF convolution on MS7 pixels and only select footprints whose
mean cloud optical depth is above τthres. However, such processes are deferred to a future

∗Confusion matrices for other surfaces and phase will not be shown to spare space.
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Figure 5.6 – Histograms of cloud fraction retrieval pairs ( fC, fG) from collocated CERES and GERB ocean
footprints according to both cloud phases. Plain line represents the ideal case fG = fC where both retrieval
schemes provide identical values. As can be seen, both histograms are dominated by the extreme cloud
fractions (black squares).

study on SEVIRI data∗. Nevertheless, the choice of τthres is a basic validation of our cloud
fraction retrievals as it leads to the same average of cloud fractional cover than CERES.

5.5 Homogenization of GERB cloud optical depths

5.5.1 Method

In this section, we propose a generic homogenization scheme to correct retrievals of a given
feature according to some method towards associated reference values. More specifically, the
reference values will be taken as the CERES cloud optical depth retrievals while the results
which have to be corrected are the outputs of the GERB cloud optical depth algorithm.

As previously mentioned, cloud optical depth values are not convenient to handle due to
their large range of variation (about 3 decades). Any attempt to fit directly these optical depths
will produce poor results due to the influence of large values compared to small ones. One
would expect that retrieval errors increase with increasing optical depth values and thus, any
fit should decrease the weights of theses large values accordingly. However, if we consider the
logarithm of cloud optical depths, the variation range is implicitly reduced while having an
almost linear dependence and therefore these values are more suited to perform meaningful
statistical fits.

To perform a statistical fit on log τ values we used a mathematical model f (needed to
express the correlation between two variables) of the following form: f (log τ) = Pn(log τ),
where, Pn, is the generic form of a degree n polynomial with coefficients ai for i = 0, . . . , n.
The robust polynomial least square fits with respect to outliers [70] which lead to a significant

∗In the meanwhile, we adopted the pragmatic approach when going from MS7 to SEVIRI: we changed the MS7 τthres
by visual inspection of the more recent SEVIRI data.
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decrease of the residuals for the selected footprints are given in figures 5.4 (pink dashed lines).
Having set the number of degrees of freedom n? and performed the fit on the dataset, we end
up with the expression

log τG = Pn? (log τC) (5.4)

where, Pn? is the fitted polynomial of degree n? with coefficients a?i for i = 0, . . . , n?. The next
step is to homogenize values for GERB cloud optical depth, τ̃G, in such a way that on average
log τC = log τ̃G. By substituting the latter formula in equation 5.4, the homogenized cloud
optical depths are implicitly given by

Pn? (log τ̃G) = log τG. (5.5)

As we see, the difficulty lies in solving this equation for τ̃G, either explicitly for n? ≤ 5 or
iteratively when n? > 5, for every value τG. However, robust iterative methods for finding
roots of polynomials exist and are described in the literature [131].

5.5.2 Results

Our correction scheme is illustrated for cloud optical depth pairs associated with ocean and
ice cloud footprints. It turns out that the fitting model in terms of robustness and significant
decrease of the residuals is the third degree polynomial P4(log τC) = 0.336 + 0.737 log τC +
0.076 (log τC)

2 − 0.017 (log τC)
3. Results are given in table 5.6 as a confusion matrix. As we

could expect from figure 5.4(b), our retrieval scheme overestimates low cloud optical depth
while underestimates high τ values by comparison to CERES. The benefit of our correction
method is clearly shown by comparing uncorrected (table 5.3) and homogenized GERB values
(table 5.6) where the number of diagonal–dominant elements decreased from 8 to 4 while the
off–diagonal elements are balanced, leading to a more symmetric matrix. Finally, it can be
noted that adjusted GERB values are now all classified in an adjacent CERES class for those
which do not meet the diagonal dominance criterion.

5.6 Conclusions and future work

In this chapter, we have presented cloud optical depth and cloud fraction retrieval algorithms.
These schemes will be implemented as part of the SEVIRI scene identification for the RMIB
GERB Ground Segment. They are based on a direct inversion method which relies on simu-
lated radiances by a radiative transfer model over specific scenes, composed by a restricted
number of ground surfaces and cloudy conditions. The method uses an innovative and ef-
ficient parameterization of the inversion look–up tables. Preliminary validation of the cloud
optical depth and cloud fraction retrieval algorithms were performed by comparing CERES
footprints and Meteosat–7 simulated GERB footprints. These comparisons have shown good
correlation between GERB and CERES methods. However, discrepancies occur but they are
expected to decrease with the use of the SEVIRI imager thanks to its narrower visible channels
compared to Meteosat–7. But it will have to be confirmed by a future validation study on this
imager∗. Moreover, a correction scheme was also suggested in order to cope with the pos-
sible remaining cloud optical depth discrepancies between CERES and SEVIRI retrievals. Its

∗In the meanwhile we received cloud properties retrievals from the NASA Langley Cloud and Radiation Research
Group which has adapted the CERES sceneID to SEVIRI data. There are still discrepancies but these are not related
anymore to differences in footprint.
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efficiency was demonstrated on CERES and MS7 cloud optical depth comparisons. Basic vali-
dation of the cloud fraction was performed by choosing the optimal threshold value on cloud
optical depth which is the border between cloudy/non–cloudy imager pixels. This value en-
sures that, on average, our algorithm produces the same cloud coverage as the one computed
by the CERES software. Finally, some recommendations were issued for future comparisons
such as convolute with CERES point spread function our cloud properties’ retrievals.

These cloud optical depth and cloud fraction estimations will be part of the GERB prod-
ucts generated at RMIB. Complete description of their content as well as the algorithms used
are available at http://gerb.oma.be. Products will be freely available to the scientific com-
munity at ftp://gerb.oma.be.
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Chapter 6

Description of the GERB Edition 1 SEVIRI
scene identification∗

This chapter describes the adaptation of the scene identification initially developed on Meteosat–7 data to the im-
proved SEVIRI imager.

Abstract

The first Geostationary Earth Radiation Budget (GERB) instrument was launched during
summer 2002 together with the Spinning Enhanced Visible and InfraRed Imager (SEVIRI)
on board the Meteosat–8 satellite. This broadband radiometer aims to deliver near–realtime
estimates of solar and thermal radiative fluxes at the top of the atmosphere (TOA) with
high temporal resolution thanks to the geostationary orbit. Such a goal is achieved with
the L20 GERB processing which generates these fluxes from the directional filtered radiance
measurements of the instrument at several spatial resolutions. This processing consists of
successive components, one of them being a radiance–to–flux conversion. The conversion is
carried out in the solar region by using the shortwave angular dependency models (ADMs)
developed from the Tropical Rainfall Measuring Mission Clouds and the Earth’s Radiant En-
ergy System experiment. Since these ADMs are stratified according to specific scene prop-
erties, the GERB ground segment will have to rely on a scene identification of SEVIRI data
which allows us to select the proper ADM.

This chapter presents the method which was developed for this SEVIRI scene identi-
fication within the GERB processing for the official Edition 1 release of the L20 products.
Detailed discussion on the strategy which was adopted compared to common approaches
found in the literature will be given. More specifically, it will introduce an improved method
to estimate the TOA clear–sky reflectances in the visible part of the spectrum from geosta-
tionary imager data. A cloud properties retrieval scheme will rely on these clear–sky es-
timates to provide cloud optical depth, cloud phase and cloud fraction within the GERB
footprints.

∗Adapted transcription of A. Ipe, C. Bertrand, N. Clerbaux, S. Dewitte and L. Gonzalez Sotelino, The GERB Edition
1 products SEVIRI scene identification – Part I: Methodology, under review at IEEE Trans. Geosci. Remote Sens., 2010.

79



80 Description of the GERB Edition 1 SEVIRI scene identification

6.1 Introduction

THE fundamental driving force for weather and climate is the net radiation received at the
top of the atmosphere (TOA) [125]. The Earth radiation budget (ERB) is the balance be-

tween the incoming radiation from the Sun and the outgoing reflected and scattered solar
radiation plus the thermal infrared emission to space.

In the mid 60’s, Earth–orbiting satellites began to play an important role in measurements
of the Earth’s radiation flux (see e.g., [68]). Raschke et al. [132] developed radiation budget
maps using measurements from a scanning radiometer which had a number of narrow bands.
However, due to the intermittent operation of the instrument, it was necessary to accumulate
a month of data in order to produce a map of albedo and outgoing longwave radiation (OLR).
Their work provided a new view of the flow of energy in the Earth–atmosphere system. It
also demonstrated the need for radiometers designed for radiation budget measurements and
the need for models with which to analyze the data.

A major accomplishment of the 80’s was the design, launch and data processing of satelli-
te–based moderate resolution broadband fluxes in the Earth Radiation Budget Experiment
(ERBE) [9]. However, it is known that the ERBE observations suffer from some restrictions,
including limited angular models used to convert directional radiances to fluxes, poor scene
identification capabilities needed to accurately estimate cloud radiative forcing, and very lim-
ited diurnal sampling [185].

The Clouds and the Earth’s Radiant Energy System (CERES) [184] experiment marked
the beginning of a new generation of instruments and greatly improved radiation budget
products. CERES instruments were launched aboard the Tropical Rainfall Measuring Mission
(TRMM) [89] in November 1997 and on the Earth Observing System (EOS) Terra and Aqua
satellites in December 1999 and May 2002, respectively. CERES is designed to provide mul-
tiple view angles. This allows for better transformation of radiances to fluxes and improved
scene identification thanks to the on board narrowband imager (VIRS on TRMM, MODIS
on Terra/Aqua). It results in improved estimates of cloud radiative forcing. Although the
processing of CERES data is expected to be combined with geostationary satellite imaging
data, the maximum four observations per day is not expected to fully resolve the diurnal cy-
cle. Geostationary data is then used to supplement the CERES observations by resolving the
diurnal variations between them. The geostationary fluxes are produced through radiance
narrowband–to–broadband and radiance–to–flux conversions.

The diurnal sampling issue is being addressed with the Geostationary Earth Radiation
Budget (GERB) instrument [66, 67] on board the Meteosat Second Generation (MSG) [148].
GERB is a European effort supplementing the polar orbiting broadband measurements made
by the Scanner for Radiation Budget (ScaRaB) [79]. It has been designed to exploit the geo-
stationary orbit to make unique ERB measurements over Europe and Africa in a shortwave
and a totalwave channel with a temporal sampling of 5 minutes 30 seconds. Based on such
measurements, the aim of the GERB project is to deliver on a near–realtime basis TOA solar
and thermal fluxes to the science community with a target accuracy of about 5 W ·m−2. Such
a goal is achieved by the synergistic use of the multispectral Spinning Enhanced Visible and
InfraRed Imager (SEVIRI) data within the L20 GERB Processing [52] performed at the Royal
Meteorological Institute of Belgium (RMIB). This processing consists in applying successively
a spectral modeling, a radiance–to–flux conversion and a resolution enhancement of the prod-
ucts at a higher spatial resolution (typically 10 km) than the native GERB instrument sampling
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(about 45 km at nadir).

This chapter is presented in two parts. In Part I (this chapter) we focus on the major re-
quirement needed by the radiance–to–flux conversion scheme in the solar region. Angular
dependency models (ADMs) play a key role in the conversion of directional radiance to TOA
flux. Since the relationship between directional radiance and TOA flux that is described by
ADMs differs considerably for various scenes (clear–sky surfaces, cloud properties, etc. . . ),
the accuracy of the radiance–to–flux conversion relies on the selection of the most representa-
tive ADM for each scene. Building such ADMs requires polar orbiting satellites, because these
satellites observe a specific scene with variable viewing geometries during consecutive over-
passes. This is not possible from geostationary satellites, which have fixed viewing geome-
tries. Thus, the ADMs from TRMM which is on a 35◦ precessing polar orbit have been selected.
Since these models were stratified according to the CERES scene identification [111, 116, 117],
a simple but robust scene identification was implemented within the GERB processing to pro-
vide the basic features needed to properly select the ADM for every scene, i.e. surface geotype,
cloud thermodynamic phase, cloud optical depth and cloud fraction. In the following, we will
justify the selected approach and give a detailed description of the algorithms implemented
with all their ancillary data. In Part II (chapter 7) we will present a detailed step–by–step error
analysis as well as extensive comparison results with CERES retrievals.

6.2 Surface geotype

The CERES TRMM ADMs are classified according to some specific surface types [99]. This
fixed surface map is derived from the Global Land Cover Map (version 1.2) dataset produced
by the International Geosphere Biosphere Program (IGBP) [16]. The 17 IGBP surfaces are then
aggregated into 5 classes—ocean, desert, low–to–moderate and moderate–to–high vegetation,
ice/snow—according to the grouping shown in table 6.1. The desert class is further split in a
dark and bright desert type according to their albedos. Thus, it was decided to adopt a similar
approach for the SEVIRI scene identification. It simply consists in a spatial downscaling and
regriding of the CERES surface map from 1 km to the native SEVIRI field–of–view (FOV)
(3 km at nadir) by only retaining the most represented class within each SEVIRI pixel.

Since desert surfaces can exhibit large albedo differences and thus different anisotropic be-
havior, these were separated into bright and dark desert according to the CERES classification
which lead to the 6 CERES TRMM ADMs surface types (see [99] for discussion). The final SE-
VIRI geotype map used in the GERB processing is illustrated in figure 6.1 and it can be found
within the L20 GERB product files [52]. However, it is anticipated that the lack of dynamic
snow/ice detection scheme in the current Edition 1 implementation will result in inaccurate
cloud properties retrievals over such surfaces. Moreover, the misspecification of the underly-
ing surface type for the radiance–to–flux conversion through the ADM selection will lead to
large errors in the associated fluxes. This issue will be addressed in future Edition processing
by the use of a snow/ice detection algorithm which was recently developed [18].
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Table 6.1 – Merging of the 17 IGBP surfaces into ocean, desert, low–to–moderate and moderate–to–high
vegetation, ice / snow.

ADM name IGBP name

ocean water

desert open shrubland, barren or sparsely vege-
tated

low–to–
moderate
vegetation

savannas, grassland, permanent wet-
land, cropland, urban and built–up,
cropland/natural vegetation mosaic

moderate–
to–high
vegetation

evergreen needleleaf forest, evergreen
broadleaf forest, deciduous needleleaf
forest, deciduous broadleaf forest, mixed
forest, closed shrubland, woody savannas

ice/snow permanent snow and ice

1

2

3

4

5

6

Figure 6.1 – Geotype map for SEVIRI FOV where 1 is for ocean, 2 for moderate–to–high vegetation cover,
3 for low–to–moderate vegetation cover, 4 for dark desert, 5 for bright desert and 6 for snow or ice.

6.3 Cloud properties

Since the GERB experiment aims to deliver products on a near–realtime basis (i.e. within 3
hours after the acquisition time), the overall RMIB GERB Processing (RGP) has to be done in
the time period between two series of SEVIRI images, i.e. 15 minutes. To cope with this major
time constraint, the adaptation of the CERES scene identification [111] to SEVIRI was not con-
sidered. Instead, we only retrieve the needed features to correctly apply the ADMs, i.e. cloud
thermodynamic phase, cloud optical depth and cloud fraction. Nevertheless, we shall com-
pare both schemes in Part II as it is crucial to select similar ADMs as CERES algorithm would.
This will ensure that no spurious bias is introduced in the GERB TOA fluxes. The RMIB GERB
Processing (RGP) retrieval starts by inferring the cloud thermodynamic phase for each SEVIRI
pixel, and is then followed by retrieving cloud optical depth from visible narrowband radi-
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ances. This is achieved through the independent pixel approximation, i.e. by neglecting the
horizontal transport of radiation in the atmosphere, while we make the assumption that pix-
els can only be either purely overcast or clear–sky. Such retrieval relies on the fact that the
reflection function of clouds at non–absorbing narrowbands in the visible part of the electro-
magnetic spectrum is primarily dependent on the cloud optical depth [118]. It uses a set of
look–up tables (LUTs) of narrowband visible radiances computed using a radiative transfer
model (RTM) for a restricted number of ideal scenes (see for example [137]). Finally, instead of
relying on complex imager multispectral threshold tests whose values have to be tuned specif-
ically to each imager as usually found in the literature (see for example [144]), the cloud flag
is simply based on a threshold test of the cloud optical depth and therefore remains consistent
with this retrieval.

The method used for each SEVIRI pixel can be summarized by the following algorithm
(see figure 6.2):

1. compute its TOA clear–sky reflectance in the 0.6 and 0.8 µm visible bands (see sec-
tion 6.3.1),

2. determine the potential cloud thermodynamic phase using a fixed threshold on the
10.8 µm brightness temperature (see section 6.3.2),

3. using the proper 0.6 or 0.8 µm visible reflectance, derive the cloud optical depth through
comparisons with the associated TOA clear–sky reflectance and look–up tables from 1–
dimensional (1–D) RTM computations (see section 6.3.3),

4. assign a cloudy/non–cloudy flag from a threshold test on the cloud optical depth (see
section 6.3.4),

Since the CERES ADMs have been built using measurements of about 10 km at nadir [181],
we have chosen to perform the radiance–to–flux conversion within the GERB processing at a
similar spatial resolution, i.e. 3× 3 SEVIRI pixels’ footprints (approximately 9 km). This min-
imizes any error which can arise from mixing data with distinct spatial extents. Thus, these
retrieved cloud properties are averaged over such footprints and these mean properties are
used to select an ADM most likely corresponding to the observed scene within each footprint.
The cloud fraction is defined as the number of cloudy pixels divided by the total number of
valid pixels (clear, cloudy and shadow) provided that the number of clear and cloudy pixels rep-
resent the majority, the mean cloud optical depth as the logarithmic average over all cloudy
flagged SEVIRI pixels, while the mean cloud thermodynamic phase is defined as the average
over the same SEVIRI pixels.

6.3.1 TOA composite clear–sky reflectances

The estimation of TOA clear–sky visible reflectances or albedos is a mandatory step of nearly
all scene identification algorithms which aim to retrieve cloud optical parameters, as illus-
trated in the literature [141]. Indeed, they are used to provide reference values for the compu-
tation of the cloud optical depth using the RTM LUTs (see section 6.3.3) as well as to derive
properties at the surface through inversion schemes. The major algorithms found in literature
are inadequate for several reasons. First, they are not designed for the geostationary platform
which implies large scene geometry variations with time (see figure 6.3(c)). Moreover, they
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SEVIRI 

images

Geotype

image

(section 6.2)

Cloud phase retrieval

BT 10.8 µm

(section 6.3.2)

Clearsky ratio

computation

0.6 and 0.8 µm

(section 6.3.1)

0.6 or 0.8 µm channel

selection for

cloud optical depth

(section 6.3.3)

Cloud optical depth

retrieval

(section 6.3.3)

Clearsky images

computation

0.6 and 0.8 µm

tau threshold

image computation

(section 6.3.4)

Cloud flagging

(section 6.3.4)

cloudy or clear

tau

tau

threshold

surface

water or ice

0.6 or 0.8 µm

reflectance

Figure 6.2 – Flow diagram of the cloud properties retrieval scheme: gray–filled boxes denote the features
needed for ADM selection while the dashed box is a weekly processing.

do not usually retain the high temporal sampling of the imager nor its native spatial resolu-
tion. Therefore, we have developed a new method to compute the TOA clear–sky reflectance
for the Meteosat–7 visible broadband which addresses the previous requirements (see chap-
ter 4) and we are using its straightforward adaptation to the 0.6 and 0.8 µm visible channels
of Meteosat–8. In the following we briefly recall the basic algorithm. Then, we investigate its
refinements to solve its surface variability and sun–glint issues.



6.3 Cloud properties 85

6.3.1.1 Basic algorithm

This method is based on the same common assumptions of numerous algorithms found in
the literature (see chapter 4 for a non–exhaustive list): clear–sky visible reflectance variations
are smaller in time than in space (especially over land), and surface reflectance variations are
smaller than variations induced by observed clouds. Therefore, successive snapshots of the
same target can be used for the estimation of the TOA visible clear–sky reflectances through
the concept of time–series. It is worth pointing out that snow covered surfaces exhibit vis-
ible reflectances of the same order of magnitude than clouds which violate the commonly
used assumptions for the clear–sky algorithm. Thus, it is expected that clear–sky estimated
reflectances as well as cloud properties retrievals over snow covered regions will be highly
unreliable.

According to the previous assumptions the TOA visible reflectance time–series of a SEVIRI
pixel at a given day–time is a function of surface temporal variations, seasonal illumination
changes and cloudiness. Surface temporal variations mainly occur over vegetation due to its
life cycle which rules the cover fraction and spectral signature. However, for most of Africa,
vegetated surfaces are stable (evergreen forests) while for the rest of the SEVIRI FOV we make
the assumption that they remain stable over a restricted time period. Therefore, the time–
series for each pixel in each visible channel can be split into two components: a base curve
representative of clear–sky conditions which is only a function of illumination variations, and
an additive noise representing the cloudy contributions above the surface (high spikes in the
reflectance time–series as illustrated in figures 6.3(a)-(b)). Nevertheless, additional effects may
occur such as cloud shadows in broken cloud fields which result in a significant decrease of
the measured reflectance as shown in figure 6.3. Varying aerosol content usually leads to its
increase, too. Thus, to extract the base curve, we need some knowledge about the variations
of the TOA clear–sky visible reflectances according to scene geometry. Such information is
provided by the CERES shortwave ADMs which allow us to compute climatological TOA
clear–sky broadband reflectances for 6 coarse classes of geotypes (see section 6.2).

We make the assumption that the clear–sky SEVIRI visible reflectance base curve, ρsv
cs , and

the associated clear–sky shortwave CERES curve, ρcr
cs, only differ by a multiplication factor

over a restricted time period (N days). Thus, for a given day d and time t, a composite clear–
sky image is built by using for each pixel and visible SEVIRI band:

ρsv
cs (d, t) = αsv

cs (d, t) · ρcr
cs(d, t) (6.1)

where αsv
cs is the SEVIRI multiplication factor. This value is selected to keep 3 measurement

values of the reflectances ρsv below the clear–sky SEVIRI base curve αsv
cs · ρcr

cs over a N–days
time period. This is similar to estimate

αsv
cs (d, t) = 4th lowest value of

ρsv(?, t)
ρcr

cs(?, t)
(6.2)

where ? represents the observations during the period d − N till d and N is the number of
days used for the estimation of the multiplication factor. We have chosen the 4th lowest value
for the multiplication factor because it represents a good compromise for shadow and cloud
filtering. Indeed, we have observed that a lower value would lead to an unacceptable sensitiv-
ity to shadow occurrences while a higher would result in an overestimation of the clear–sky
reflectance. Since some parts of the African tropical land area exhibit persistent cloudiness
over more than 20 days [104], the time period N should accordingly not be chosen below.
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Figure 6.3 – Meteosat–8 visible reflectance time–series ρsv and associated clear–sky shortwave CERES
reflectances ρcr

cs for (a) 0.6 µm and (b) 0.8 µm, according to (c) scene viewing geometry variations (θ0
= solar zenith angle, θ = viewing zenith angle, and ϕ = relative azimuth angle) for daily 12:00 UTC
measurements over a bright desert pixel (42.54 N, 29.98 E).
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Moreover, bearing in mind our assumption on the stability of surface reflectances over this
time period, its value should also not exceed 60 days.

6.3.1.2 Surface variability

As we mentioned in the previous section, the time period N has to range between 20 and 60
days. However, fast transient seasonal changes can be observed in specific regions, mainly
between the Sahara desert and the equatorial evergreen forests, i.e. the Sahel. Figure 6.4
illustrates such changes in the latter region by displaying two false–color images acquired
within a time interval of less than 60 days. The displacement of the border between those two
geotypes is obvious. Therefore, the time period should not be constant across the whole FOV
but instead should be varying, to take into account areas exhibiting rapid surface variability
as well as locations with persistent cloudiness.

The most adequate time period for each pixel relies on the climatology of cloud frequen-
cies from the International Cloud Climatology Project (ISCCP) [140]. By taking into account
the constraints about persistent cloudiness and transient surface variability areas, we have
created a mapping to calculate the time period N for every pixel within the FOV when ap-
plied to the ISCCP D2 annual mean cloud cover as shown in figure 6.5. More specifically, we
have taken into account three constraints for building it. First, regions with the lowest cloud
occurrences should not use less than 20 days to build their clear–sky to remain insensitive
to cloud shadows (lowest plateau in figure 6.5(b)). Second, areas with persistent cloudiness
such as the tropical rain forest and Western Europe should not consider more than 60 days for
stability of surface reflectances (highest plateau in figure 6.5(b)). Third, for the Sahel region, a
time period of 30 days have shown to perform well and removes the cloud artefacts due to the
seasonal changes of the vegetation (middle plateau in figure 6.5(b)). Finally, linear transitions
between the different plateaus are selected for simplicity.

Figure 6.4 – False color images using the 1.6, 0.8 and 0.6 µm channels of the Sahel region for October 10
(top) and December 8 (bottom) 2003 at 12:00 UTC (green: vegetation; dark blue: water; light brown and
yellow: desert; dark brown: savannah; magenta: ice clouds; white: water and thin ice clouds).
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Figure 6.5 – (a) ISCCP D2 annual mean cloud cover for SEVIRI FOV and (b) time period mapping of the
cloud amount derived from (a) and figure 6.4 by visual interpretation.

6.3.1.3 Sun–glint

Due to the geostationary orbit, the sun–glint effect, i.e. the intense specular reflection of sun
light on the ocean surface, is extensively observed during several hours in the FOV of the
satellite. This is illustrated by the figure 6.6 showing the probability of sun–glint [174] for
September 15 2004 at 12:00 UTC according to the QuikSCAT [17] monthly mean ocean wind
climatology. Since the maximum probability spot is following the Sun movement, this phe-
nomenon affects a large region of the Atlantic ocean throughout the day. It results in a high
variability of the ocean reflectance within even a short period of time. Thus, our assumption
on αsv

cs being constant over N days (see section 6.3.1.1) is no longer valid. As a matter of fact,
this method would systematically underestimate the ocean clear–sky reflectance for pixels
entering the affected area.

To overcome this limitation, we choose to parametrize αsv
cs according to the tilt angle Ψ

between the specular reflection and the viewing direction defined as

Ψ = acos(sin θ sin θ0 cos ϕ + cos θ cos θ0). (6.3)

Such approach is relying on theoretical radiative transfer calculations (libRadtran [105]) for
a typical clear ocean scene with a fixed 5 m · s−1 wind speed using the Cox–Munk ocean
reflectance model [38] and specific scene geometries in 2004: solstices (June and December
21) corresponding to extreme Sun positions and the Spring equinox (March 21) associated to
a symmetric Sun position with respect to the equatorial plane. These computations are then
used to estimate theoretical SEVIRI–like FOVs for the 0.6, 0.8 µm and shortwave channels. For
each selected day and repeat cycle between 7:00 and 17:00 UTC, theoretical α̂sv

cs values were
computed from the theoretical reflectances at the 0.6, 0.8 µm and shortwave bands according
to the tilt angle Ψ (see figure 6.7(a)). Finally a least square fit using the following model was
performed

α̂sv
cs = ai e−biΨ

3−ciΨ
2
+ di. (6.4)

The root mean square deviation (rmsd) of these fits are ranging from 0.002 (March 21) and
0.023 (June and December 21) to 0.091. Moreover, the minimum values are reached near
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Figure 6.6 – QuikSCAT monthly wind speed climatology for September (a) and associated sun–glint prob-
ability (b).

12:00 UTC, while the rmsd is increasing as time moves away from noon. Its highest values
are occurring near 7:00 and 17:00 UTC. Such U–shape for the diurnal rsmd curves can be ex-
plained by the fact that the solar and viewing zenith angles over the sun–glint area are increas-
ing as time moves away from noon. This results in spurious artifacts in the RTM simulations
due to the limitations of the plane–parallel formalism at large zenith angles exacerbated by the
peaked response of the Cox–Munk surface model around the direction of specular reflection
(Ψ = 0).

By comparing all these fits, one can note that they share similar bi and ci coefficients and
hence exhibit the same shape as it is illustrated in figure 6.7(b) (green curves). Thus, making
the assumption that the mean shape of these fits is valid for all geometries, we get

αsv
cs = (Msv −msv) 〈e−biΨ

3−ciΨ
2 〉+ msv

= (Msv −msv) e−6.939Ψ3−1.128Ψ2
+ msv (6.5)

where 〈· · · 〉 denotes the ensemble mean (red curve in figure 6.7(b)), M0.6,0.8 = 0.9, m0.6 = 0.7
and m0.8 = 0.4. msv were chosen empirically to match measured αsv

cs in the outer neighborhood
of the sun–glint area, while Msv is empirically obtained as the maximum value of αsv

cs in the
sun–glint area. This model is then applied in the processing for Ψ < 1 radian (mean model
cut–off value).

6.3.1.4 Additive offset to ρsv
cs

It can be shown that if the clear–sky value ρsv
cs is directly used in the cloud optical depth

retrieval scheme described in section 6.3.3, it results in false cloudy detection of obvious clear–
sky areas. Since there is a high uncertainty when detecting thin clouds due to the error of the
clear–sky reflectance estimation, we try to minimize false cloudy detection. Therefore, an
empirical offset ∆sv is added to ρsv

cs . Its value was selected according to the uncertainty of the
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Figure 6.7 – Histogram of the theoretical αsv
cs values according to the tilt angle Ψ for March 21 2004 at

14:00 UTC and its associated least square fitted curve in red (a) and least square fitted curves for every
mentioned day and repeat cycle with their averaged curve in red (b).

clear–sky reflectances to avoid false cloud detection. ∆0.6 = 0.025 and ∆0.8 = 0 fulfill this
constraint while preserving simplicity thanks to their constant values. Finally, the value used
in the retrieval algorithm ρ̃sv

cs (d, t) is then given by

ρ̃sv
cs (d, t) = ρsv

cs (d, t) + ∆sv. (6.6)

6.3.1.5 Computation of TOA composite clear–sky images

As mentioned previously, the algorithm is run at the SEVIRI pixel–level for both visible chan-
nels. Each SEVIRI image being 3712× 3712 pixels large, the near–realtime constraint of the
GERB processing currently forbids the estimation of these images on a daily basis due to the
limited amount of computing resources available. Therefore, the estimation of αsv

cs outside the
sun–glint area is only performed once a week, while ρsv

cs (d, t) is computed for every day d and
each repeat cycle t according to equation 6.1 with the associated ρcr

cs(d, t). It is worth recalling
that the geometrical dependency of αsv

cs according to pixel coordinates (x, y) and time (d, t)
is implicit. However, we plan to remove this limitation in future releases of products. An
example of the estimated clear–sky visible reflectance images for the 0.6 and 0.8 µm channels
is given in figure 6.8(b) as a false–color composite.

6.3.2 Cloud thermodynamic phase

The cloud thermodynamic phase detection test is the first step of the cloud properties retrieval
scheme. It is used to properly select the ADM of the studied scene and the LUT for the cloud
optical depth estimation algorithm. Because this test is performed prior to the cloud flag
test, it always assigns to each SEVIRI pixel a cloud phase even if it is later declared as clear–
sky. Nevertheless, at the end of the processing the cloud phase attribute will be reassigned to
undefined if the pixel is detected as clear–sky.
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During the development of the prototypal scene identification (sceneID) on Meteosat–7
(MS7) data (see chapter 5), it was foreseen that the future 1.6 µm SEVIRI channel would en-
able efficient detection of the cloud phase. The literature review (see chapter 3, section 3.3.2)
demonstrated that this approach is successful for thick clouds only. Indeed, the satellite signal
is essentially originating from these clouds. It implies that thick water and ice clouds can be
separated according to the different spectral behavior of their absorption (see figure 2.7). How-
ever, for thin clouds, the contribution of the surface to the measurements is significantly larger.
Therefore, without an accurate characterization of the surface (or TOA clear–sky) reflectances
in this band, thin water and ice clouds can not be discriminate since they are exhibiting similar
TOA near–infrared (NIR) reflectances. Such estimation of the clear–sky NIR reflectance is in
practice difficult to achieve without ancillary information. The MODIS Atmosphere Science
Team (MAST) initially planned to use for Moderate Resolution Imaging Spectroradiometer
(MODIS) a threshold test on the ratio ρ1.6/ρ0.6 but reached the same conclusion and imple-
mented an IR–only technique [85, 130].

The cloud thermodynamic phase test relies here on the fact that in the vicinity of 11 µm,
for an optically thick cloud the cloud top brightness temperature is usually not larger than 1 K
from its physical temperature. This is due to the high emissivity of both water and ice and
the atmospheric transmission [30]. Therefore, the following index allows us to discriminate
between water and ice clouds

Φ =


0 if BT10.8 > BTmax
BTmax−BT10.8
BTmax−BTmin

if BTmin ≤ BT10.8 ≤ BTmax
1 if BT10.8 < BTmin

(6.7)

where BT10.8 is the brightness temperature estimated from the 10.8 µm SEVIRI channel radi-
ance using the standard EUMETSAT formula [149] and BTmax (resp. BTmin) is a maximum
(minimum) empirical threshold value. For BTmax = 265 K and BTmin = 245 K chosen for
the processing, this index is ranging between 0 (pure water) and 1 (pure ice). For the ADM
selection, since no ADM consists of mixed cloud phase, the pixel is reassigned as pure ice if
this value is above 0.5 while it is assigned to pure water otherwise. One can show that this
simply reduces to the following test

BT10.8 ≥ BTthres ⇒ water cloud

BT10.8 < BTthres ⇒ ice cloud (6.8)

where BTthres is then equal to 255 K in accordance with Wolters et al. [189]. However, this
mixed cloud phase index Φ is used in the remaining of the GERB processing for the high
resolution products. We are aware that such a crude cloud phase retrieval scheme suffers from
several limitations. Supercooled water clouds will surely be misidentified as ice clouds, while
many thin cirrus clouds will be misclassified as water clouds. An example of the estimated
cloud thermodynamic phase image is given in figure 6.8(f).

6.3.3 Cloud optical depth

Our scheme relies on simulated outgoing radiances L from the plane–parallel STREAMER [82]
RTM convoluted with the associated filters of both SEVIRI visible channels. These simula-
tions were run for a set of simple scenes with varying cloud optical depth τ. For simplicity,
we have only considered pure ground surfaces with uniform single layer and phase clouds
as described in table 6.2. The scene geometries are defined relatively to the local normal of
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the surface with θ0 and θ being the solar and viewing zenith angles and ϕ the relative az-
imuth angle (ϕ = 0 corresponds to the forward scattering). In order to remain consistent with
the ADM geotype classification (section 6.2), input ground surfaces were selected accordingly
and their characteristics are also given in table 6.2. The broadband albedo is simply a scal-
ing factor applied to the spectral signature of the geotype. Note that for low–to–moderate
and moderate–to–high vegetation covers which consist in a broad range of IGBP classes (see
table 6.1) and therefore are exhibiting the highest variations, we consider two subclasses for
both. The values of τ were selected to match a pseudo–logarithmic scale while the optically
opaque cloudy condition τ = 128 and the particle shape for ice clouds are identical to those
considered for the CERES scene identification.

Table 6.2 – Scene parameters used as input for the STREAMER code simulations where z is the bottom
cloud altitude, h the cloud geometrical depth, re the cloud particle mean effective radius and, τ the cloud
optical depth at 0.6 µm.

Ground surfaces

Type Model Broadband albedo

ocean open sea water –
bright desert dry sand 0.28
dark desert dry grass 0.20

low–to–mod veg. 1 grass 0.18
low–to–mod veg. 2 grass 0.16
mod–to–high veg. 1 deciduous forest 0.15
mod–to–high veg. 2 coniferous forest 0.15

Aerosol profiles maritime for ocean and rural for others,
background tropospheric and stratospheric profiles,

Standard profile mid–latitude summer

Cloud properties

Phase water ice

z (km) 3 9
h (km) 3 1

Particle shape spheric hexagonal
Phase function Henyey–Greenstein double Henyey–Greenstein

Particle size distrib. Hu and Stamnes [69] Key et al. [83]
re (µm) 12 70

τ 0, {10−2, 10−1, 1, 10} × {1, 2, 4, 7}, 100, 128

Scene geometries

θ0 (◦) 0→ 90 by 5◦ steps
θ (◦) 0→ 90 by 5◦ steps
ϕ (◦) 0→ 180 by 5◦ steps

The LUTs mentioned in section 6.3 are not directly used to retrieve the cloud optical depth
from the measured visible narrowband radiances as it is commonly performed in the literature
(see Rossow and Garder [137] for example). As shown in Nakajima and Nakajima [119] the
radiance is empirically linked to the cloud optical depth while it is nearly insensitive to the
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cloud particle size re for visible wavelengths. By reformulating the mean cloud amount (or
cloud coverage index) C as defined in Cano et al. [24] in terms of reflectance ρsv, one gets

C(θ0, θ, ϕ, s, phase, τ) =
ρsv(θ0, θ, ϕ, s, phase, τ)− ρsv(θ0, θ, ϕ, s, τ = 0)

ρsv(θ0, θ, ϕ, s, phase, τ = 128)− ρsv(θ0, θ, ϕ, s, τ = 0)
, (6.9)

where τ = 0 represents clear–sky conditions above the ground surface and τ = 128 denotes
the optically opaque cloudy conditions leading to simulated radiance fields which are insensi-
tive to the ground surface s. Then this empirical law is simply rescaled with C values ranging
from 0 to 1.

In chapter 5 we have shown that this law can be parametrized using a modified sigmoı̈d
function of the logarithm of the cloud optical depth, i.e.

C =
A

B + 10−(log τ−log τ0)/χ
(6.10)

which is uniquely determined by the four parameters A, B, τ0 > 0 and χ 6= 0. We have
omitted for notation simplicity their dependency to the scene geometries (θ0, θ, ϕ), ground
surface and cloud phase as it is also the case for the mean cloud amount C. Note that the
reflection function generated by these simulations does not yet reach the asymptotic value of
C for the optically opaque cloudy conditions (τ = 128). However, to be consistent with CERES
retrievals, we have set C = 1 for τ ≥ 128, the highest possible cloud optical depth value which
will be retrieved by our algorithm. Then, the parameters A, B, τ0 and χ are obtained through
a least square fit on the theoretical simulations values by using the Powell multidimensional
fitting approach [131]. Solving equation 6.10 for τ, one gets

τ =


τ0 Cχ

(A− BC)χ
for C < A/B

128 for C ≥ A/B
(6.11)

with χ 6= 0 and τ0 > 0.

Therefore, our cloud optical depth retrieval scheme immediately follows; for each SEVIRI
pixel:

1. we compute the denominator of the right hand side of equation 6.9 for both 0.6 and
0.8 µm channels knowing the surface geotype s from section 6.2, the cloud phase from
section 6.3.2, the composite clear–sky reflectance ρ̃sv

cs from section 6.3.1 for ρsv(θ0, θ, ϕ, s,
τ = 0) and using the theoretical optically opaque cloudy reflectance ρsv(θ0, θ, ϕ, s, phase,
τ = 128),

2. we select the channel sv with the highest denominator in equation 6.9, i.e. the one associ-
ated with the highest sensitivity to the cloud signal compared to the clear–sky response,
and we compute its mean cloud amount C substituting ρsv(θ0, θ, ϕ, s, phase, τ) by its re-
flectance measurement unless its denominator is below a threshold of 0.2 for which our
algorithm ends by flagging the pixel as uncontrasted,

3. we finally estimate its cloud optical depth with equation 6.11 and the parameters A, B,
τ0 and χ which are function of (θ0, θ, ϕ, s, phase) unless C is below a threshold of −0.1
which corresponds to the flag shadowed.
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Note that due to the limitations of 1–D RTMs for geometries reaching grazing solar and view-
ing zenith angles, we only perform the estimation of cloud optical depth for zenith angles
(θ0 and θ) below 80◦. An example of the estimated cloud optical depth image is given in
figure 6.8(c).

6.3.4 Cloud flag

The chosen parametrization of the mean cloud amount with respect to the cloud optical depth
given in equation 6.10 only fulfills asymptotically the boundary clear–sky condition, i.e. C =
0 for τ → 0. Thus, one can expect that the previous algorithm will always retrieve cloud
optical depth values strictly above 0. Because small values are not significant compared to
the retrieval error, we have decided to set all τ values below τthres to the clear–sky condition
τ = 0. In section 5.4 we found that a value of 0.85 for τthres is ensuring that, on average, MS7
and CERES are detecting the same cloud coverage over their footprints. We therefore start by
considering this value for SEVIRI. However, due to the different visible spectral characteristics
of MS7 and SEVIRI (see figure 5.2), it has to be adapted. This adjustment to 0.6 is performed
through visual image inspection over a period of about one week to decrease the number of
misidentified cloudy pixels when it is set to 0.85 without significantly increase the number of
detected false clouds. In addition, such threshold has to be locally increased for mixed SEVIRI
ocean/land pixels which can exhibit significant changes in their visible reflectance time–series.
This is due to the rectification errors, when regriding the SEVIRI images, which come from the
movement of the satellite around its nominal position. It is especially true on coastlines, but
it can also appear for mixed land pixels. These significant differences between composite and
measured clear–sky reflectances lead to false cloud detection for these pixels. To overcome
such issue, we compute an image based τthres for each pixel (x, y) on the composite clear–sky
ρsv

cs reflectance associated to the visible channel sv with the highest dynamic as

τthres = min
[

τmax, 0.6 + β

(
max
3×3

ρsv
cs −min

3×3
ρsv

cs

)]
(6.12)

where we have omitted the dependency to (d, t) for notation simplicity and the min (respect.
max) denotes a minimum (respect. maximum) search in a 3× 3 window around the pixel. It
is found that τmax = 3 and β = 30 are values that give good results in heterogeneous Earth
surface boundary regions. Thus, for a region with low contrast, i.e. typically made of an
homogeneous surface type, τthres will be close to 0.6, while for areas characterized with het-
erogeneous surfaces such as coastlines, this value will be increased close to τmax. This last step
can be summarized as follows: if τ(x, y) < τthres(x, y) then the pixel is flagged clear–sky with
its τ value set to 0 and cloud phase set to undefined otherwise it is flagged cloudy. An example
of the dynamic τthres images is given in figure 6.8(d) while the estimated cloud flag image is
given in figure 6.8(e). Note that the area over Europe corresponding to large τthres values (up
to 3) can be explained by fresh snow covered surfaces. Indeed, as mentioned in section 6.2, the
GERB scene identification currently lacks a dynamic snow detection scheme and these pixels
were processed into the composite clear–sky estimation scheme. However, such snow cov-
ered surfaces are characterized by high and extremely variable visible reflectances which do
not satisfy the assumptions of the algorithm for the calculation of TOA composite clear–sky
reflectances (see section 6.3.1.1). This results in inaccurate as well as spatially noisy clear–sky
estimated reflectances and thus high τthres values.
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(a) False color visible reflectances (red =
1.6 µm, green = 0.8 µm, blue = 0.6 µm)

(b) False color visible clear–sky reflectances
(red = 0.8 µm, green = 0.8 µm, blue = 0.6 µm)

(c) Cloud optical depth (d) Dynamic τthres

(e) Cloud flag (white = cloudy, black = clear–
sky)

(f) Cloud phase (cyan = ice, white = water)

Figure 6.8 – Examples of SEVIRI cloud products generated by the GERB scene identification for January
17 at 12:00 UTC.
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6.4 Conclusion

In this chapter, we described the scene identification scheme which is applied to the SEVIRI
data within the GERB processing to build the GERB Edition 1 product dataset. Detailed infor-
mation on the cloud properties retrieval algorithm was given as well as ancillary data. More
specifically, an improved method to estimate TOA composite clear–sky visible reflectance
from the geostationary orbit was presented. It allows to perform a cloud detection together
with a cloud optical depth estimation using solely visible reflectance data from an imager.
The simplicity of this scene identification allows it to be routinely operated on realtime data
streams. RMIB has been successfully running this scheme on Meteosat–8 data and a previous
version on the Meteosat–7 imager.

Loeb et al. [96] stressed the importance of using the same scene identification scheme in
both development and application of ADMs for determining TOA fluxes. Since this is not op-
erationally achievable, we need to ensure that the GERB scene identification matches as close
as possible the CERES retrievals to avoid any bias in the ADM selection for the radiance–to–
flux conversion scheme. This will be addressed in the following chapter 7 which is devoted to
the validation of the GERB scene identification. Briefly, we plan to compare the GERB cloud
properties to the CERES retrievals which are estimated from the same SEVIRI input dataset.
The availability of the CERES retrievals from SEVIRI is made possible thanks to the adapta-
tion and the dedicated processing of the CERES scene identification by the NASA Langley
Cloud and Radiation Research Group. Indeed, it will allow a pixel–to–pixel comparison to
be performed without any consideration about spatial or spectral instruments’ differences as
it is usually the case. Discrepancies between both schemes will be investigated and quanti-
fied from a temporal, spatial and angular perspective. Furthermore, the so–called GERB–like
processing based only on SEVIRI data will be run on both GERB and CERES cloud properties
retrievals. It will enable study of the impact of the discrepancies between GERB and CERES
scene identifications on the estimation of GERB–like TOA solar fluxes. Such assessment will
certainly point out current limitations of the GERB scheme and will thus suggest improve-
ments for the Edition 2 version of the algorithm∗.
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Chapter 7

Validation of the GERB Edition 1 SEVIRI
scene identification∗

This chapter describes the comparisons of the cloud properties retrievals between the previously described scene
identification and a reference scene identification both applied to the same SEVIRI data.

Abstract

The processing of Geostationary Earth Radiation Budget (GERB) radiance measurements
implies a radiance–to–flux conversion scheme which is based for the solar part of the spec-
trum on explicit angular dependency models developed from the recorded Tropical Rainfall
Measuring Mission Clouds and the Earth’s Radiant Energy System (CERES) directional ra-
diances. To properly select such models for every GERB footprint, a scene identification
relying on the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) was developed to
provide the required cloud properties.

This chapter compares the results of the GERB and CERES scene identification schemes
when applied to SEVIRI data. Discrepancies are analyzed and quantified according to the
various features of the GERB algorithm. Possible dependencies with the ancillary composite
clear–sky estimation scheme as well as spatial and angular factors over the SEVIRI field–of–
view are investigated. Limitations in the current GERB Edition 1 processing are pointed out
and various improvements are suggested for future Edition processing. Finally, an objective
comparison between GERB–like top–of–the–atmosphere solar fluxes estimated using both
GERB and CERES scene identification retrievals is performed to assess instantaneous as well
as averaged flux errors which can be expected from discrepancies of these retrievals.

7.1 Introduction

THIS chapter is the second of a two–part series. In the first part (see chapter 6), we de-
scribed the development of the methods used in the Geostationary Earth Radiation Bud-

get (GERB) scene identification (sceneID) based on Spinning Enhanced Visible and InfraRed
∗Adapted transcription of A. Ipe, C. Bertrand, N. Clerbaux, S. Dewitte and L. Gonzalez Sotelino, The GERB Edition

1 products SEVIRI scene identification – Part II: Validation, under review at IEEE Trans. Geosci. Remote Sens., 2010.
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Imager (SEVIRI) data. Such sceneID is mandatory to perform the radiance–to–flux conversion
within the GERB L20 processing in the solar wavelength region through the selection of an-
gular dependency models (ADMs). However, the usefulness of this sceneID goes beyond this
single step as its retrievals are also included within the end–user products. This is of prime
interest for the science community as it allows users to perform studies on specific processes,
such as clouds or aerosols [95] radiative forcing or derive monthly and monthly diurnal cycle
solar clear–sky flux products [58], for example.

Here, we focus on the validation of these algorithms through an extensive comparison
with a reference dataset. We also investigate the impact of the discrepancies between the
GERB and the Clouds and the Earth’s Radiant Energy System (CERES) sceneIDs on the ADM
selection through the resulting errors in top of the atmosphere (TOA) solar fluxes. Finally a
step–by–step error analysis on each feature derived by the sceneID and used in the radiance–
to–flux conversion scheme is performed.

As mentioned in chapter 6, it has been stressed in the literature that it is important to use
the same sceneID scheme for both development and application of ADMs [96]. However, op-
erational constraints forced us to adopt a different strategy, i.e. to specifically develop a basic
sceneID providing solely the needed features to adequately select the most relevant CERES
Tropical Rainfall Measuring Mission (TRMM) broadband shortwave ADMs. Therefore, to
validate the GERB sceneID, we present a comparison between GERB and CERES retrievals
on SEVIRI data and quantify their expected differences as well as their impact on GERB solar
fluxes where the CERES sceneID is taken as a reference.

This chapter is structured as follows. We start in section 7.2 with a brief discussion on
the surface type used within the GERB sceneID. Then, we perform in section 7.3 detailed
analyses on the accuracy of the retrieved cloud properties as well as on their ancillary clear–
sky reflectances by using a reference dataset. Temporal, spatial and angular dependencies on
the comparison errors are studied. In section 7.4, the impact of misidentification on GERB–like
TOA solar fluxes compared to the CERES reference scheme is assessed. We finally conclude
in section 7.5 and suggest possible improvements for future Edition processing.

7.2 Surface geotype

As mentioned in chapter 6, CERES TRMM ADMs were stratified according to a spatially and
temporally fixed surface cover map. To avoid any bias due to the surface geotype in the GERB
processing, we explicitly used the same dataset which was simply regrided according to the
SEVIRI field–of–view.

Even if there is no misclassification of surface types between the GERB processing and
the CERES TRMM ADMs, one may argue that the use of ADMs which were specifically built
over the TRMM tropical latitude band (38◦ N – 38◦ S), and thus are not representative of
the vegetation in the higher latitudes such as in Europe, is not totally adequate. Moreover, a
fixed surface map does not take into account the seasonal cycles of the vegetation growth and
decay in the Sahel and Europe regions [19]. Nevertheless, such considerations are beyond the
scope of the error analysis performed in this chapter. New seasonal and latitudinal ADMs are
currently being developed to address this issue in future Edition processing.

As already mentioned in chapter 6, seasonal snow/ice covered surfaces are currently
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misidentified. The cloud properties retrieval scheme is then run over unspecified snow/ice
covered pixels. Since snow reflectance is bright and highly variable in the visible wavelengths,
low confidence on the accuracy of these retrievals is expected. We are thus planning to use for
the Edition 2 processing a dynamic snow/ice detection scheme which was specifically devel-
oped for the GERB operational environment [18] prior to the cloud properties retrieval. This
will spare these snow/ice pixels from further being processed. Note that techniques to retrieve
cloud properties over snow/ice covered surfaces are available in the literature [129]. These ba-
sically consist in the transposition of the usual cloud properties retrieval principle based on
an absorbing and non–absorbing water channel to two near–infrared absorbing bands. This
channel substitution is done because snow/ice exhibits a reduced reflectance compared to its
response in the visible spectral domain. However, the implementation of this method over
the relative low number of snow/ice pixels observed in the SEVIRI field–of–view (FOV) is not
foreseen as a short–term improvement.

7.3 Cloud properties

During the initial development phase of the GERB processing on Meteosat–7 (MS7) imager,
we tried to validate the GERB cloud properties retrievals against CERES TRMM Single Satel-
lite Footprint (SSF) products (see chapter 5). The CERES SSF products provide instanta-
neous TOA fluxes with the complete CERES sceneID over 10 km footprint averaged mea-
surements [184, 185]. However, for meaningful comparisons with this distinct instrument
dataset, we had to collect only nearly coangular and simultaneous measurements between
TRMM Visible and InfraRed Spectrometer (VIRS) and MS7 imagers. Even considering about
15 months of day–time data did not allow us to perform detailed comparisons due to the small
number of remaining CERES SSF footprints satisfying such criteria. Moreover, considerations
about the use of two imagers with different spectral characteristics to derive cloud properties
and their convolution with the CERES point spread function over SSF footprints introducing
spurious discrepancies suggested us to adopt another strategy.

7.3.1 Dataset

Rather than comparing GERB and CERES retrievals over footprints covered by several im-
ager pixels, we opt for a direct one–to–one imager pixel comparison methodology. The NASA
Langley Cloud and Radiation Research Group led by Dr. P. Minnis which is in charge of
the CERES sceneID has adapted this scheme to the processing of geostationary data. A sub-
sampled version is routinely running on data from the operational SEVIRI instrument [115].
Briefly, this scheme consists in first applying a series of cascading multispectral threshold
tests to perform the cloud masking over the FOV [116]. These threshold tests are applied on
brightness temperatures (BTs), BT differences, reflectances and ratios of reflectances. Monthly
clear–sky estimates are used as references [161] and the thresholds are dynamically computed
according to ancillary data from numerical weather analyses and forecasts (temperature, wa-
ter vapor, wind and ozone profiles). The output of this cloud masking is then passed to
the cloud properties retrieval module [117]. It is based on distinct algorithms for day– and
night–time. The day–time algorithm, called VISST for Visible Infrared Solar–infrared Split
window Technique, relies primarily on the 0.6, 3.9, 10.8 and 12 µm SEVIRI channels. It uses
a parametrization of theoretical radiance calculations for several water and ice particle size
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distributions as well as atmospheric profiles from weather forecast models to retrieve cloud
optical properties (cloud optical thickness, effective particle radius, liquid and ice water path,
cloud thermodynamic phase, cloud top and base pressure and temperature, etc. . . ) by match-
ing the calculations to the measurements.

To compare the GERB and CERES sceneID retrievals, we have selected one week of SEVIRI
data, from March 11 to 17 2007, where the previously mentioned adapted CERES sceneID
was specifically run once a day at 12:00 UTC and at the full native spatial resolution (3 km
at nadir). It is only possible to consider one repeat cycle (slot) per day due to the required
CERES processing time of about 3 hours for each slot. Every pixel of this CERES dataset is
then reprojected according to its longitude and latitude to the SEVIRI geolocated grid by us-
ing EUMETSAT prescribed formulas [36]. This drastically simplifies the comparisons between
GERB and CERES retrievals providing extensive pixel statistics thanks to the one–to–one pixel
relationship. One may argue that only considering one hour per day lacks generality. This
choice was made due to the large amount of resources required for the computation of the
CERES/VISST dataset. The extensive SEVIRI FOV allows to investigate various scene geom-
etry configurations, except those in the vicinity of the sunrise and sunset. Nevertheless, the
reciprocity principle [170] allows us to extend all conclusions about the viewing zenith angle
to the solar zenith angle. It is worth pointing out that the CERES sceneID used to generate
this associated SEVIRI dataset is an updated version of the CERES sceneID used to derive the
TRMM ADMs. Therefore, this will undoubtedly have some impact on the consistency of the
comparisons. Nevertheless, since the GERB cloud properties’ retrievals are included in the
GERB L20 products for the users’ convenience, it seems to us more meaningful to perform
comparisons and suggest improvements relatively to a recent CERES sceneID instead of the
previous TRMM ADMs’ version with known weaknesses which are now solved.

In the following, discrepancies between GERB and CERES are discussed according to their
spatial distribution within the SEVIRI FOV as well as to their temporal dependency on the
weekly clear–sky estimation, i.e. age of clear–sky in days (see chapter 6, section 6.3.1.5). We
have chosen to summarize the results according to 3 coarse surface types–ocean, vegetation
and desert–simply by combining in a single geotype each CERES pair for vegetation and
desert. We shall use either CERES or Visible Infrared Solar–Infrared Split Window Technique
(VISST) to designate the same dataset.

7.3.1.1 Geolocation

For meaningful comparisons, we must first ensure that there is no offset between the geolo-
cations used by the GERB and CERES sceneIDs. Since the CERES retrievals are reprojected
on the SEVIRI grid according to the geographical coordinates included in these products, we
can compute the correlation between the 0.6 µm channel reflectance images from GERB and
CERES processing. Letting the sub–satellite pixel coordinates (Cx , Cy) vary from the EUMET-
SAT prescribed values (1856, 1856) (pixel numbering starts at 0) when reprojecting the CERES
data [36], we get a mapping of the correlation coefficient between both images according to
these coordinates (not shown). The (Cx , Cy) values associated to the higher correlation match
the former EUMETSAT prescribed values, thus confirming that the grids of both schemes are
identical.
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7.3.1.2 Calibration

One possible source of discrepancy between GERB and CERES cloud properties retrievals
could also arise from different calibration schemes used. The GERB processing is using co-
efficients provided by EUMETSAT within the SEVIRI products [62, 63]. In contrast, CERES
needs geostationary ancillary inputs in its processing to accurately model the diurnal cycle.
A specific inter–calibration scheme compatible with VIRS on TRMM, MODIS on Terra and
Aqua and GOES satellites was developed to provide consistent measurements between the
different instruments and thus to avoid any spurious offset [112–114]. This difference in the
calibrations for the SEVIRI 0.6 µm channel is about 2.5 % higher for CERES (result from a
robust linear fit [131] on March 12 2007 at 12:00 UTC). This will undoubtedly impact the qual-
ity of the comparisons between the two sceneIDs. It is worth pointing out that the scattering
around the fit is due to the time–dependent inter–calibration.

7.3.2 TOA composite clear–sky reflectances

When developing the TOA composite clear–sky reflectance algorithm on Meteosat–7 (see
chapter 4), its accuracy was estimated on a clear–sky pixels database. This database was sim-
ply built by visually selecting cloud–free pixel areas within the Meteosat–7 imagery. However,
such a process is time–consuming while not fully assuring that cloud contaminated pixels are
excluded from the selection. Thus, for an exhaustive validation on SEVIRI data, we select a
clear–sky pixels database made of all the pixels which are classified as clear–sky by the CERES
sceneID over the whole SEVIRI FOV. For each of these pixels, one is able to compute the error
between the GERB clear–sky estimated reflectance ρsv

cs and the true clear–sky reflectance ρsv

which is directly measured by SEVIRI in both instrument’s visible bands.

7.3.2.1 Temporal error analysis

Tables 7.1 and 7.2 summarize the mean and standard deviation of the absolute errors distri-
bution ρsv − ρsv

cs . One can notice that our composite clear–sky estimation scheme tends to
underestimate the actual clear–sky reflectances in both channels. Moreover, there is no obvi-
ous dependency of the mean and the standard deviation of the absolute errors with the age
of the clear–sky estimation ratio αsv

cs (see chapter 6, section 6.3.1 equation 6.2) for any surface
type.

Since the average reflectance of the 3 coarse geotypes significantly differs, we have plotted
in figure 7.1 the mean of the relative error distribution 〈(ρsv − ρsv

cs )/ρsv〉 for this clear–sky
pixels database according to the age of the clear–sky estimation. We can see that the highest
relative errors are occurring for ocean surfaces for both channels where they range between
12 and 16 % for 0.6 µm (see panel (a)) and between 16 and 22 % for 0.8 µm (see panel (b)),
respectively. There is also a small increase of the errors according to the age of the clear–sky
for this geotype. This is consistent with the fact that the average spectral response of ocean
surfaces is reduced compared to other surface types and is lower at 0.8 than 0.6 µm. Similarly,
vegetation and desert covers exhibit lower clear–sky relative errors in both bands due to their
higher spectral signatures compared to ocean. Typical relative errors over desert are between
1 and 2 % at 0.6 µm (see panel (a)) and 2 to 3 % at 0.8 µm (see panel (b)) while ranging for
vegetation from 3 to 8 % (resp. 3 to 6 %).
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Table 7.1 – Mean and standard deviation of the distribution of the absolute errors ρsv − ρsv
cs according to

the age of the clear–sky for 0.6 µm.

Age Ocean Vegetation Desert

[days] mean stddev mean stddev mean stddev

0 0.0108 0.0130 0.0108 0.0160 0.0035 0.0103
1 0.0114 0.0134 0.0085 0.0173 0.0031 0.0104
2 0.0123 0.0130 0.0102 0.0164 0.0030 0.0096
3 0.0124 0.0127 0.0092 0.0166 0.0032 0.0104
4 0.0119 0.0125 0.0114 0.0162 0.0040 0.0112
5 0.0117 0.0132 0.0136 0.0177 0.0050 0.0119
6 0.0126 0.0130 0.0120 0.0185 0.0040 0.0122

Table 7.2 – Mean and standard deviation of the distribution of the absolute errors ρsv − ρsv
cs according to

the age of the clear–sky for 0.8 µm.

Age Ocean Vegetation Desert

[days] mean stddev mean stddev mean stddev

0 0.0095 0.0126 0.0190 0.0235 0.0094 0.0212
1 0.0104 0.0131 0.0197 0.0240 0.0108 0.0218
2 0.0101 0.0129 0.0145 0.0229 0.0091 0.0186
3 0.0101 0.0123 0.0104 0.0228 0.0065 0.0177
4 0.0104 0.0122 0.0136 0.0251 0.0070 0.0194
5 0.0104 0.0126 0.0143 0.0243 0.0107 0.0206
6 0.0115 0.0123 0.0161 0.0253 0.0081 0.0225
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Figure 7.1 – Mean of the relative error distribution 〈(ρsv− ρsv
cs )/ρsv〉 according to the age of the clear–sky

estimation for pixels flagged as clear–sky by the VISST algorithm and the (a) 0.6 and (b) 0.8 µm SEVIRI
channels.
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7.3.2.2 Overall error analysis

Panels in figure 7.2 display the relative frequency histograms of the absolute error ρsv − ρsv
cs

distributions for the same surface classes. In the insets of figure 7.2, their associated cumu-
lative histograms are shown. We notice that the peaks of all the histograms are occurring
between 0 and 0.005 and that all distributions are right–tailed. If we jointly consider the mean
µ (bias) and standard deviation σ (scattering) as an overall error quality criterion, we see
that any cloud optical depth retrieval scheme based on our TOA visible clear–sky estimations
would minimize uncertainties due to the surface contribution if we use the 0.8 µm channel
over the ocean and the 0.6 µm spectral band over vegetation and desert (see figure 2.12). This
is in agreement with the fact that we choose to dynamically select the visible channel ex-
hibiting the highest sensitivity for the difference between clear–sky and cloudy conditions for
every pixel in the cloud optical depth retrieval (see chapter 6, section 6.3.3). Since the reflected
radiation for a given cloud is almost constant in the visible wavelengths [74], this choice is
solely driven by the spectral response of the clear–sky surfaces recalling that the reflectance
for ocean is smaller at 0.8 than 0.6 µm, while it is higher for vegetation and desert [8]. Specif-
ically, it can be shown that the dynamic channel selection is always considering the 0.8 µm
band for ocean and the 0.6 µm for land. Moreover, despite the fact that GERB clear–sky re-
flectances are underestimated, the empirical selection of 0.025 for the 0.6 µm clear–sky addi-
tive offset ∆sv (see chapter 6, section 6.3.1.4, equation 6.6) is ensuring that at least 80 % of the
clear–sky pixels will be correctly classified as illustrated by the cumulative histograms in fig-
ure 7.2 panels (a,c,e). In contrast, we notice that for the 0.8 µm band, our null empirical value
is not adequate.

7.3.2.3 Sun–glint

In chapter 6, we noted that our method for clear–sky estimation in sun–glint regions fails
due to fast transient changes of visible reflectances. Therefore, we suggested to model the
TOA clear–sky ocean response in the sun–glint using radiative transfer simulations with a
Cox–Munk surface reflectance formalism [38]. To check such a model, we have plotted in
figure 7.3 the absolute clear–sky errors ρsv − ρsv

cs averaged by tilt angle Ψ bins (angle between
the specular reflection and the viewing direction for ocean clear–sky reflectances). It can be
observed that the clear–sky error significantly jumps when changing from the clear–sky sun–
glint model to the standard scheme. This will certainly imply a discontinuity of the cloudy
pixels statistics around the transition region. It is obvious from the curve of figure 7.3(a) that
our empirical choice for Msv and msv (see chapter 6, section 6.3.1.3, equation 6.5) at 0.6 µm is
not optimal. Indeed, the underestimation of the true clear–sky values ρsv is higher near the
central sun–glint spot (Ψ = 0) than it is on its border. However, such behavior is drastically
reduced for the 0.8 µm band as seen in figure 7.3(b) where the underestimation of our sun–
glint model is smoother and lower than for regions where our standard clear–sky estimation
scheme is applied (Ψ > 0).

7.3.2.4 Summary

The results from the previous sections can be summarized as follows. Errors on clear–sky
estimations in both visible SEVIRI channels have a limited sensitivity to the aging of the clear–
sky estimation ratio αsv

cs . Nevertheless, a small trend exists for ocean. Moreover, our scheme
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Figure 7.2 – Relative frequency histograms of the absolute error ρsv − ρsv
cs distributions for ocean (a,b),

vegetation (c,d) and desert (e,f), for the 0.6 (a,c,e) and 0.8 µm (b,d,f) SEVIRI channels, respectively. In
inset, the associated cumulative histogram is also plotted (same abscissa scale). The plain line marks the
ρsv

cs = ρsv condition, while the dashed is for the mean µ and the dotted is for the mean plus the standard
deviation µ + σ. Data from March 11 to 17 2007 are considered altogether.

systematically underestimates the true clear–sky values. This suggests that the selected value
of the αsv

cs (see chapter 6, section 6.3.1.1, equation 6.2) should be increased by considering
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Figure 7.3 – Bin–averaged absolute clear–sky errors 〈ρsv − ρsv
cs 〉 according the tilt angle Ψ for the (a) 0.6

and (b) 0.8 µm SEVIRI channels, respectively. The vertical dashed line marks the limit of the domain where
the clear–sky sun–glint model is applied. Data from March 11 to 17 2007 are considered altogether.

the fifth or sixth lowest value in future Edition processing rather than the 4th as currently
done. The optimal value should be selected as the one leading to lowest clear–sky errors
when comparing with the VISST dataset.

For sun–glint affected areas, our empirical choice of the sun–glint model parameters leads
to a sudden change of the clear–sky errors and thus in cloud sensitivity around its limit of
application domain. To reduce the resulting bias in L20 GERB products for future Edition
processing, an objective tuning of these parameters should be based again on comparisons
with the CERES dataset.

7.3.3 Cloud flag

In this section, we investigate the discrepancies of the cloud masks associated to the GERB and
CERES sceneIDs. We start by studying a possible temporal dependency according to the aging
of the clear–sky estimation ratio. Then, we analyze the spatial distribution of the discordance
between the two cloud masks.

7.3.3.1 Temporal error analysis

Table 7.3 gives the cloud fraction, i.e. the number of cloudy pixels out of the total valid common
pixels, over the SEVIRI FOV for the GERB and CERES cloud masks according to the age of the
clear–sky estimation ratio. We observe a good agreement between the two schemes with the
highest difference being about 3 %. Moreover, the aging of the clear–sky estimation ratio does
not noticeably impact these results. This confirms that the adjustment made by visual image
inspection to the MS7 τthres value is almost optimal for SEVIRI.

It is anticipated that the cloud detection sensitivity is different according to the geotype
and thus it is expected that the discrepancies between the GERB and VISST cloud masks could
also vary according to the geotype. Thus we decided to study these differences according to
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Table 7.3 – Cloud fraction over the SEVIRI FOV for GERB and CERES sceneIDs according to the age
of the clear–sky data. Only pixels which were validly retrieved as clear–sky or cloudy by both schemes are
considered in the statistics.

Age [days] GERB [%] CERES [%]

0 56.89 54.15
1 56.01 52.68
2 56.56 53.34
3 59.46 58.47
4 59.02 59.22
5 61.08 60.09
6 60.19 60.16

the 3 coarse surface types (ocean, vegetation and desert). In table 7.4, the discrepancies be-
tween the GERB and VISST cloud masks are given relative to CERES taken as reference. We
can note that there is no significant dependency with the aging of the clear–sky estimation.
While over vegetation and desert surfaces, our scheme tends to misclassify more cloudy than
clear–sky pixels (from the CERES point of view), it is the opposite for ocean. This imbal-
ance of misclassifications is in contradiction to what would be expected for vegetation and
desert due to the underestimation of the clear–sky reflectances which we previously reported
in section 7.3.2. A possible explanation could be that the applied threshold τthres of about 0.6
(see chapter 6, section 6.3.4) on the cloud optical depth for the cloudy/non–cloudy test is too
high, thus classifying too many thin clouds as clear–sky. Nevertheless, by adding figures from
CL/cs and cs/CL and subtracting from 100 %, the fraction of common classification between
GERB and CERES is between 88 and 91 % for ocean and 85 and 90 % for vegetation and desert.

Table 7.4 – Discrepancies in percent between the GERB and CERES cloud masks for the different geotypes
according to the age of the clear–sky. CL/cs (resp. cs/CL) designates the fraction of the CERES clear–sky
(cloudy) pixels flagged as cloudy (clear–sky) by the GERB sceneID relative to the overall validly processed
pixels.

Age Ocean Vegetation Desert

[days] CL/cs cs/CL CL/cs cs/CL CL/cs cs/CL

0 8.96 1.27 3.97 9.61 2.28 7.89
1 9.92 1.43 4.97 9.89 1.68 8.19
2 10.04 1.67 4.69 9.97 1.57 7.71
3 7.97 1.63 3.23 11.82 2.39 9.55
4 7.13 1.71 3.93 13.34 2.45 12.70
5 7.74 1.69 4.91 11.95 2.10 10.76
6 6.54 2.07 3.99 11.16 1.65 9.82

7.3.3.2 Overall error analysis

To investigate the spatial dependency of the discrepancies between both cloud masks, we
have plotted in figure 7.4 the frequencies of CL/cs and cs/CL labeled pixels over the SEVIRI
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Figure 7.4 – Spatial relative frequency distribution of the discrepancies between GERB and CERES cloud
masks for the (a) CL/cs and (b) cs/CL pixels. Data from March 11 to 17 2007 is considered altogether and
results are binned over 1◦ × 1◦ grid boxes.

It is clear from figure 7.4(a) that the imbalance of discrepancies towards CL/cs pixels over
the ocean (see table 7.4) is due to the fact that Saharan dust bursts are detected as clouds by our
algorithm while CERES is identifying them as clear–sky and that we are inaccurately model-
ing the sun–glint clear–sky reflectances as it was previously demonstrated in section 7.3.2.3.
Moreover, the enlarged discordance over the Arabian Sea could also be explained by high
load of aerosols in the atmosphere as observed by Moderate Resolution Imaging Spectrora-
diometer (MODIS) due to sand dust blown off the coast. Careful inspection of this figure also
shows that GERB sceneID tends to identify more clouds over the African tropical rainforest
than CERES in these regions exhibiting periods of consecutive cloudy conditions reaching up
to 60 days.

In figure 7.4(b), we can observe that a significant amount of the discrepant cs/CL pixels
are located in the Sahel and Great Lakes regions. As already mentioned, the threshold on
cloud optical thickness for the cloud flag test could be larger than it should be over land and
therefore the GERB sceneID is falsely detecting thin clouds (cirrus or fog) as clear–sky. This
is supported by figure 7.5 where we have plotted the cumulative histogram of the retrieved
CERES cloud optical depth τC for the discrepant cs/CL pixels of figure 7.4(b). Indeed, about
50 % of those pixels are associated by CERES to a cloud optical depth lower than 1.

7.3.3.3 Summary

Even if both GERB and CERES schemes give similar overall cloud fraction statistics over the
whole FOV, discrepancies occur over the various surface types. This suggests that the thresh-
old value used on cloud optical thickness for the cloud flag test should be adapted to a lower
value in future Edition processing. The optimal value could be the one resulting in a balance
of misidentification between cloudy and clear–sky pixels with respect to the CERES cloud
flagging. Moreover, applying distinct threshold values according to geotypes should also be
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Figure 7.5 – Cumulative histogram of the retrieved CERES cloud optical depth τC for the cs/CL pixels.

investigated.

Considering the spatial distribution of the discrepancies, we noticed that thick dust clouds
are falsely detected as clouds over the ocean by the GERB sceneID. Nevertheless, we intend
to apply for future Edition processing a clear–sky restoral scheme [21] to reclassify cloudy
dust aerosol pixels as clear–sky using SEVIRI thermal channels. Another issue is that we
tend to falsely flag thin clouds as clear–sky. This is especially the case over land where it
seems that the threshold of about 0.6 on cloud optical depth is more problematic than over
the ocean. Therefore this value should be adapted to a lower value according to the CERES
results. Finally, our scheme exhibits a lower sensitivity to detect clouds in the area where the
sun–glint clear–sky model is applied. This leads to a systematical misidentification of clear–
sky pixels compared to its neighborhood.

7.3.4 Cloud thermodynamic phase

In this section, we investigate the discrepancies of the cloud thermodynamic phases between
GERB and CERES. We are anticipating significant discordance between both cloud phase re-
trievals due to the crude phase inference scheme implemented within the GERB processing
(see chapter 6, section 6.3.2). Since it simply consists in thresholding the 10.8 µm SEVIRI
brightness temperature, we expect to falsely flag all supercooled water clouds as ice. More-
over, it is well known in the literature that thin clouds such as cirrus have only a limited impact
on the response of a single infrared channel compared to the contribution of their underlying
surface [73]. Thus these thin clouds will almost certainly be mistaken as water clouds if their
associated cloud optical depth is above the cloud detection threshold τthres. Furthermore, dis-
crepancies will also be caused by the fact that our scheme does not correct for the increased
atmospheric path length at high viewing zenith angles. We start by studying the day by day
discrepancies. Then, we analyze the spatial distribution of the discordance between the two
cloud phase schemes.

Table 7.5 gives the ice cloud fraction over the SEVIRI FOV for both GERB and CERES as
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well as their relative difference (CERES taken as reference) according to the day of the month.
It obviously illustrates that our threshold test on a single brightness temperature leads to a
systematic underestimation of the fraction of ice clouds up to 43 % relatively to CERES results.

Table 7.5 – Ice cloud fraction over the SEVIRI FOV for GERB and CERES sceneIDs and their relative
difference according to the day (March 2007).

Day GERB [%] CERES [%] Rel. diff. [%]

11 20.52 32.60 37.05
12 19.96 32.56 38.72
13 16.81 29.22 42.47
14 18.72 32.06 41.60
15 19.45 34.11 42.99
16 19.91 33.47 40.53
17 21.30 37.00 42.43

In table 7.6 we have collected statistics on the discrepancies between GERB and CERES
(taken as reference) cloud phases according to the three coarse geotypes for each day. We
notice that the i/w cases, i.e. when GERB misidentifies the phase as ice instead of water, are
not sensitive to the surface type and represent less than 2 % of the total amount of cloudy
pixels, detected by both methods. Therefore, it seems that supercooled water clouds will only
have a limited impact due to their low occurrence. As already noticed in table 7.5, it confirms
that the GERB phase retrieval fails to correctly identify ice clouds in the vast majority of cases.
The relative imbalance between the figures of ocean and land surfaces could be due to the fact
that ocean surface temperatures are more spatially and temporally stable, thus allowing the
brightness temperature test to correctly capture an increased amount of ice clouds (between 5
and 11 %).

Table 7.6 – Discrepancies in percent between the GERB and CERES cloud phases for the different geotypes
according to the day (March 2007). w/i (resp. i/w) designates the fraction of the CERES ice (water) cloudy
pixels flagged as water (ice) clouds by GERB relative to the overall pixels commonly flagged by GERB and
CERES as cloudy.

Day Ocean Vegetation Desert

w/i i/w w/i i/w w/i i/w

11 12.62 1.17 19.77 0.51 18.08 0.49
12 13.41 1.06 19.18 0.52 21.67 0.74
13 13.83 1.72 19.09 0.45 15.22 0.49
14 14.13 1.51 25.35 0.62 13.06 0.88
15 15.20 1.24 26.80 0.58 17.43 1.36
16 13.15 1.13 24.43 1.07 23.19 1.22
17 16.16 0.84 27.44 1.08 22.57 0.68

To study the spatial dependency of the discrepancies between both cloud phase retrievals,
we have plotted in figure 7.6 the frequencies of i/w and w/i pixels relatively to the overall
local number of pixels where both retrievals could be inferred. These statistics were collected
in 1◦ × 1◦ grid boxes of pixels over the SEVIRI FOV.
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Figure 7.6 – Spatial relative frequency distribution of the discrepancies between GERB and CERES cloud
phases for (a) i/w and (b) w/i pixels. Data from March 11 to 17 2007 are considered altogether and results
are binned over 1◦ × 1◦ grid boxes.

From figure 7.6(a), we observe that most of the discordance where GERB is falsely assign-
ing ice phase instead of water (CERES taken as reference) is located in the austral region. This
is not surprising due to the low temperatures associated to the surface (ocean or sea ice) which
can falsely trigger the brightness temperature threshold test.

However, as already mentioned, the majority of the discrepancies occurs where GERB
wrongly selects water instead of ice phase. Their spatial distribution is illustrated in fig-
ure 7.6(b). It is clear that the Equator region displays large frequencies due to the heavy
convection processes occurring in this area. These result in clouds extending up to an alti-
tude of 10 km where only ice particles exist in their upper part. Another location of large
discrepancies occurs over the Sahara desert. It seems that the GERB phase retrieval scheme
fails to detect thin cirrus clouds due to the high surface temperature which tends to mask the
response of this type of clouds in the measured signal. This assumption is confirmed in fig-
ure 7.7 where we have plotted the cumulative histogram of the CERES retrieved cloud optical
depth for these falsely water flagged pixels. Indeed, it shows that ice clouds associated to an
optical depth of less than 2 represent about 70 % of the total population.

To summarize, we have shown that as expected the rather simplistic GERB cloud phase
detection results in large systematic discrepancies. Their high imbalance towards misiden-
tification of thin cirrus clouds leads to their inhomogeneous spatial distribution which will
certainly have some impact on the estimation of instantaneous as well as averaged TOA
solar fluxes. Therefore, for the future Edition 2 processing, we plan to drastically modify
this scheme by including information from other SEVIRI channels. The MODIS multispectral
cloud phase retrieval adapted to SEVIRI instruments [190] could be considered.
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Figure 7.7 – Cumulative histogram of the retrieved CERES cloud optical depth τC for the w/i pixels.

7.3.5 Cloud optical depth

In this section, we investigate the discrepancies of the cloud optical depth retrievals between
the GERB and CERES sceneIDs. As already mentioned in section 7.3.1.2, the difference be-
tween the calibrations used in GERB and CERES schemes for the visible SEVIRI channels will
undoubtedly result in differences for the cloud optical depth even if all other parameters of
GERB and CERES were identical. However, this assumption will remain qualitative as both
schemes are tuned to their respective calibration and thus any quantitative assessment of the
impact of sceneID differences would require drastic changes to one of the algorithms.

Moreover, as demonstrated in section 7.3.2, the GERB sceneID systematically underesti-
mates the true clear–sky reflectances. Thus, it is expected that cloud optical depth values from
GERB will be overestimated compared to CERES. Indeed, this is confirmed in figure 7.8 where
we have plotted the relative frequency histograms of the difference of the logarithm of the
cloud optical depths between GERB and CERES for the 3 coarse surface types and both cloud
phases. The highest discrepancies occur for ocean. This is not surprising recalling the fact
that our scheme produces the highest relative errors for the associated clear–sky reflectance
estimation as illustrated in figure 7.1 compared to the other geotypes. In figure 7.8(a), one
can notice two modes (around 0 and µ) in the ocean and water clouds histogram. It can be
shown that the mode around 0 is associated the cloud optical depth retrievals over pixels
within the domain of the clear–sky sun–glint model (Ψ < 1) while the other is related to the
percentile approach for Ψ ≥ 1. This is consistent with the behavior of the absolute clear–sky
errors shown in figure 7.3(b) as the 0.8 µm channel is usually selected from our highest cloud
sensitivity criterion.

Another source of discrepancy between both schemes can arise from the look–up tables
(LUTs) used in the inversion from reflectance to cloud optical depth. Those LUTs were gen-
erated with different radiative transfer models (RTMs) and with different input parameters
such as, for example, surface reflectances, cloud altitudes and particle radii as well as output
geometries, respectively. This is well reflected in figure 7.9 where we have plotted the average
of log10 τG − log10 τC according to the viewing zenith angle θ for both cloud phases. It is ob-
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Figure 7.8 – Relative frequency histograms of log10 τG − log10 τC distributions between GERB and
CERES cloud optical depths for ocean (a,b), vegetation (c,d) and desert (e,f), for water (a,c,e) and ice
(b,d,f) clouds, respectively. The plain line marks the τG = τC condition, while the dashed line is for the
mean µ and the dotted lines are for the mean plus/minus the standard deviation µ± σ. Data from March
11 to 17 2007 are considered altogether.

vious that discrepancies are strongly related to the viewing direction and it is anticipated that
a similar effect occurs for the illumination zenith angle in virtue of the reciprocity principle.
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Indeed, RTMs used to compute the LUTs are based on the plane–parallel assumption and thus
limitations of their physics parametrization is reached at large solar and viewing zenith an-
gles. Moreover, the STREAMER [82] RTM used within the GERB processing may not be fully
adequate to perform simulations over the SEVIRI visible channels as the physics parametriza-
tion of this model is averaged in much larger spectral bands. From the insets of figure 7.9,
we notice that the relative azimuth angle ϕ of a majority of pixels within the SEVIRI FOV are
about 180◦, i.e. located in the backscattering region of the cloud phase function, for the period
of year and time of day (12:00 UTC) considered. While the CERES LUTs were computed using
accurate cloud phase function parametrizations, the STREAMER RTM used to build the GERB
LUTs is only considering the simplistic (double) Henyey–Greenstein phase function for water
(ice) clouds. But, as stressed in section 2.4.2, these models are unable to capture the detailed
structure of the real cloud phase functions. The fact that the distribution of the relative az-
imuth angles is peaked around the backscattering direction only exacerbates such limitations.
Nevertheless, the double Henyey–Greenstein phase function seems to perform better for ice
clouds than its simple version for water clouds as illustrated by the lower errors for ice than
water clouds associated to viewing zenith angles between 15 and 55◦. This is probably due to
the fact that it provides some estimation of the backward peak for ice clouds, while it does not
for water clouds.
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Figure 7.9 – Bin–averaged log10 τG − log10 τC according to viewing zenith angle θ bins of 2◦ for the (a)
water and (b) ice clouds. In inset, the associated histogram of the viewing geometries (θ, ϕ) is shown as
polar plot. Data from March 11 to 17 2007 is considered altogether.

To summarize, we have shown that a systematic bias exists between GERB and CERES
cloud optical depth retrievals with higher GERB values. This can be related to the associ-
ated underestimation of clear–sky reflectances. Discrepancies between retrievals clearly also
demonstrate a dependency on the geometry. This is not surprising due to the distinct RTMs
and parameters used to compute the LUTs as well as their underlying plane–parallel assump-
tion. Finally, we assume that the band–model which was used prior to generate Meteosat–7
LUTs (see chapter 5) may not be sufficient to accurately simulate the SEVIRI narrowband
measurements. Therefore, the use of other RTMs should be investigated for the calculations
of the GERB LUTs in the future Edition 2 processing, such as the line–by–line spectral libRad-
tran [105] model that is still based on plane–parallel theory or a Monte Carlo model with
one–dimensional input parameters, together with an accurate parametrization of the cloud
phase function for both water and ice clouds.
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7.4 TOA GERB–like solar fluxes

In the previous sections, we have assessed the discrepancies of the retrieved cloud properties
due to GERB and CERES sceneIDs. These properties are used in the processing to derive
the GERB TOA solar fluxes by applying to each footprint a specific ADM. Therefore, the fact
that both GERB and CERES retrievals do not match implies a misselection of the ADMs in
the radiance–to–flux conversion. This results in differences between fluxes when considering
either the GERB or CERES scheme.

To investigate such discordances, we have run what we call the GERB–like processing us-
ing both cloud properties as input. This processing solely uses SEVIRI multispectral data to
simulate GERB broadband radiances and applies the ADMs to the latter to estimate GERB–
like TOA fluxes [52, 67] over 3× 3 SEVIRI pixels (about 9 km at nadir). Such fluxes are not
yet corrected with the actual GERB measurements. Nevertheless, these quantities give a valu-
able insight about the impact of ADM misselection. We have to stress that a rigorous analysis
on the final GERB products is not possible because the full GERB processing of data from
one repeat cycle requires data from the previous and the next repeat cycles from GERB and
SEVIRI due to the needed temporal interpolations (GERB and SEVIRI acquisition times are
asynchronous). Moreover, an extensive validation has been performed through scene–type
comparisons between the various GERB L20 products and the associated CERES SSF foot-
prints [35].

In the following of this section, FG designates the TOA GERB–like solar fluxes which are
generated using the GERB sceneID features, while FC is associated to the fluxes estimated
from CERES sceneID parameters. We investigate the GERB-like flux errors according to the
GERB cloud fraction, cloud thermodynamic phase and cloud optical depth. Since fluxes are
only available in GERB Edition 1 products for sun–glint tilt angles larger than 25◦, we have
decided to constrain these analyzes of GERB–like flux errors over such area. Finally, the spatial
distribution of these errors is given without any restriction over the FOV.

7.4.1 Cloud fraction

We have computed in table 7.7 the mean and standard deviation of the relative flux errors
(FG − FC)/FC according to the different geotypes and GERB cloud fraction bins as well as
their overall statistics. We can notice that for footprints classified as clear–sky by GERB (cloud
fraction of 0), the mean relative error is positive and less than 0.8 % for every surface type,
meaning that on average the GERB sceneID is slightly overestimating the GERB–like fluxes
compared to CERES. For totally overcast GERB footprints corresponding to a cloud fraction of
100 %, it remain positive but reaches up to 2.42 % for desert. In contrast, footprints associated
to intermediate cloud fractions tend to be generally negative with values as low as−4.95 % for
desert proving that GERB–like fluxes are underestimated compared to CERES. Nevertheless,
the overall relative error statistics when considering all surfaces and cloudy conditions are
about 0.31 % on average. The standard deviation figures on the other side only provide limited
information on the relative error distribution. Indeed they are heavily biased by large relative
error values typically resulting when one scheme identifies the footprint as clear–sky while
it is overcast for the other, even if the occurrence of such errors is low as illustrated by the
cumulative histogram of the relative flux errors (FG − FC)/FC in figure 7.10. The relative
frequency histogram of this figure shows that the error distribution is more or less symmetric
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around the origin with more than 45 % of the footprints having a relative error of about 0.

Table 7.7 – Mean and standard deviation of the relative flux errors (FG− FC)/FC according to the different
geotypes and GERB cloud fraction as well as their overall statistics. Data from March 11 to 17 2007 are
considered altogether.

Cloud fraction Ocean Vegetation Desert All

[%] mean stddev mean stddev mean stddev mean stddev

0 0.78 4.77 0.38 14.24 0.19 8.27 0.46 9.71
0− 10 - - - - - - - -

10− 20 -4.70 7.94 -1.71 8.81 -4.09 8.90 -3.74 8.41
20− 30 -4.08 7.85 -3.09 8.51 -4.95 8.71 -3.86 8.14
30− 40 -3.63 7.67 -0.30 8.53 -1.83 8.95 -2.50 8.17
40− 50 -3.76 7.75 -1.11 8.33 -2.40 8.95 -2.85 8.11
50− 60 -3.56 7.72 -1.20 7.57 -1.42 9.07 -2.71 7.85
60− 70 -3.20 7.55 -2.08 7.49 -2.23 8.68 -2.81 7.62
70− 80 -3.02 7.43 0.41 7.82 0.98 9.74 -1.72 7.89
80− 90 -2.19 7.38 -0.63 7.50 -0.09 9.07 -1.60 7.57

90− 100 - - - - - - - -
100 1.41 10.70 1.52 7.79 2.42 7.38 1.46 10.07

All pixels 0.28 9.43 0.47 10.82 0.14 8.36 0.31 9.69
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Figure 7.10 – Relative frequency histogram of the relative flux errors (FG − FC)/FC. In inset, the as-
sociated cumulative histogram is also plotted (same abscissa scale). The plain line marks the FG = FC
condition, while the dashed is for the mean µ and the dotted is for the mean plus/minus the standard
deviation µ± σ. Data from March 11 to 17 2007 are considered altogether.

7.4.2 Cloud optical depth and thermodynamic phase

To assess the dependency of the cloud optical depth as well as the ice cloud fraction within the
footprints on the GERB–like fluxes, we have computed in table 7.8 the mean of the relative flux
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errors (FG − FC)/FC which have been binned according to the GERB cloud optical depth and
ice cloud fraction. We can notice that either for almost pure water and ice cloud footprints,
we are underestimating GERB–like fluxes for cloud optical depth up to 4. Moreover, such
underestimation is significantly higher (up to 10.65 %) for thin ice clouds (0.6 < τG < 2) while
it is mostly occurring over desert (not shown). For pure clouds associated to cloud optical
depth above 4, we tend to overestimate the fluxes with the largest fluxes differences being
related to the highest cloud optical depths as well as to ice clouds. This is consistent with the
fact that the GERB sceneID is increasingly overestimating the cloud optical depth compared
to the CERES sceneID. By examining the various columns of this table, we can notice that, for
a fixed cloud optical depth bin, the magnitude of the relative flux errors reaches its highest
level for ice cloud fraction around 50 %. This is symptomatic of the fact that the retrieval of
the cloud thermodynamic phase is only relying on a single BT10.8 threshold test concomitantly
with a non–optimal choice of the threshold value.

7.4.3 Spatial distribution

The spatial distribution of the averaged relative flux errors 〈(FG − FC)/FC〉 is plotted in fig-
ure 7.11. We can observe that for a majority of footprints within the FOV the average of the
relative error is close to 0. The aerosol dust event which occurred during that week is clearly
pointed out by negative relative flux errors of about−5− 10 % off the West coast of the Sahara
desert. However, these values are by no mean accurate. The current implementation within
the GERB processing implies that clear–sky ocean ADMs are used over thin dust clouds while
cloudy models are applied to thick dust clouds. It was demonstrated in the literature that us-
ing such clear–sky models for GERB fluxes lead to a mean overestimation of about 12 W ·m−2

over dust cloudy scenes [22]. In contrast, applying cloudy ADMs results in an averaged un-
derestimation of about 1 W ·m−2. Moreover, this study also showed that instantaneous flux
errors vary between 0 and 55 W ·m−2 depending on the geometry and dust optical depth. As
we already mentioned, it is anticipated for the future Edition 2 processing to correctly detect
dust clouds in the sceneID, estimate their aerosol optical depth and apply the aerosol ADMs
which were developed specifically for GERB in [22].

One can also notice in figure 7.11 that errors tend to increase at grazing viewing zenith an-
gles (see figure 7.12(b)) as well as in the Austral region as it is expected from the discussions of
the previous sections. Moreover, sun–glint affected areas over the Gulf of Guinea also exhibit
larger errors (up to about 25 %) as anticipated from our previous results on cloud properties.
This is supported by figure 7.12(a) where we plotted the relative flux errors which were aver-
aged over bins of the sun–glint tilt angle Ψ. Finally, the largest errors occur over Scandinavia
and a possible explanation could be that the surface is covered by snow which is only correctly
identified as clear–sky by CERES. Nevertheless, as snow TRMM ADMs are not available even
the CERES associated GERB–like fluxes FC should be taken as highly inaccurate.

7.5 Conclusion

In this chapter, we have described the comparisons performed to assess the accuracy of the
GERB Edition 1 sceneID on SEVIRI. Such validation was carried out by using a reference
dataset resulting from the processing of SEVIRI data with an adapted CERES sceneID. How-
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Figure 7.11 – Spatial distribution of the mean relative flux errors 〈(FG − FC)/FC〉. Data from March 11
to 17 2007 (12:00 UTC) are considered altogether and results are binned over 1◦ × 1◦ grid boxes.
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Figure 7.12 – Bin-averaged relative flux errors 〈(FG − FC)/FC〉 according to (a) the sun–glint tilt angle
Ψ and (b) the viewing zenith angle θ for Ψ > 1. Data from March 11 to 17 2007 are considered altogether.
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ever, differences in the applied calibration of both schemes were identified and are qualita-
tively expected to impact the comparisons.

We found that the estimated relative errors on the composite clear–sky reflectances are
about 1 % for desert, 3− 8 % for vegetation and 12− 22 % for ocean over both SEVIRI visible
channels. We also demonstrated that the weekly update of the clear–sky estimation ratio has
a limited effect on these errors. However the systematic underestimation of these reflectances
should be decreased in future Edition processing as they have a direct impact on the cloud
detection and cloud optical depth retrievals. Moreover, the developed sun–glint clear–sky
reflectance model seems promising but an objective tuning of its parameters should be per-
formed to reduce its inhomogeneity on cloud sensitivity.

Concerning the cloud flag, even if the average cloud fraction over the whole FOV gives
similar results compared to CERES, discrepancies occur according to the surface type. This
suggests that different thresholds for distinct surfaces would possibly be appropriate. This
still has to be investigated in future developments. It would improve thin cloud identification,
especially over land. Furthermore, correct identification of dust clouds as clear–sky with an
estimation of their aerosol optical depth should imperatively be carried out in future GERB
processing.

One of the major weaknesses of the current GERB Edition 1 sceneID is the cloud thermo-
dynamic phase retrieval. It was demonstrated that the simplistic fixed threshold test on a
single thermal channel which was implemented in regards to the operational constraints is
unsuitable as it results in large systematic underestimation of the ice cloud population. Thus,
the thermodynamic phase of thin cirrus as well as mid–level convective clouds has a higher
probability to be misidentified as water. Therefore, users who wish to composite GERB fluxes
by cloud type should be aware of this issue. Since several phase detection schemes exist in
the literature, we plan to implement in the Edition 2 processing the method giving the best
compromise between its accuracy and complexity for an operational implementation.

The lack of a snow detection scheme in the GERB sceneID also prevents a correct estima-
tion of the fluxes through the selection of snowy clear–sky ADMs for snow covered surfaces.
Combined with the limitations of the cloud thermodynamic phase retrieval, seasonal sea ice
in Austral regions can be misidentified as ice clouds over the ocean. This problem is expected
to be solved in the next Edition processing by the implementation of a snow detection algo-
rithm [18].

As we already mentioned, the systematic bias of the cloud optical depth values can be
related to a large part to the underestimation of the clear–sky reflectances. We also suggested
that the narrow SEVIRI bands may not be adequately simulated by our selected RTM for the
computation of the LUTs. Thus, we may consider in the future to use another RTM but such
investigation is part of the long–term perspectives.

Finally, we tried to assess the impact of the misidentification on the GERB–like solar fluxes.
It is obvious that any discrepancy between GERB and CERES sceneIDs at native SEVIRI res-
olution will lead to flux differences due to the distinct ADM selection in the radiance–to–flux
conversion scheme. Such flux comparisons exhibit a relative error of about 0.31 % on average
over the whole FOV. But the errors for specific scene types are significantly higher. Indeed,
the fluxes for thin cirrus (as identified by the GERB sceneID) are underestimated up to 11 %
compared to the CERES sceneID, while they are always overestimated (2.55− 7.40 %) for thick
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pure water and ice clouds (τG > 8). Moreover, mixed cloud phase scenes have their highest
errors for an ice cloud fraction of about 50 % which results from the limitation of a single
BT threshold test for cloud thermodynamic phase detection. To overcome such issues a mul-
tispectral cloud phase detection scheme will be implemented as part of the GERB Edition 2
sceneID. Flux errors also exhibit a viewing zenith angle dependency ranging from −2 % for
θ = 30◦ to 15 % for θ = 78◦. Furthermore, we notice that even with a correct identification
and characterization of thick dust, the use of cloudy ADMs instead of specific aerosol mod-
els leads to a mean solar flux underestimation of 1 W ·m−2, while instantaneous errors are
ranging between 0 and 55 W ·m−2 [22]. For thin dust, the use of clear–sky ADMs instead of
specific aerosol models leads to a mean solar flux overestimation of about 12 W ·m−2. Thus
it is foreseen to include these newly developed aerosol ADMs within the future Edition 2
processing.
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Chapter 8

Cloud detection using IR SEVIRI channels for
GERB∗

This chapter describes the development of a self-adaptive night–time cloud detection algorithm on SEVIRI IR data
at native pixel–level allowing to estimate dynamically cloudy thresholds and using only a single climatological
ancillary dataset.

Abstract

The first Geostationary Earth Radiation Budget (GERB) instrument was launched during
summer 2002 together with the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on
board of the Meteosat–8 satellite. This broadband radiometer aims to deliver near–realtime
estimates of solar and thermal radiative fluxes at the top of the atmosphere (TOA) with
high temporal resolution thanks to the geostationary orbit. Such a goal is achieved with
the L20 GERB processing which generates these fluxes from the directional filtered radiance
measurements of the instrument at several spatial resolutions. This processing consists of
successive components, one of them being a radiance–to–flux conversion. The conversion is
carried out in the solar wavelength region by using information from a scene identification
developed for application to SEVIRI data. This scene identification estimates the cloud mask
over the whole SEVIRI/GERB field–of–view with solely visible SEVIRI channels. While this
method gives good results during day–time, it cannot be applied during night–time. Never-
theless, cloud mask information is valuable to study clouds and aerosols thermal radiative
forcing. Thus, a night–time cloud mask would benefit to the GERB flux products in the
thermal infrared (IR) region.

In this chapter, we describe a new cloud detection method using exclusively IR SEVIRI
channels and a single climatological ancillary dataset. It is aimed to supplement the day–
time GERB scene identification by providing cloud mask information in the GERB L20 prod-
ucts during night–time. Such method is based on a clustering approach on 60–days bright-
ness temperature time–series at pixel–scale. Its strength lies in the fact that this technique
does not make use of any fixed threshold values but instead adapts itself to the measure-
ments. Despite the fact that it tends to systematically miss low warm water clouds (stra-
tocumulus) due to their limited contrast compared to clear–sky conditions, it achieves better

∗Adapted transcription of A. Ipe, L. Gonzalez Sotelino, C. Bertrand, E. Baudrez, N. Clerbaux, I. Decoster, S. Dewitte,
S. Nevens and A. Velazquez Blazquez, Cloud detection using IR SEVIRI channels for GERB, under review at Remote Sens.
Environ., 2010.
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detection with only 2 IR bands than the operational EUMETSAT CLM scheme. Our method
is equipped with the NWCSAF CMa spatial texture cloud filter. The NWCSAF CMa is used
as the golden standard for all comparisons.

8.1 Introduction

THE Geostationary Earth Radiation Budget (GERB) experiment aims to deliver to the sci-
ence community top of the atmosphere (TOA) broadband solar and thermal fluxes on a

near–realtime basis from a geostationary orbiting platform [66, 67]. The high temporal and
spatial samplings of such climate record make it an ideal tool to study regional– as well as
global–scale processes over an extensive time period of currently 7 years. Moreover, it is also
providing an independent validation dataset to compare to current general circulation mod-
els (GCMs) outputs. This is being routinely perform on the UK Meteorological Office Unified
Model [3], allowing to assess for example improvements of the tropical convective scheme of
this model.

The first 2 GERB broadband radiometers are currently flying on board of the Meteosat
Second Generation satellites (Meteosat–8 and –9) as co–passenger of the Spinning Enhanced
Visible and InfraRed Imager (SEVIRI) main payload while it is expected that 2 more similar
platforms will be launched in the future. Since GERB instruments are providing directional
radiance measurements in the shortwave (0.3 − 4 µm) and longwave (4 − 100 µm) regions
of the electromagnetic spectrum, a radiance–to–flux conversion scheme is adopted in the pro-
cessing of their data [52]. These are first transformed into solar and thermal radiances through
an unfiltering step [33, 34]. Then, a specific approach is followed for each source of radiation.
The Clouds and the Earth’s Radiant Energy System (CERES) shortwave angular dependency
models (ADMs) from the Tropical Rainfall Measuring Mission (TRMM) are used to infer the
solar TOA fluxes from their associated radiances [99] thanks to a scene identification per-
formed on the companion SEVIRI imager (see chapters 5 and 6). In contrast, thermal fluxes
are estimated through implicit thermal ADMs from non–linear regressions on spectral imager
measurements [32].

Since an explicit scene identification and thus a cloud detection method is only needed
for the solar part of the processing, i.e. during day–time, GERB products currently lack cloud
mask information during night–time. Indeed, the adopted strategy in the processing is to ex-
clusively consider visible imager channels to retrieve cloud properties since it is assumed that
only such properties will significantly impact the TOA solar fluxes. Nevertheless, a specific
cloud detection scheme is required to compute cloud radiative forcing during night–time.

Various cloud detection algorithms are found in the literature. They can generally be split
into two groups depending if they rely or not on numerical weather prediction (NWP) fore-
casts or reanalyses, such as temperature and water vapor profiles, to estimate their thresholds
in multispectral reflectance and brightness temperature (BT) tests. The brightness temperature
is the associated temperature of a black body emitting the same amounts of radiation as for
the SEVIRI measurements. State–of–the–art schemes such as the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) operational processing [2, 85, 130], the CERES VINT [116]
and the Nowcasting and Very Short–Range Forecasting SAF (NWCSAF) [47] algorithms rely
at night on numerous BT and brightness temperature difference (BTD) threshold tests. These
tests are designed to be sensitive to specific cloud types. It is therefore needed to estimate the
associated threshold values between cloudy and clear–sky conditions for all observed scenes
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in the field–of–view (FOV). Since the infrared measurements are impacted by the water vapor
profile in the atmosphere as well as by the emissivity of the surface and clouds, the CERES
and NWCSAF algorithms use NWP profiles together with surface emissivity climatologies as
best guess to estimate their various clear–sky thresholds. MODIS, on the other hand, is only
considering static thresholds varying over the FOV.

As previously mentioned, one goal of the GERB project is to act as an independent val-
idation dataset for GCMs. It is thus questionable to use, in its processing, output fields of
any model. Moreover, since cloud masking is only a small module of the whole processing,
the near–realtime constraint of the project discards complex methods. Finally, the MODIS
cloud detection was developed for low Earth orbit (LEO) imagers and would thus require
significant tuning of its thresholds to efficiently work on geostationary scene geometries. Any
change in the imager calibration would also result in a systematic bias of the delivered cloud
mask. Therefore, it was decided to develop a specific night–time cloud detection scheme for
the GERB processing. Since only infrared measurements are planned to be used, it is expected
to give consistent results for day and night.

This chapter is organized as follows. Section 8.2 describes the adopted strategy and the
assumptions. The algorithm and the ancillary data are then detailed in section 8.3. The input
dataset considered in the following as well as examples of ancillary data and results of our
scheme are illustrated in section 8.4. In section 8.5, we perform comprehensive comparisons
between our algorithm and 2 operational cloud mask schemes. We discuss the expected lim-
itations of our technique at the end of this section. Finally, we conclude and suggest possible
investigations for future work in section 8.6.

8.2 Assumptions

A similar strategy as the one developed for the estimation of the TOA visible clear–sky re-
flectances within the GERB processing (see chapters 4 and 7) is adopted. Specifically, we are
considering for every SEVIRI pixel its previous 60–days BT time–series at the same repeat
cycle (day–time or slot) for a given infrared (IR) channel. This 60–days time period is a safe-
guard to ensure that at least several clear–sky events occurs over each pixel, even for the
persistent cloudy regions over the Tropics. Such a BT10.8 time–series is shown in figure 8.1 for
the vegetation surface type. We can notice that thick cold clouds are characterized by low BT
spikes, while the upper envelope of the time–series can be associated to clear–sky conditions.
It is obvious that intermediate values can be related to thin (cirrus) or warm (stratocumulus)
clouds.

Since we are only considering measurements in the infrared part of the spectrum, the ge-
ometric variability of the scenes can be assumed to be limited to the viewing zenith angle θ
which is constant over the whole pixel time–series. However, water vapor absorption can be
significant in the IR channels. This implies that TOA clear–sky BTs are modulated accord-
ing to the state of the atmosphere. Moreover, surface temperatures exhibit a memory effect
depending on the atmospheric conditions of the previous hours and days (clouds decreasing
temperature, rainfall modifying surface emissivity). Thus, clear–sky BTs variability cannot be
neglected, but we make the assumption that it is not larger than the BT signature of thin or
warm clouds.

We can then summarize the main assumptions of the following algorithm. The samples
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Figure 8.1 – 60–days time–series of the SEVIRI 10.8 µm BT over a vegetation pixel at 0:00 UTC. The
color of each sample indicates the resulting classification from our clustering algorithm when considering
3 classes (red: thick cold cloud; green: thin or warm (low) cloud; blue: clear–sky).

of the 60–days time–series for a given channel and every pixel can be grouped at most in 3
classes according to their decreasing values of BT: (1) clear–sky, (2) thin or warm (low) clouds
and (3) thick cold clouds.

8.3 Algorithm

Since the absolute level of clear–sky BTs can change drastically over the FOV, our method
should adapt and find itself the BT boundaries of the clear–sky class. It was thus decided
to select the unsupervised k nearest neighbor (kNN) clustering scheme [53]. Such technique
has already been used in the literature. Indeed, [48] investigated its applicability to the three
Meteosat channels (visible, IR and water vapor) for cloud type classification, while [5] applied
this classifier to directional textural features of Meteosat–4 data for cloud detection. Compared
to these previous studies, the novel approach of our method lies in the fact that we are not
considering spatial but instead temporal samples of the same pixel to classify.

8.3.1 Clustering scheme

The kNN clustering scheme relies on some metric d(x(n) , Ck) to estimate the ”distance” be-
tween a sample x(n) and a cluster center or centroı̈d Ck in the features space. The algorithm

starts from a initial guess of the K C(0)
k centroı̈ds in the features space:

Step 1 Let i = 0.

Step 2 For each sample x(n) where n = 1, . . . , N (here N = 60 days), assign it the class k? which

has the nearest centroı̈d C(i)
k? , i.e.

d(x(n) , C(i)
k? ) = min

k=1,...,K
d(x(n) , C(i)

k ).
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Step 3 For each class k where k = 1, . . . , K, update its associated centroı̈d C(i+1)
k according to

the samples x(n) which were assigned to it in the previous step such as

C(i+1)
k =

1
Nk

N

∑
n=1

δnk · x(n) ,

where δnk = 1 if x(n) ∈ C(i)
k and δnk = 0 otherwise.

Step 4 For each class k, check if the updated centroı̈d C(i+1)
k is within a distance δ of the initial

centroı̈d C(i)
k . If this test which is equivalent to

max
k=1,...,K

d(C(i)
k , C(i+1)

k ) < δ

is satisfied, then the clustering has converged and we can stop. Otherwise, let i = i + 1
and go to step 2.

The convergence distance δ is usually set to the limit of significance where two centroı̈ds are
not differing anymore according to the physics of the problem. Any value below such limit
would result in an overkill to reach the convergence criterion.

Section 8.3.3 will detail the importance of the initialization step of the centroı̈ds for a mean-
ingful convergence of the clustering to the final classification.

8.3.2 Metric used

As stated in section 8.2, the extent of the clear–sky class is due to the natural variability of the
surface temperature, atmospheric state and surface emissivity over 60 days. It is obvious that
the distribution of the clear–sky BTs of any thermal channels is asymmetric. Indeed, clear–sky
BTs cannot be above some BT(max) value which is the highest BT over the 60 days period,
while the lower the BTs, the lower their probability. Such distribution has more or less the
shape of a log–normal random variable.

Due to the semi–finite property of the clear–sky distribution and its log–normal shape,
one could be tempted to use a metric d associated to the log–normal density function for the
clustering. However, the estimation of its parameters at each iteration from the mean and
standard deviation of its current samples as well as the issue that some samples could be
located outside the domain where the density function is defined, makes such function too
complex to use. To overcome such problem and for the sake of simplicity, we have decided
to approximate such density function pk(BT) with a normal distribution. It results that each
centroı̈d Ck is defined by its mean µk and standard deviation σk, while the metric d(x(n) , Ck)
is the linear discriminant function which, for classes following a normal distribution, reduces
to

d(x(n) , Ck) =
(x(n) − µk)

2

2σ2
k

+ log σk

where x(n) represents the BT(n) samples over the 60–days time period, if we assume that the
prior probability to belong to every class Ck is identical to avoid using any knowledge of cloud
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occurrence statistics and bias our classifier. Thus, the update of centroı̈ds C(i+1)
k at iteration

(i + 1) is simply the recomputation of µk and σk according to the samples belonging to C(i)
k .

Such modeling is illustrated in figure 8.2.

BT [K]

p2(BT)

p1(BT)

p0(BT)

CLOUDY CLEAR

Figure 8.2 – Normal probability densities modeling for the 3 clusters Ck .

Since we are considering for the classification the brightness temperatures, it is reasonable
to select for the convergence distance δ a value of 0.01 K. Indeed, this value is 10 times smaller
than the measurement error of the most accurate SEVIRI IR channel [149].

It is worth pointing out that we also applied this clustering to a logarithmic transform
of the BT(n) samples and considered that the population within each class follows a normal
distribution. However, comparisons similarly performed as in section 8.5 (not shown) demon-
strated lower classification confidence than the abovementioned approach.

8.3.3 Initialization scheme

The unsupervised clustering technique is extremely simple yet powerful, but it suffers from
a major drawback in the sense that its results are depending on the initialization of the clus-

ters’ locations C(0)
k [53]. This issue is usually addressed in the literature by a Monte Carlo

scheme [164]. It consists to repeat the clustering a large number of times by varying the ini-
tialization. One is then able to build up some probability density function of the clustering
results and select the optimal solutions accordingly. Such technique is however unrealistic
given our constraint of operational processing.

Instead, we have developed a method to make a crude estimation of the width ∆ of the

clear–sky class which allows us to initialize C(0)
k . This is achieved by considering 10 years

(from 1991 to 2001) of skin surface temperatures Ts from the European Centre for Medium–
Range Weather Forecasts (ECMWF) ReAnalysis project (ERA–40) [169] which are available
every 6 hours on a 0.25◦ × 0.25◦ grid. The main assumption is that the surface temperature is
the major factor of variation of the satellite’s BTs and that we are neglecting the contribution
of the atmosphere. Therefore, the skin surface temperature can be used as a proxy [46].

These data once reprojected into the SEVIRI FOV are used to compute for every pixel and
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each of the 4 times of day t
∆(d, t) = T(max)

s − T(min)
s (8.1)

at a given date d from the previous 60–days Ts time–series. We can finally estimate a climatol-
ogy of ∆ for every pixel by taking the 95 % percentile of instantaneous ∆(d, t) values acquired
in a total period of 10 years. Such climatology can be generated either on a monthly or a
seasonal basis. However, to simplify the implementation of the (linear) interpolation scheme
according to the current date, a monthly climatology is considered. It is worth pointing out
that the satellite’s BTs are affected by the limb darkening effect while such effect is neglected
when the skin surface temperatures are reprojected. Nevertheless, its impact is limited due
to the fact that only the width of the clear–sky class, i.e. a difference of temperatures (equa-
tion 8.1), is considered.

The initialization scheme of the 3 C(0)
k centroı̈ds is the following (from clear–sky to thick

clouds):

1. For C(0)
2 : µ

(0)
2 = BT(max) − 1

2 ∆ and σ
(0)
2 = ∆/3.25,

2. For C(0)
1 : µ

(0)
1 = µ

(0)
2 −∆ and σ

(0)
1 = ∆/3.25,

3. For C(0)
0 : µ

(0)
0 = BT(min) and σ

(0)
0 = ∆/3.25, provided that it is meaningful (µ(0)

0 <

µ
(0)
1 −

1
2 ∆).

In some restricted cases where 3 clusters cannot be initialized, we fall back on a 2 clusters’
search problem (C(0)

2 and C(0)
1 ). If the samples do not allow us to initialize 2 distinct clusters

at a distance ∆, no clustering is performed. The time–series is then assumed to be entirely
clear–sky and the pixel is flagged accordingly.

The initial estimation of the clear–sky standard deviation σ
(0)
2 from the difference ∆ be-

tween the maximum and minimum samples of a population is given by [158]. The choice of

the same value for the initial cloudy standard deviations σ
(0)
1 and σ

(0)
0 is only done to ensure

that the clear–sky class has an initial width of ∆.

We have to stress that despite the fact that we rely on NWP ancillary data, their impact is
mitigated since only a derived climatology is used in our method for the initial locations of

the clusters C(0)
k , while other algorithms use reanalyzes of the current day to estimate their

threshold values between clear–sky and cloudy conditions.

8.4 Results

Even if our method can be applied to the SEVIRI 3.9 µm band during night–time, its contami-
nation by solar reflected radiation during day–time, infringing our assumptions in section 8.2,
prevents its use. Moreover, this channel is almost exclusively used in major cloud detection
schemes found in the literature on BTD threshold tests. Indeed, the fact that the water cloud
emissivity is lower in this channel [71] allows to specifically discriminate warm (low) clouds
from the clear–sky surface signal during night–time. However, our algorithm cannot be ap-
plied to BTD time–series since such differences are highly dependent on the atmospheric state
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(water vapor content and temperature profile) which can drastically changed from day to day
resulting in the superposition of both clear–sky and cloudy scenes’ classes. Therefore, only
the SEVIRI thermal channels, i.e. at 8.7, 10.8 and 12 µm, will be considered in the following.

8.4.1 Dataset

For the sake of simplicity, we have selected one week of SEVIRI data, from March 11 to 17
2007, on which our algorithm was applied. Indeed, this week was also selected to perform the
validation of the GERB Edition 1 products SEVIRI scene identification (see chapter 7), thus
limiting the amount of storage needed. Since the climatological ∆ dataset is only available ev-
ery 6 hours, we can restrict our comparisons to an hourly basis without any loss of generality
instead of the 15 minutes SEVIRI repeat cycle.

8.4.2 Monthly climatology ∆ of the clear–sky class’ width

A typical illustration of the climatological dataset ∆ used as ancillary information for the clear–
sky class’ initialization is given in figure 8.3 for March at 0:00 UTC. It is worth pointing out that
the ECMWF ERA dataset is neglecting the somehow limited diurnal cycle of the sea surface
temperature by assuming a constant daily value. This results in a constant daily climatology
∆ over the ocean for each month.

Figure 8.3 – Monthly climatology of ∆ [K] for March 15 at 0:00 UTC.

8.4.3 Example of cloud masks

Figure 8.4 summarizes the results of our technique applied to the 8.7, 10.8 and 12.0 µm chan-
nels as a false–color composite image for March 11 2007 at 0:00 UTC. The overall level of
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agreement between these 3 masks is about 92.19 %. However, it varies according to the geo-
type with 90.52 % for ocean, 94.19 % for vegetation and 96.47 % for desert.

Figure 8.4 – False–color composite from the 8.7 (red), 10.8 (green) and 12.0 µm (blue) cloud masks on
March 11 2007 at 0:00 UTC. White pixels are flagged cloudy, while the blacks are associated to clear–sky
in the 3 channels by our algorithm. Red / green / blue pixels are flagged cloudy only by their associated
band’s cloud mask, while cyan / yellow / magenta pixels are flagged by two associated cloud masks.

One has to note that the clustering technique adopted in our scheme does not compromise
the near–realtime constraint of the GERB processing. Such constraint requires that the overall
processing time for one repeat cycle should not exceed 15 minutes which is the available time
frame between 2 SEVIRI acquisitions. An optimized implementation allows our method to
run in less than 5 minutes on a single i7 core requiring as little as 200 MB of RAM to process a
single IR channel from one repeat cycle.

8.4.4 Sensitivity to the initialization scheme

As we already mentioned in section 8.3.1, the result of any clustering algorithm is sensitive to
the initial clusters’ locations. It was implicitly assumed in section 8.3.3 that a realistic choice
of these locations based on a derived skin surface temperatures climatology should alleviate
this problem. To test this assumption, we have ran our algorithm by considering a ±10 %
variation of the clear–sky class’ width ∆ which in turns results in a different estimation of the
initial parameters of the classes’ distributions.

Table 8.1 illustrates such analysis which is limited to 4 hours of a single day. As expected,
the highest sensitivity occurs at noon. Indeed, it is around that time of the day that the tem-
peratures reach their highest values and therefore that the classes are the widest. One can also
note that the sensitivity increases with the wavelength of the SEVIRI channel. Nevertheless,
according to this table, a change of 10 % on ∆ only results at most in a variation of 1.76 % of
the pixels for the cloud classification.
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Table 8.1 – Number of pixels (in percent) associated to a different cloud flag according to a multiplication
factor of ∆ relatively to a factor of 1.0 for March 11 2007.

Band [µm] Factor 00:00 06:00 12:00 18:00

0.9 1.29 1.30 1.43 1.32
8.7 1.0 0.00 0.00 0.00 0.00

1.1 1.19 1.20 1.26 1.19

0.9 1.35 1.35 1.59 1.34
10.8 1.0 0.00 0.00 0.00 0.00

1.1 1.24 1.22 1.39 1.20

0.9 1.53 1.49 1.76 1.55
12 1.0 0.00 0.00 0.00 0.00

1.1 1.39 1.36 1.55 1.34

8.5 Comparisons

In the following we compare our method to 2 other algorithms which are routinely applied
to SEVIRI data. The first scheme is the Cloud Mask (CLM) available from the Meteorological
Product Extraction Facility (MPEF) at EUMETSAT [100] which is disseminated together with
the Level 1.5 SEVIRI radiances to the users’ community. Its products are currently embedded
within the GERB Edition 1 L20 data, due to the lack of native cloud mask information during
night–time in the GERB processing. The second method is the Cloud Mask (CMa) algorithm
from the NWCSAF [47]. Such scheme currently represents a state–of–the–art technique for
satellite cloud detection. Thus, its associated dataset will be considered as the reference truth
to which our results and the MPEF CLM will be compared (reference dataset).

8.5.1 Datasets

As we mentioned in the introduction, both schemes rely on threshold tests either on single or
pairs of channels compared against clear–sky predicted values. For night–time, only IR infor-
mation is used through BTs and BTDs while during day–time, visible and near–infrared (NIR)
(1.6 µm) observations supplement them through reflectances and differences of reflectances
(MPEF CLM). Moreover, textural tests based on spatial standard deviation of BTs, reflectances
and BTDs (NWCSAF CMa) are also applied on available measurements.

It is obvious that our IR–only scheme can not compete with algorithms fully exploiting
the additional visible and NIR measurements available during day–time. Therefore, we will
restrict the comparisons to night–time scenes to select the best merging scheme in section 8.5.2.

8.5.1.1 MPEF CLM

The MPEF CLM was developed to provide a ”robust, efficient, easy–to–maintain and accurate
cloud processing tool” [100]. The clear–sky visible and NIR thresholds are inferred by build-
ing weekly reflectance maps from previous days’ clear–sky results, while values for the dif-
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ferences of reflectances are estimated using linear relationships of static coefficients with mea-
sured reference reflectances. On the other side, the clear–sky BT thresholds are first guessed
by averaging neighboring clear–sky pixels BTs from the previous repeat cycle provided that
the averaging is statistically meaningful. Otherwise, the previous technique is applied to the
current repeat cycle. However, if the BT standard deviation of those neighboring clear–sky
pixels is large, then the clear–sky BT values are estimated at TOA through radiative trans-
fer computations using ECMWF NWP global forecast pressure, temperature and humidity
profiles together with skin surface temperatures. The clear–sky BTD thresholds are then com-
puted using linear relationships of static coefficients with the previously inferred clear–sky
BTs. Spatial texture tests based on standard deviation over 3× 3 SEVIRI pixels for a visible as
well as an IR channel are also used to detect clouds. Finally, it is worth noting that the MPEF
CLM products, at least for the considered comparison week, are limited to viewing zenith
angles below 70◦.

8.5.1.2 NWCSAF CMa

Unlike the MPEF CLM scheme, the NWCSAF CMa algorithm gives a central role to the
ECMWF NWP forecasts (skin surface temperature, integrated water vapor and ozone con-
tents) for the IR channels’ tests. Indeed, TOA clear–sky BT and BTD thresholds are estimated
from radiative transfer model look–up tables according to these forecast fields, scene geome-
tries and the surface types as well as elevation and climatological ancillary datasets. A simi-
lar approach is adopted for TOA clear–sky visible and NIR reflectance thresholds which are
inferred from the Cox–Munk ocean model [38] or monthly climatological land surface re-
flectances.

Moreover, since emphasis of the NWCSAF CMa algorithm was given for nowcasting and
very short term forecasting, false cloud detection and cloud misdetection have to be limited.
This is achieved by applying to the threshold values corrective factors or offsets tuned accord-
ing to a manual training database.

The spatial texture tests based on standard deviation over 3× 3 SEVIRI visible reflectances,
BTs and BTDs can raise some concerns about their adequacy. Indeed, if we consider as a theo-
retical construct the ideal case of a perfect clear–cut cloud border from one pixel to its neighbor,
it is obvious that this neighboring clear–sky pixel will exhibit a larger spatial standard devi-
ation than a pixel completely surrounded by clear–sky scenes. Therefore, it will be flagged
as cloudy resulting in an artificial growth of the cloud’s size. This is illustrated in figure 8.5
representing the comparisons between the MPEF CLM and NWCSAF CMa cloud masks over
the Southern area of the Atlantic ocean where pixels only flagged as cloudy by the NWCSAF
CMa local spatial textures tests are highlighted in white. Thus to objectively perform the fol-
lowing comparisons, the results of an ”augmented” GERB IR method consisting to apply the
NWCSAF CMa spatial filtering as a post–processing will also be considered.

8.5.2 Merging scheme

The strength of our method lies in the fact that it can be independently applied to each SEVIRI
IR window channel. However, as illustrated in figure 8.4, these results are only differing by a
small amount of pixels since information extracted from these single channel signals are more
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Figure 8.5 – MPEF CLM and NWCSAF CMa comparison map for an area located in the Southern part
of the Atlantic ocean on March 11 2007 at 0:00 UTC. Agreement between the 2 cloud masks corresponds
to black (clear–sky) and red (cloudy), while white is associated to pixels only flagged as cloudy by the
NWCSAF CMa local spatial texture tests.

or less correlated. This is due to surface emissivities having limited variations over those 3
channels as well as to channel weighting functions over altitude for cloudy scenes [126]. Nev-
ertheless, we could wonder if the results from these 3 channels could be either partially or
completely exploited for pixels which do not reach unanimity. To investigate such assump-
tion, table 8.2 gives the ocean pixels relative statistics according to the cloud flag in each chan-
nel with respect to the NWCSAF CMa cloud flag. It is expected that an agreement between
the 3 channels’ cloud masks is associated to the highest amount of correctly identified pixels
(72.40 % for clear–sky and 95.63 % for cloudy scenes). However, agreements between any pair
of channels’ cloud masks do not allow meaningful statistical discrimination. Similar tables for
vegetation and desert pixels (not shown) lead to the same conclusion.

Table 8.2 – Statistics of ocean pixels according to their 8.7, 10.8 and 12 µm channel cloud masks (cs=clear–
sky, CL=cloudy) with respect to their NWCSAF CMa flag (cloud contaminated and opaque cloudy classes
are aggregated) and their relative fraction in percent for March 11 2007 at 0:00 UTC.

GERB IR cloud masks NWCSAF CMa Pixels

8.7 µm 10.8 µm 12 µm cs CL fraction

cs cs cs 72.40 27.60 38.49
cs cs CL 56.99 43.01 3.13
cs CL cs 39.70 60.30 0.83
CL cs cs 26.39 73.61 1.15
cs CL CL 40.59 59.41 1.86
CL cs CL 37.58 62.42 0.76
CL CL cs 18.33 81.67 1.75
CL CL CL 4.37 95.63 52.03

Therefore, our proposed merging scheme is to only consider a single channel’s cloud mask
per surface type. It is obvious that the band associated to the largest dynamic range of the
measured signal, thus allowing for the best delineation, between clear–sky and cloudy con-
ditions for a specific geotype will exhibit the highest cloud detection confidence. Since such
analysis which is only achievable through theoretical radiative transfer calculations is out of
the scope of this chapter, we will select for each geotype the channel’s cloud mask giving the
best comparisons’ results with respect to the NWCSAF CMa cloud flag.

Table 8.3 gives the daily averages in percent of pixels where the GERB IR cloud mask
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agrees with the reference dataset restricted to the night scenes for the 3 broad geotypes and IR
channels. Since the number of night scenes within the FOV varies with the time of day, these
averages are weighted accordingly. We have also computed the weekly means of those daily
averages with their associated uncertainties at 2σ. One can notice that it is not possible to
conclude which channel is the most statistically suitable for each surface type. Nevertheless,
it makes sense to select the channel associated to the highest weekly mean agreement with
the NWCSAF CMa for each geotype, which is the 8.7 µm band for ocean surface type and
the 12 µm channel for land geotypes (vegetation and desert). Thus, in the following, such
merging of the channels’ cloud masks is considered for the GERB IR cloud detection.

8.5.3 Intercomparisons

We first investigate the performance of the GERB IR and the MPEF CLM cloud detection
schemes with respect to the NWCSAF CMa dataset during night–time SEVIRI measurements.
As we mentioned previously, such conditions guarantee that no day–time measurements are
being used in the MPEF CLM and NWCSAF CMa processing. We then similarly investigate
their cloud detection skills during day–time conditions where it is expected that the GERB IR
method will give degraded results.

8.5.3.1 Night–time

We have computed the weighted averages in percent of pixels where the MPEF CLM and
GERB IR cloud masks agree with the reference dataset restricted to the night scenes for the
3 geotypes and independently from the surface type in table 8.4. Since no spatial textural
filtering is performed within the GERB IR cloud detection algorithm compared to the 2 other
schemes, we also have calculated the agreement with an ”augmented” GERB IR method by
performing the NWCSAF CMa spatial filtering as post–processing (denoted in table by ”GERB
IR+”). As expected, the ”augmented” GERB IR method always performs better than without
the spatial filter.

It can be noted that the MPEF CLM systematically exhibits a lower agreement than the
standard GERB IR cloud detection over all geotypes for night–time conditions. The difference
of performance is limited for ocean (0.39 %) and vegetation (0.42 %) between these 2 schemes.
It is however significantly larger for desert (3.69 %). This demonstrates that our clustering
scheme on BT time–series of a single IR channel over warm surfaces is particularly well suited
compared to multispectral threshold tests. Moreover, the benefit of the filtering process in the
”augmented” GERB IR method drastically increases the cloud detection performance over the
ocean to reach almost the same level than over vegetation. This can be explained by the fact
that such filtering is more efficient for ocean than vegetation and desert surfaces since the
ocean clear–sky BTs are more spatially homogeneous. Ocean surfaces thus fulfill more easily
the standard deviation threshold tests at clouds’ edges.

8.5.3.2 Day–time

Table 8.5 similarly gives the weighted means in percent of the MPEF CLM and GERB IR cloud
masks’ agreement with the reference dataset restricted to the day scenes for the 3 geotypes as
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Table 8.4 – Weighted means according to the number of night pixels of the hourly pixels’ agreement (in
percent) of the MPEF CLM, GERB IR cloud masks with respect to the NWCSAF CMa cloud mask for
August 11–17 2007. GERB IR+ designates the GERB IR cloud mask supplemented with the NWCSAF
CMa spatial texture filter.

Cloud mask Geotype

ocean vegetation desert all

MPEF CLM 85.73 88.70 91.19 87.20
GERB IR 86.12 89.12 94.88 88.02
GERB IR+ 89.97 90.67 96.02 90.94

well as independently from the surface type. It is obvious that the use of the additional SE-
VIRI visible and NIR measurements which are available during day–time is an asset for both
the MPEF CLM as well as the NWCSAF CMa algorithms compared to the GERB IR cloud
detection. Indeed, typical clouds which do not exhibit a distinct signature in the thermal IR
channels from the background clear–sky scenes such as stratocumulus can be easily detected
by their highly reflective behavior in the visible spectrum while their associated clear–sky re-
flectance is very low. This explains the lower performance of the GERB IR method compared
to the MPEF CLM for ocean and vegetation while it is the reverse for desert which is char-
acterized by a high visible albedo, thus limiting the sensitivity of visible channels to clouds’
detection over such surfaces.

Table 8.5 – Weighted means according to the number of day pixels of the hourly pixels’ agreement (in
percent) of the MPEF CLM, GERB IR cloud masks with respect to the NWCSAF CMa cloud mask for
August 11–17 2007. GERB IR+ designates the GERB IR cloud mask supplemented with the NWCSAF
CMa spatial texture filter.

Cloud mask Geotype

ocean vegetation desert all

MPEF CLM 84.13 89.24 90.27 86.21
GERB IR 82.91 83.27 93.11 84.32

GERB IR+ 88.06 85.99 93.70 88.27

8.5.3.3 All–time

In this section we perform the overall comparisons by considering all together the hourly day
and night scenes over one week. These results are given in table 8.6. One can notice that the
performance of the GERB IR method almost reaches the MPEF CLM for ocean but it is lower
for vegetation when the complete diurnal cycle is taken into account. However, the GERB
IR scheme still outperforms the MPEF CLM algorithm for desert. If the performance of the
MPEF CLM is slightly higher for all geotypes than for the GERB IR method (86.70 % instead
of 86.17 %), it is the reverse when the latter is supplemented by the NWCSAF spatial filtering
(89.60 % compared to 86.70 %).

Due to the fact that MPEF CLM and NWCSAF CMa algorithms make use of the visible and
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Table 8.6 – Means of the hourly pixels’ agreement (in percent) of the MPEF CLM, GERB IR cloud masks
with respect to the NWCSAF CMa cloud mask for August 11–17 2007. GERB IR+ designates the GERB
IR cloud mask supplemented with the NWCSAF CMa spatial texture filter.

Cloud mask Geotype

ocean vegetation desert all

MPEF CLM 84.93 88.97 90.73 86.70
GERB IR 84.51 86.20 94.00 86.17

GERB IR+ 89.01 88.33 94.87 89.60

NIR SEVIRI channels during day–time, it is expected that the cloud detection skills of both the
MPEF CLM as well as the GERB IR schemes are varying during the course of the day. There-
fore, we have plotted in figure 8.6 the hourly comparisons averaged over one week. One can
notice that the MPEF CLM method is exhibiting large diurnal variations of its performance for
land surfaces. It is particularly obvious for desert where the probability of detection (POD)
drops of about 18 % in the morning and 10 % in the beginning of the afternoon. This clearly
points out some problems in the MPEF CLM processing over such surfaces. In contrast, the
curve associated to ocean is smoother denoting a smaller sensitivity of its multispectral tests
with respect to the availability of additional information during day–time. Concerning the
standard and ”augmented” GERB IR techniques, there is a drop in their cloud detection per-
formances around 12:00 as expected, the larger drop occurring for vegetation. Consistently
with table 8.6, we can observe that both GERB IR techniques demonstrate significantly lower
PODs than the MPEF CLM for an extended period of the day over vegetation compared to the
ocean and desert.

As previously mentioned, the satellite’s measured radiances are affected by the limb dark-
ening effect. Such effect is due to the increased optical path length through the atmosphere
with increasing viewing zenith angles. It results in a larger contribution of the colder atmo-
sphere to the measured signal and thus in the decrease of the BT. This effect is expected to
reduce the BT difference between clear–sky and cloudy scenes and therefore the performance
of our algorithm at low viewing zenith elevation. Moreover, it is expected that our assump-
tion consisting to neglect the impact of the atmospheric path length in the estimation of the
clear–sky class’ width ∆ at large zenith viewing angles is not valid anymore. Such facts are il-
lustrated in figure 8.7 where we have plotted the POD according to the viewing zenith angle θ.
It can be noted that the detection performances of both GERB IR(+) and MPEF CLM schemes
drastically decrease compared to the NWCSAF CMa algorithm. As expected, our GERB IR
method is worse at higher viewing zenith angles (60◦) than the MPEF CLM since it only relies
on 2 channels (see section 8.5.2 for the reduction of 3 channels to 2) while it delivers similar
results elsewhere. Nevertheless, when coupled with the NWCSAF CMa spatial texture cloud
filter, our GERB IR+ technique outperforms the MPEF CLM at any viewing zenith angles. It
is worth pointing out that the variations of these curves for viewing zenith angles below 60◦

can be explained by the inhomogeneous distribution of geotypes in the FOV.

8.5.3.4 Limitations

Considering the assumptions of section 8.2, it is obvious that scenes characterized by low BT
contrast between cloudy and clear–sky conditions, i.e. when clear–sky and thin or warm low



8.5 Comparisons 137

75

80

85

90

95

100

Pr
ob

ab
ili

ty
 o

f 
de

te
ct

io
n 

[%
]

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
75

80

85

90

95

100

Pr
ob

ab
ili

ty
 o

f 
de

te
ct

io
n 

[%
]

00:00 06:00 12:00 18:00 00:00

(a) ocean

75

80

85

90

95

100

Pr
ob

ab
ili

ty
 o

f 
de

te
ct

io
n 

[%
]

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
75

80

85

90

95

100

Pr
ob

ab
ili

ty
 o

f 
de

te
ct

io
n 

[%
]

00:00 06:00 12:00 18:00 00:00

(b) vegetation

75

80

85

90

95

100

Pr
ob

ab
ili

ty
 o

f 
de

te
ct

io
n 

[%
]

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
75

80

85

90

95

100

Pr
ob

ab
ili

ty
 o

f 
de

te
ct

io
n 

[%
]

00:00 06:00 12:00 18:00 00:00

(c) desert

75

80

85

90

95

100

Pr
ob

ab
ili

ty
 o

f 
de

te
ct

io
n 

[%
]

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
75

80

85

90

95

100

Pr
ob

ab
ili

ty
 o

f 
de

te
ct

io
n 

[%
]

00:00 06:00 12:00 18:00 00:00

(d) all surfaces

Figure 8.6 – Hourly means of the weekly pixels’ agreement (in percent) of the MPEF CLM (plain), GERB
IR (dashed) and GERB IR+ (dotted–dashed) cloud masks with respect to the NWCSAF CMa cloud mask
over (a) ocean, (b) vegetation, (c) desert and (d) all surfaces for August 11–17 2007. GERB IR+ designates
the GERB IR cloud mask supplemented with the NWCSAF CMa spatial texture filter. The time scale
corresponds to the SEVIRI repeat cycles.
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Figure 8.7 – Means of the weekly pixels’ agreement (in percent) of the MPEF CLM (plain), GERB IR
(dashed) and GERB IR+ (dotted–dashed) cloud masks with respect to the NWCSAF CMa cloud mask
binned according to the viewing zenith angle θ for August 11–17 2007. GERB IR+ designates the GERB
IR cloud mask supplemented with the NWCSAF CMa spatial texture filter.

clouds classes are overlapping, will be missed by our scheme as clear–sky. This is especially
the case for low warm clouds (stratocumulus) over the ocean whose satellite signal results
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in a BT decrease of only a couple of K compared to their associated clear–sky ocean. The
region depicted in figure 8.8 typically illustrates such issue. We have plotted in panel 8.8(a)
the comparison between the GERB IR+ and NWCSAF CMa cloud masks where the eggplant
color designates pixels identified as clear–sky by the GERB algorithm while being specifically
detected as cloudy by the NWCSAF low water cloud threshold test (BTD10.8−3.9 or BTD12−3.9).
Panel 8.8(b) represents the SEVIRI 8.7 µm BT whose color scale ranges from 274 to 290 K used
over water surfaces in the GERB IR+ scheme. It is obvious that these eggplant colored areas
are characterized by BTD between cloudy and neighboring clear–sky pixels of only about 2 K.

(a) (b)

Figure 8.8 – (a) GERB IR+ and NWCSAF CMa comparison map for an ocean area located in the West
of the Namibian coast on March 11 2007 at 0:00 UTC. The eggplant color designates pixels identified as
clear–sky by the GERB algorithm while being specifically detected as cloudy by the NWCSAF low water
cloud threshold test (BTD10.8−3.9 or BTD12−3.9). Orange color is associated to pixels flagged clear–sky
by the GERB algorithm and cloudy by any other combination of NWCSAF threshold tests. Red depicts
pixels detected as cloudy by the GERB and as clear–sky by the NWCSAF schemes. Agreement between
the 2 cloud masks corresponds to black (clear–sky) and white (cloudy). (b) Associated SEVIRI 8.7 µm BT
measurements.

Similarly, cloud edges in broken cloud fields are also falsely detected as clear–sky by our
method. This is shown in the lower left corner of panel 8.8(a) in orange. From panel 8.8(b)
we can notice that such pixels also lack a sufficient SEVIRI 8.7 µm BT contrast with respect to
clear–sky conditions.

8.6 Conclusions

This chapter presents a novel technique for cloud detection in geostationary imagery using
only thermal IR channels. It is based on a yet simple but robust approach that for every pixel
clear–sky and cloudy conditions of a 60–days BT time–series are drawn from clear–sky and
cloudy normal distributions of BTs. Such modeling allows us to perform a kNN clustering
approach to estimate their parameters and thus to classify all BTs of the time–series as clear–
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sky or cloudy. Instead of relying on NWP or reanalysis fields computed at the acquisition
time of the imagery to classify as it is usually the case for operational algorithms found in the
literature, our clustering scheme is initialized using a realistic width of the BT clear–sky class.
Such width is estimated from a 10–years climatology of reanalysis skin surface temperatures.
Therefore, our algorithm is only making use of the satellite measurements and of an ancillary
clear–sky class’ width dataset for its initialization. It avoids fixed threshold values but instead
dynamically estimates these values thanks to the clustering technique.

Comparisons of our technique and of the MPEF CLM scheme with respect to the state–
of–the–art NWCSAF CMa algorithm have shown that we generally outperform the MPEF
processing during night–time as well as during day–time even if the latter makes use of the
additional satellite’s visible and NIR information while we only use a single selected thermal
IR band for ocean and another single channel for land geotype supplemented by the NWC-
SAF CMa spatial texture filter. However, results should be mitigated during day–time over
vegetation since it is the MPEF CLM which is exhibiting better cloud detection performance
in this case. This can be explained by the larger heterogeneity of this geotype’s BT response,
thus broadening its associated clear–sky distribution which then tends to overlap with the
intermediate cloudy conditions.

One would expect a reduced angular accuracy of our method compared to MPEF due to
the fact that our ancillary dataset used for the initialization of the clustering is not corrected
for the increasing atmospheric optical path length at large zenith viewing angles while it is
the case for the MPEF thresholds. It turns out to be otherwise: our detection performance
is always higher than for the MPEF algorithm. Nevertheless, we notice in the comparisons
with the NWCSAF CMa technique a large decrease of performance from 70◦ on. A possi-
ble improvement could be to consider a TOA clear–sky BTs climatology from satellite’s mea-
surements including large viewing zenith angle measurements to estimate an new ancillary
dataset.

Despite the fact that our method exhibits better results than the MPEF scheme, we have
identified specific conditions for which it systematically fails. Indeed, warm low clouds above
ocean are typically characterized by a difference in their thermal signature of a few K com-
pared to their associated clear–sky scenes. Both clear–sky and intermediate cloudy BT distri-
butions tend to overlap and are thus infringing the assumptions of our technique. It results
that such stratocumulus scenes are falsely classified as clear–sky. Nevertheless, preliminary
investigations have shown that a simple BTD10.8−3.9 threshold test inspired by the MODIS
cloud detection algorithm can drastically decrease this level of misidentification. The selection
of a threshold value of 6 K promisingly increased the stratocumulus detection performance
from 44 to 71 % (according to NWCSAF low water cloud threshold test) for March 11 2007 at
0:00 UTC. However, further work is still required to assess the optimum value over day– and
night–time.

Further improvements could also be investigated. The ECMWF ERA–40 dataset used to
compute our ancillary clear–sky class’ width stops in 2001. It results that the last 10 years
are not considered and hence changes in surface temperature that could have occurred are
ignored. To avoid any resulting bias in our cloud detection, a more recent skin surface temper-
atures climatology should be used to estimate our ancillary initialization dataset. Moreover,
such ECMWF dataset is only currently available on a 6–hourly basis which is too limited to
fully resolve the diurnal cycle, especially in the thermal IR region. It is foreseen in the future
to increase this sampling to 8 times per day (every 3 hours) but this would require the com-
plete recomputation of the ERA–40 dataset. Furthermore, the skin surface temperatures are
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currently used all together to estimate the clear–sky class’ width ∆, even if they are associated
to cloudy conditions. In the future, such cloudy skin surface temperatures could be screened
to only take into account clear–sky conditions for the computation of ∆. Finally, we have per-
formed our comparisons by considering as reference the NWCSAF CMa product. However,
since this algorithm uses different multispectral tests during day– (visible, NIR and thermal
IR) and night–time (thermal IR), its cloud detection performance is varying with time. A com-
pletely independent validation of our method could be performed by comparing its results
with CloudSat [155] products. However, such low orbiting platform raises some concerns
about the simultaneity, collocation and spatial coverage of its acquisitions when compared to
SEVIRI measurements.
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Chapter 9

Summary and perspectives

THIS work is exclusively focused on the scene identification scheme developed within the
Geostationary Earth Radiation Budget (GERB) L20 operational processing performed

at Royal Meteorological Institute of Belgium (RMIB). As explained previously, such scheme
holds a central position in the radiance–to–flux conversion of the GERB shortwave measure-
ments. In this scope, we had to develop a scene identification (sceneID) algorithm allowing
to select the state–of–the–art Clouds and the Earth’s Radiant Energy System (CERES) short-
wave angular dependency models (ADMs). This step required a specific approach in the
cloud properties estimation. Therefore, a near–realtime processing chain was prototyped on
Meteosat–7 (MS7) data prior to the launch of the first GERB instrument.

The literature review showed the importance of an adequate estimation of the clear–sky
conditions to accurately perform cloud optical depth retrievals. This explains why we have
devoted a significant amount of time to the development and the validation of a novel com-
posite top of the atmosphere (TOA) clear–sky visible reflectances algorithm. The next step
was to select the best approach for estimating the needed cloud properties according to the
processing constraints, mainly the near–realtime delivery of the products. We decided to im-
plement a non–iterative cloud optical depth retrieval method relying on comparisons with
fixed radiative transfer model (RTM) calculations without any a priori knowledge of clouds in
the field–of–view (FOV). Such comparisons were achieved through an innovative look–up ta-
bles (LUTs) parameterization, relative to the previously estimated clear–sky reflectances. The
cloud thermodynamic phase detection was limited to a crude threshold test on the infrared
(IR) brightness temperature (BT) because the MS7 imager had only 3 channels (visible, win-
dow IR and water vapor), knowing that the estimation of the cloud optical depth is ambiguous
for thin clouds using only visible information. Finally, a cloud conservative cloud flag was de-
rived for pixels whose cloud optical depth is above a fixed threshold. We then performed to
some extent consistency checks between GERB and CERES cloud properties retrievals. How-
ever, the adopted strategy to compare averaged properties over almost simultaneous collo-
cated and coangular GERB–like and CERES footprints showed its limits despite the fact that
more than 15 months of day–time data was considered. Indeed, issues resulting from the re-
duced number of cloudy pairs available over desert surfaces led to unreliable statistics. Other
surfaces exhibited discrepancies to the expected one–to–one relationship between GERB and
CERES retrievals. These discrepancies could be explained by the large MS7 visible band ex-
tending up to the near–infrared (NIR) region and resulting in a significant sensitivity of its
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measurements to the cloud particle size. We also investigated a possible correction scheme
(homogenization) on GERB cloud optical depths to improve their matching with CERES re-
trievals. However, such transformation was not considered further in this work. Instead, we
opted for an accurate analysis of the discrepancies allowing to identify the current limitations
of the GERB sceneID.

Once Spinning Enhanced Visible and InfraRed Imager (SEVIRI) data were routinely avail-
able, we carried out the adaptation of the previously developed sceneID to this new imager.
Compared to the single visible channel of MS7, we had to deal with a pair of narrower visible
bands for SEVIRI. This required to modify the composite clear–sky visible reflectances algo-
rithm to take into account the increased sensitivity with respect to vegetation growing and
changing seasons especially in the Sahel region. The cloud optical depth LUTs were simply
recomputed for the two SEVIRI channels using the same RTM. Since these channels are sig-
nificantly narrower than the band parameterization of the RTM, a lower reliability for the SE-
VIRI imager is observed. Comparisons between GERB and CERES retrievals both on SEVIRI
sceneID data suggested that our clear–sky reflectance estimations are systematically underes-
timated. Sun–glint retrievals also suffer from systematic overestimation of cloud occurrences
due to the empirical choice of parameters in the developed sun–glint visible clear–sky re-
flectances model. Moreover, the cloud thermodynamic phase detection implemented in the
first edition of the RMIB GERB Processing (RGP) software collection is limited to a crude
threshold test on the 10.8 µm BT. This results in a significant underestimation of the ice clouds
occurrence compared to the CERES sceneID. Comparisons of the GERB and CERES sceneID
retrievals also highlighted the need of a fresh snow/ice as well as an aerosol dust detection
scheme, prior to any cloud properties retrieval, to avoid current misidentification of such
events with clouds. All these issues result in discrepancies in the TOA solar fluxes due to
ADM misselection compared to the CERES sceneID.

Finally, we performed a feasibility study on a cloud detection algorithm using only SEVIRI
IR channels without any use of numerical weather prediction (NWP) ancillary information as
it is usually the case with the major cloud detection schemes. We showed that such algo-
rithm, simply relying on measurements and on a clustering approach using a climatology
for its initialization, exhibits an overall performance in cloud detection similar to the opera-
tional European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)
Meteorological Product Extraction Facility (MPEF) scheme when the Nowcasting and Very
Short–Range Forecasting SAF (NWCSAF) cloud mask product is considered as reference.

The following summarizes our contributions to the field in the scope of an operational
implementation:

• development of a composite TOA clear–sky visible reflectance algorithm using tempo-
ral information from geostationary Earth orbit (GEO) imagers providing results at the
native spatial resolution of the imager, by (i) taking into account the scene geometry
variability over the time–series, the spatial climatology of the cloud coverage for the
length of the time–series as well as (ii) suggesting a theoretical model for the clear–sky
reflectances in sun–glint affected areas,

• development of a non–iterative cloud optical depth retrieval scheme for GEO imagers
using weekly updated TOA clear–sky visible reflectances and a parameterization of the
LUTs for fast inversion, together with a consistent cloud mask through a threshold test
on the cloud optical depth,
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• development of a self–adaptive night–time cloud detection method using temporal in-
formation from GEO imagers providing results at the native spatial resolution of the
imager, by using only a single IR band over the ocean, another IR channel over the land
and a climatological ancillary dataset allowing to estimate dynamically cloudy thresh-
old values.

Future perspectives can be divided into two groups depending on their short–term or
long–term horizon. Short–term improvements are foreseen to be part of the Edition 2 RGP as
updates or tuning of current operational schemes. Long–term perspectives are usually either
additional features to products or completely new investigations on methods which could
achieve better accuracy. It is needless to say that the CERES cloud properties dataset, even
limited to a single day–time over one week, is invaluable in the objective assessment of the
discrepancies between GERB and CERES sceneIDs as well as in any tuning of parameters.

As we mentioned previously, our clear–sky algorithm is underestimating the true values.
We are thus planning, in a short–term perspective, to increase the rank (percentile) of the se-
lected ratio (see chapter 6, section 6.3.1.1) which is used to infer the clear–sky reflectance. Such
selection of the rank could even be performed according to the surface type. Moreover, the
parameters of the clear–sky sun–glint reflectance model need to be chosen to avoid any spatial
discontinuity at the border as well as artefacts within the sun–glint region in the cloud mask.
While these improvements could be achieved empirically and their validity tested against
CERES retrievals, the estimation of the sun–glint model parameters could also be dynami-
cally derived using our newly developed IR cloud mask. Concerning the long–term view, our
clear–sky algorithm could benefit from recent techniques found in literature for the estimation
of the envelope upper/lower curve from a noisy (clouds) reflectance time–series∗ [26, 78, 180].

The detailed comparisons between GERB and CERES cloud thermodynamic phase re-
trievals illustrated that our current implementation (threshold test on the 10.8 µm BT) is inad-
equate and exhibits a systematic underestimation in the detection of ice clouds. As shown in
the literature review, several multispectral techniques are available. However for the Edition 2
processing, we will most probably use the Moderate Resolution Imaging Spectroradiometer
(MODIS)–like IR scheme [130]†. Indeed, it was found that such method shows small instan-
taneous bias for thick clouds with respect to ground–based observations [190]. For the long–
term, the use of the 1.6 µm SEVIRI channel could be foreseen, but the knowledge of the surface
albedo or the TOA clear–sky reflectance would be required.

To avoid any misclassification of oceanic aerosol dust clouds or fresh snow/ice as clouds,
the Edition 2 sceneID will first rely on an IR multispectral aerosol dust detection [21] and on a
developed snow/ice identification [18] prior to the cloud properties retrieval. State–of–the–art
ice crystals bulk properties parameterizations are appearing in recent literature [15]. Their in-
corporation within user–friendly RTMs such as libRadTran [105] together with precomputed
Mie calculations for water clouds together with the increase of computing power‡, enables us
to perform the complete update of the LUTs used in the cloud optical depth inversion. It is ex-
pected that this LUT inversion will benefit (1) from the improved cloud models compared to

∗However, such techniques are assuming either a positive or negative contribution of the noise to the base signal.
Thus, in our case, cloud shadows which are characterized by lower reflectances than clear–sky scenes should be priorly
identified and filtered out to only keep the positive noisy contribution associated to cloudy scenes.
†We could also possibly check if any improvement over this method could be achieved by considering the Strabala

et al. [157] algorithm.
‡allowing a drastic increase of the angular nodes (from 5 to 2◦ step) together with the number of streams (from 48 to

192)
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the double Henyey–Greenstein phase function parameterization and (2) from the LUTs strati-
fication according to the surface albedo. Moreover, we already assumed that the SEVIRI chan-
nels, being significantly narrower than the band parameterization of the STREAMER RTM,
certainly results in inaccuracies in Edition 1 LUTs. Thus, such issue will definitely be miti-
gated for Edition 2 thanks to the line–by–line RTM used (libRadtran). The GERB and CERES
comparisons also revealed a problem with the fixed threshold value used to flag clear–sky
and cloudy scenes. This needs to be addressed for the next edition processing possibly by
considering a different threshold according to the surface type. Again, an objective tuning
of this threshold could be performed by selecting the values such that the mean cloud frac-
tion over the SEVIRI FOV matches between GERB and CERES sceneIDs. In a long–term per-
spective, our cloud properties retrieval would certainly benefit from the use of the 1.6 µm
channel allowing to select the best ice crystal shape and cloud particle size LUT within an
iterative scheme. This would require first some knowledge on the surface albedo or the TOA
clear–sky reflectance in that band. The free availability of 3–dimensional (3–D) Monte Carlo
RTMs will open new perspectives. One possible investigation could be the use of such code
in 1–dimensional (1–D) mode to overcome the intrinsic limitations of plane–parallel radiative
transfer (RT) modeling at low zenith angles, since any accuracy level is achievable provid-
ing sufficient computing time. However, both perspectives will require significant computing
power both operationally and offline, which is still difficult to achieve nowadays at reasonable
costs.

Finally, our IR cloud detection scheme could benefit as suggested for our clear–sky re-
flectance algorithm from recent techniques in the estimation of the envelope upper curve from
a noisy (clouds) BT time–series. This would not only provide a cloud mask but also TOA
clear–sky BT for several IR channels, thus allowing to estimate the cloud radiative forcing in
such bands and possibly in the whole thermal region.
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[59] L. Gómez–Chova, G. Camps–Valls, J. Calpe–Maravilla, L. Guanter, and J. Moreno.
Cloud–screening algorithm for ENVISAT/MERIS multispectral images. IEEE Trans.
Geosci. Remote Sens., 45(12):4105–4118, 2007. doi: 10.1109/TGRS.2007.905312. 29

[60] L. Gonzalez, A. Hermans, S. Dewitte, A. Ipe, G. Sadowski, and N. Clerbaux. Resolu-
tion enhancement of GERB data. In Proc. EUMETSAT Meteorological Satellite Data Users’
Conference, volume P.29, Bologna, Italy, 2000. 62

[61] L. Gonzalez Sotelino. GERB–CERES Intercomparisons — Update. personal communica-
tion, 2008. 69

[62] Y. Govaerts and M. Clerici. MSG-1/SEVIRI Solar Channels Calibration Commissioning
Activity Report. Technical Report EUM/MSG/TEN/04/0024, EUMETSAT, Darmstadt,
Germany, 2004. 101

[63] Y. Govaerts, A. Arriaga, and J. Schmetz. Operational vicarious calibration of the
MSG/SEVIRI solar channels. Adv. Space Res., 28(1):21–30, 2001. 44, 51, 101

[64] A. Gruber and J.S. Winston. Earth–atmosphere radiative heating based on NOAA scan-
ning radiometer measurements. B. Am. Meteorol. Soc., 59:1570–1573, 1978. 54

[65] G.M. Hale and M.R. Querry. Optical constants of water in the 200nm to 200 µm wave-
length region. Appl. Opt., 12:555–563, 1973. 18

[66] J.E. Harries and D. Crommelynck. The Geostationary Earth Radiation Budget Experi-
ment on MSG–1 and its potential applications. Adv. Space Res., 24(7):915–919, 1999. 3, 61,
80, 122

[67] J.E. Harries, J.E. Russel, J.A. Hanafin, H. Brindley, J. Futyan, J. Rufus, S. Kellock,
G. Matthews, R. Wrigley, A. Last, J. Mueller, R. Mossavati, J. Ashmall, E. Sawyer,
D. Parker, M. Caldwell, P.M. Allan, A. Smith, M.J. Bates, B. Coan, B.C. Stewart, D.R.
Lepine, L.A. Cornwall, D.R. Corney, M.J. Ricketts, D. Drummond, D. Smart, R. Cutler,
S. Dewitte, N. Clerbaux, L. Gonzalez, A. Ipe, C. Bertrand, A. Joukoff, D. Crommelynck,
N. Nelms, D.T. Llewellyn-Jones, G. Butcher, G.L. Smith, Z.P. Szewczyk, P.E. Mlynczak,
A. Slingo, R.P. Allan, , and M.A. Ringer. The Geostationary Earth Radiation Budget
Project. B. Am. Meteorol. Soc., 86:945–960, 2005. 3, 80, 114, 122

[68] F.B. House, A. Gruber, G.E. Hunt, and A.T. Mecherikunnel. History of Satellite Missions
and Measurements of the Earth Radiation Budget (1957–1984). Rev. Geophys., 24:357–377,
1986. 80

[69] Y.X. Hu and K. Stamnes. An accurate parameterization of the radiative properties of
water clouds suitable for use in climate models. J. Climate, 6(4):728–742, 1993. 92



154 Bibliography

[70] P.J. Huber. Robust estimation of a location parameter. Ann. Math. Stat., 35:73–101, 1964.
70, 74

[71] G.E. Hunt. Radiative properties of terrestrial clouds at visible and infra-red thermal win-
dow wavelengths. Quart. J. R. Meteorol. Soc., 99:346–369, 1973. 127

[72] K.D. Hutchison. Application of AVHRR/3 imagery for the improved detection of thin
cirrus clouds and specification of cloud–top phase. J. Atmos. Ocean. Tech., 16:1885–1899,
1999. 37

[73] T. Inoue. On the temperature and effective emissivity determination of semitransparent
cirrus clouds by bispectral measurements in the 10 µm window region. J. Meteor. Soc.
Japan, 63:88–98, 1985. 108

[74] H. Ishida and T.Y. Nakajima. Development of an unbiased cloud detection algorithm
for a spaceborne multispectral imager. J. Geophys. Res., 114:D07206, 2009. doi: 10.1029/
2008JD010710. 32, 103

[75] H. Iwabuchi. Efficient Monte Carlo methods for radiative transfer modeling. J. Atmos.
Sci., 63:2324–2339, 2006. 29

[76] H. Iwabuchi and T. Hayasaka. Effects of cloud horizontal inhomogeneity on the optical
thickness retrieved from moderate–resolution satellite data. J. Atmos. Sci., 59:2227–2242,
2002. 30

[77] D. Jolivet and A.J. Feijt. Cloud thermodynamic phase and particle size estimation using
the 0.67 and 1.6 µm channels from meteorological satellites. Atmos. Chem. Phys. Discuss.,
3:4461–4488, 2003. 36, 65, 67

[78] Y. Julien and J.A. Sobrino. Comparison of cloud–reconstruction methods for time series
of composite NDVI data. Remote Sens. Environ., 114:618–625, 2010. doi: 10.1016/j.rse.
2009.11.001. 143

[79] R. Kandel, M. Viollier, P. Raberanto, J.Ph. Duvel, L.A. Pakhomov, V.A. Golovko, A.P.
Trishchenko, J. Mueller, E. Raschke, R. Stuhlmann, and the International ScaRaB Scientific
Working Group. The ScaRaB earth radiation budget dataset. B. Am. Meteorol. Soc., 79:
765–783, 1998. 2, 80

[80] S. Kato and A. Marshak. Solar zenith and viewing geometry–dependent errors in satel-
lite retrieved cloud optical thickness: Marine stratocumulus case. J. Geophys. Res., 114:
D01202, 2009. doi: 10.1029/2008JD010579. 47

[81] S. Kato, L.M. Hinkelman, and A. Cheng. Estimate of satellite–derived cloud optical thick-
ness and effective radius errors and their effect on computed domain–averaged irradi-
ances. J. Geophys. Res., 111:D17201, 2006. doi: 10.1029/2005JD006668. 30

[82] J. Key and A.J. Schweiger. Tools for atmospheric radiative transfer: Streamer and
FluxNet. Comp. Geosci., 24(5):443–451, 1998. 20, 63, 91, 113

[83] J. Key, P. Yang, B. Baum, and S. Nasiri. Parameterization of shortwave ice cloud optical
properties for various particle habits. J. Geophys. Res., 107(D13):4181, 2002. 20, 92

[84] M.D. King. Determination of the scaled optical thickness of clouds from reflected solar
radiation measurements. J. Atmos. Sci., 44:1734–1751, 1987. 20, 39, 43, 63, 64



Bibliography 155

[85] M.D. King, W.P. Menzel, Y.J. Kaufman, D. Tanré, B. Gao, S. Platnick, S.A. Ackerman, L.A.
Remer, R. Pincus, and P.A. Hubanks. Cloud and aerosol properties, precipitable water,
and profiles of temperature and water vapour from MODIS. IEEE Trans. Geosci. Remote
Sens., 41(2):442–458, 2003. 31, 35, 40, 44, 91, 122

[86] G. Kopp, G. Lawrence, and G. Rottman. The Total Irradiance Monitor (TIM): Science
Results. Sol. Phys., 230(1):129–140, 2005. 9

[87] W. Krebs, H. Mannstein, L. Bugliaro, and B. Mayer. Technical note: a new day– and
night–time Meteosat Second Generation Cirrus Detection Algorithm MeCIDA. Atmos.
Chem. Phys. Discuss., 7:10933–10969, 2007. 37
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