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Glossary

Acronyms
ADC Atlantic Ocean data coverage.
ADM angular distribution model.
AOD aerosol optical depth.
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer.
AU Astronomical Unit.
AVHRR Advanced Very High Resolution Radiometer.

CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation.
CDOP-2 Second Continuous Development and Operations Phase.
CERES Clouds and Earth’s Radiant Energy System.
CM SAF Climate Monitoring Satellite Application Facility.
COD cloud optical depth.
CPP cloud physical properties.

DC digital count.
DCP Data Collection Platform.
DCS Data Collection System.
DISORT Discrete Ordinates Radiative Transfer.
DWD Deutscher Wetterdienst.

ECV essential climate variable.
ENVISAT Environmental Satellite.
ERB Earth radiation budget.
ERBE Earth Radiation Budget Experiment.
ERBS Earth Radiation Budget Satellite.
ESA European Space Agency.
EUMETSAT European Organization for the Exploitation of Meteorological

Satellites.
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FCDR fundamental climate data record.
FOV field–of–view.
FSI filtered solar irradiance.

GACP Global Aerosol Climatology Project.
GCOM-W1 Global Change Observation Mission-Water.
GCOS Global Climate Observing System.
GEO geostationary orbit.
GERB Geostationary Earth Radiation Budget.
GIP GCOS Implementation Plan.
GISS Goddard Institute of Space Studies.
GMS Geostationary Meteorological Satellite.
GOES Geostationary Operational Environmental Satellites.
GOME Global Ozone Monitoring Experiment.
GSICS Global Space-based Intercalibration System.

HIRS High Resolution Infrared Sounder.
HRV high resolution visible.

IASI Infrared Atmospheric Sounding Interferometer.
IGBP International Geosphere / Biosphere Programme.
INDOEX Indian Ocean Experiment.
IODC Indian Ocean data coverage.
IR infrared.
ITCZ InterTropical Convergence Zone.

LDA Land Daily Aerosol.
LEO low-Earth orbit.
LUT look-up table.
LW longwave.

MAP Mesoscale Alpine Programme.
MERIS Medium Resolution Imaging Spectrometer.
MFG Meteosat First Generation.
MODIS Moderate Resolution Imaging Spectro-radiometer.
MOP Meteosat Operational Programme.
MSG Meteosat Second Generation.
MTP Meteosat Transition Programme.
MVIRI Meteosat Visible and Infrared Imager.

NASA National Aeronautics and Space Administration.
NB–to–BB narrowband–to–broadband.
NOAA National Oceanic and Atmospheric Administration.
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PARASOL Polarization & Anisotropy of Reflectances for Atmospheric Sciences
coupled with Observations from a Lidar.

RMIB Royal Meteorological Institute of Belgium.
RMS root mean square.
RSS Rapid Scanning Service.
RTM radiative transfer model.

SBDART Santa Barbara DISORT Atmospheric Radiative Transfer.
ScaRaB Scanner for Radiation Budget.
Sciamachy SCanning Imaging Absorption spectrometer for Atmospheric CHar-

tographY.
SeaWiFS Sea-viewing Wide Field–of–view Sensor.
SEVIRI Spinning Enhanced Visible and Infrared Imager.
SGA sun glint angle.
SR spectral response.
SSCC SEVIRI Solar Channel Calibration.
SUVI Solar Ultraviolet Imager.
SW shortwave.

TCDR thematic climate data record.
TOA top of the atmosphere.
TOT total.
TRMM Tropical Rainfall Measuring Mission.

UNFCC United Nations Framework Convention on Climate Change.
UTC Universal Time Convention.
UV ultraviolet.

VIS visible.

WMO World Meteorological Organization.
WV water vapour.

X-ADC Extended ADC.
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Introduction

Aristotle was the first to come up with the word "meteorology". In his time
(384 – 322 BC), the term covered "all the affections we may call common to air
and water, and the kinds and parts of the Earth and the affections of its parts"
(Aristotle 350 BC). Over the centuries, meteorology became more specifically the
study of the weather, of what happens to the atmosphere at any given time. Early
climatologists started to recognize historical climate changes in the remnants of
past glacial activity, in layers of clay laid down in lake beds and in tree rings. Al-
ready at the end of the nineteenth century, the positive feedback effect of CO2

was discovered (Murat et al. 2008). With increasingly better and more measure-
ments of the radiation from the Earth and the Sun, and of the amount and type
of molecules present in the atmosphere, the importance of studying the current
climate became obvious. In the second half of the 20th century, climatology was
separated from meteorology and became an atmospheric science on its own: the
study of the climate, of what the statistics say will happen to the atmosphere at
any given time.

Since several decades, the topic of global climate change has caught the at-
tention of policy makers, and is now an important agenda point for governments
all over the world. In order to give advice on how the climate will evolve, scien-
tists try to understand why and how it changes by taking measurements of all the
processes which play an important role in the Earth’s climate. For these studies,
long-term data records of at least 25 – 30 years are generated using data from
both ground stations, air borne instruments, and space based satellites. The lat-
ter become more and more useful due to the fact that instruments in space are
able to make continuous observations on a more global scale than ground or air
borne instruments.

When creating climatological time series from satellite instruments alone, of-
ten, data from several consecutive instruments need to be combined to reach the
necessary time length for these studies. At this point, it is important that consis-
tency is maintained in order to compare the output from one satellite to another.

1



INTRODUCTION

Part of this is accomplished using a consistent calibration over the different in-
struments. For a lot of satellites, however, degradation processes take place while
they are in space, diminishing the quality of the data (and hence the calibration)
by decreasing the sensor sensitivity in time. If scientists want to use these spe-
cific satellites for long-term climate datasets, corrections need to be made for the
degradation.

This study focusses on the ageing process of the imagers on board of the first
Meteosat series. Since more than 30 years, the Meteosat satellites of the Euro-
pean Organization for the Exploitation of Meteorological Satellites (EUMETSAT)
have been measuring the thermal emitted and visible reflected outgoing radia-
tion of the Earth. Due to their long time period in space, the data from these in-
struments is very useful for climatological data records, especially because they
provide half hourly measurements, allowing to address the full diurnal cycle.
However, since the beginning, degradation of the visible (VIS) channel of the
imager onboard these satellites, has been causing a decrease in signal in time.
At the moment, EUMETSAT proposes a calibration method, which corrects the
degradation by letting the calibration coefficient increase in time at the same
rate as the signal decreases. Validation of this method has shown, however, that
this correction is not perfect, as there is a spectral effect in the degradation, let-
ting the radiation reflected over ocean decrease more rapidly than the radiation
reflected over desert. In this work, a semi-empirical model is proposed to cor-
rect the VIS images of the first generation of Meteosat satellites (1982 – 2006) for
this in-flight spectral degradation. The normalised SR curve, which shows the
percentage of incoming radiation that is observed at each wavelength, is mod-
eled in time and wavelength, allowing a stronger degradation rate for the smaller
visible wavelengths than for the longer ones.

Chapter 1 gives an overview of the use of meteorological satellites for climate
research, focussing in more detail on the Meteosat series. The main topic of this
thesis, i.e. the calibration and degradation of the VIS channel of the Meteosat
First Generation (MFG) instruments is discussed, together with the reason why
this work has been performed. Chapter 2 starts by explaining how the model
is able to correct the VIS images. Only specific data is used to find the satellite
dependent model parameters, and so the data selection and treatment is also
added in Chapter 2. In Chapter 3, the mathematical formula and history of the
semi-empirical degradation model is presented, while in Chapter 4, the model is
applied to Meteosat-7, the last and most recent of the MFG satellites. Also, in this
chapter, the degradation model is compared to the currently official degradation
model of EUMETSAT in a theoretical way, based on five important climatological
variables. After that, the degradation model from this work is applied, in Chap-
ter 5, to the rest of the MFG satellites. In Chapter 6, a side-track is taken, where
the correctness of the Meteosat-7 SR curve at launch is investigated. The work

2
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is concluded in Chapter 7, showing some of the future prospects of this thesis
work.
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Chapter One

Meteorological satellites in support of
climate research

This chapter situates the work carried out within the observational part of cli-
matology. In the first section, the necessary scientific background information
is given. The three components that make up the Earth radiation budget (ERB)
are introduced: the incoming solar radiation, the outgoing reflected visible ra-
diation and the outgoing emitted thermal radiation. An imbalance between the
total incoming and outgoing radiation, can lead to climate changes. After that,
some radiation definitions are presented, which will be useful later on in this
thesis, and a summary is given of contemporary and historical climate research.
The second section discusses meteorological satellites in space, used for clima-
tological research. The two most important orbits are briefly discussed, putting
most emphasis on the geostationary orbit which is used by the Meteosat satel-
lites. The instruments onboard of the first and second generation of these satel-
lites are discussed next, together with a history of all the Meteosat instruments
that have been and are still in space. The final section introduces the exact topic
of this thesis, i.e. the calibration and degradation of the Meteosat First Gener-
ation (MFG) visible (VIS) channel, summarising studies that have already been
performed previously, and explaining the necessity of the work described in the
remainder.

1.1 SCIENTIFIC BACKGROUND

1.1.1 RADIATION AND EARTH SYSTEM

When the Earth is in a perfect state of radiative equilibrium, the same amount
of radiation comes into the Earth system at the top of the atmosphere (TOA) as
the amount that goes out of it, and there is, per definition, no radiative forcing.

5



1. METEOROLOGICAL SATELLITES IN SUPPORT OF CLIMATE RESEARCH

In this equilibrium state, the incoming and outgoing energy of the Earth are in
balance. The dominant source of incoming radiation is the Sun. Part of its radi-
ation is absorbed by the Earth’s surface and atmosphere and re-emitted as ther-
mal radiation, and part is reflected back into space. These three radiation types
(incoming solar radiation, outgoing emitted radiation, and outgoing reflected
radiation) can be measured separately, and together they make up the ERB. Any
difference between the incoming and total outgoing radiation, causes an energy
imbalance, and can have effects on the whole Earth system. For example, the
Earth surface temperature might increase when more radiation comes into the
system than goes out of it (i.e. a positive radiative forcing), or decrease when
more radiation leaves the system than comes in (i.e. a negative radiative forc-
ing), it can melt the ice caps at the North Pole or in the other case even increase
the amount of ocean ice, etc. The three components that balance the ERB are
discussed in a bit more detail now.

Three ERB components

Every body with a temperature above 0 K emits radiation. Following Planck’s
law, the temperature of a black body1 determines how much and in which wave-
length region this radiation is emitted. The Stefan-Boltzmann law states that the
integrated flux F (W m−2) emitted by such a black body is proportional to the
fourth power of its absolute temperature T (K),

F =σT 4

where σ is the Stefan-Boltzmann constant (5.670×10−8 W m−2 K−4). Wien’s dis-
placement law states that the wavelengthλm (µm) at which a black body radiates
its maximum amount of energy, is inversely proportional to its absolute temper-
ature T (K),

λm =αT −1 (1.1)

whereα is Wien’s displacement constant (2.898×103 µm K). Figure 1.1 shows, as a
function of wavelength, the flux a black body with a temperature of 5780 K emits
following Planck’s law, which matches the general structure of the observed solar
spectrum, and the flux a black body with a temperature of 255 K emits, which
approximates the Earth’s emission spectrum as viewed from space. This fig-
ure shows that the Sun emits part of its energy in the ultraviolet (UV) region
(< 0.4µm), part in the VIS (0.4 – 0.7µm), and part in the infrared (IR) (> 0.7µm),
while the Earth emits all its energy in the IR wavelength range (0.7 – 1000µm).

1A black body is a body in thermal equilibrium with its surroundings, which absorbs all incident
radiation and thus reflects none, i.e. the emissivity is equal to 1 at all wavelengths.

6



1.1. Scientific background

Figure 1.1: Black body flux of the Sun (left and scaled by a factor of 10−6) and the
Earth (right). Adapted from European Economic and Social Committee Spring
Lectures 2007.

Filling in the black-body temperature values of the Sun and the Earth into Wien’s
displacement law (Eq. (1.1)), confirms the wavelengths at which the spectral flux
is at its maximum in Figure 1.1: λm = 0.50µm for the Sun and λm = 11.36µm for
the Earth.

The two spectra shown in Figure 1.1, represent the radiation emitted by the
Sun (incoming solar radiation component), and the thermal infrared radiation
emitted by the Earth (outgoing emitted radiation component). When observing
the Earth from space, it is clear, with the bare eye, that there is also a component
in the visible wavelength range. This is the third component of the ERB: the solar
incoming radiation that is reflected by the Earth’s surface and atmosphere, i.e.
the outgoing reflected radiation component. When seen from space, the Earth
has many colours, which means that it does not uniformly reflect the solar radia-
tion, but that some parts of the Earth’s surface and atmosphere reflect more than
others. The amount of radiation that is reflected depends on the type of surface
(ocean, vegetation, desert or snow), and can range from less than 5% for ocean to
90% for snowy surfaces. The reflectance of clouds is roughly proportional to the
cloud thickness with thin cirrus clouds reflecting as little as 20% of the incoming
flux and big convective clouds reflecting almost all incident solar radiation.

7



1. METEOROLOGICAL SATELLITES IN SUPPORT OF CLIMATE RESEARCH

Figure 1.2: Radiation Balance of the Earth. From Trenberth et al. (2009).

Earth in radiative balance

The amount of solar radiation reaching the Earth has been extensively measured
and the daily average is currently agreed to be about 341 W m−2 (Trenberth et al.
2009). Calculating the other two components is somewhat more complicated
as there are several surfaces reflecting solar radiation and several sources emit-
ting thermal infrared radiation, i.e. the clouds, aerosols, atmospheric molecules,
and the Earth’s surface. The Earth’s energy balance is summarised in Figure 1.2.
About 30% of the total incoming solar radiation is reflected by either the Earth’s
surface, clouds, atmospheric molecules or aerosols. Each type of terrestrial sur-
face has its own properties of reflecting radiation, both in the ratio of reflected to
absorbed radiation as in the direction into which the radiation is reflected. The
same is valid for clouds, which can have very curvy tops, reflecting solar radiation
in different directions, and can consist of water vapour and ice crystals, both with
very different physical properties. Also aerosols and other atmospheric particles
can, depending on their composition, shape and size, reflect different amounts
of radiation, in a non-uniform way.

The remaining 70% of solar radiation that enters the Earth is absorbed by the
Earth’s surface and atmosphere, with the majority (almost half of the total so-
lar flux) being absorbed by the surface. Both Earth’s surface and the atmosphere
reradiate this absorbed solar energy as infrared radiation. Only 20% of the reradi-
ated surface energy leaves the Earth directly, the remainder is absorbed by the at-
mosphere and the clouds, and is reradiated again towards space and towards the
Earth. Apart from their reflecting properties, clouds are also very good absorbers
and emitters of infrared radiation. Covering roughly two-thirds of the Earth’s sur-
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1.1. Scientific background

face, more than 90% of the radiation emitted by the surface and absorbed by the
clouds, is reradiated towards the Earth and reabsorbed2. Even though it is dif-
ficult to measure all these processes, scientists have already been able to draw
certain conclusions about the current climate evolutions (see Yang et al. (2013)
for more on this). Before continuing, some radiation definitions need to be given,
in order to simplify the explanation of the rest of this work.

1.1.2 RADIATION DEFINITIONS

Flux F (W m−2) – Spectral flux F(λ) (W m−2 µm−1)

The amount of radiation coming from an object is most often expressed as ra-
diative flux F (W m−2), i.e. the total amount of radiated energy per unit of time
that comes perpendicularly through a unit of surface area3. As this flux is the
total energy in a certain wavelength range, the spectral flux F (λ) is defined as
the flux per unit of wavelength (W m−2 µm−1). The flux coming from the Sun is
called the solar irradiance S when it is integrated over a range of wavelengths, or
spectral solar irradiance S(λ) when it is expressed per unit of wavelength. The
solar irradiance spectrum is shown in Figure 1.3, observed from both the Earth’s
surface (where the atmosphere accounts for a lot of absorption) and the TOA.
The black-body curve is also given in the figure for comparison.

Radiance L (W m−2 sr−1) – Spectral radiance L(λ) (W m−2 sr−1 µm−1)

In nature, radiation always comes from a certain direction. To take this depen-
dency into account, the radiance L is defined as the flux per unit solid angle
(W m−2 sr−1) and the spectral radiance L(λ) as the spectral flux per unit solid
angle (W m−2 sr−1 µm−1). The solid angle Ω of an object is defined as follows.
Take a sphere of radius one centered at the origin of the coordinate system (the
unit sphere), and draw lines from the center of the sphere to every point on the
radiating object. This way, the surface of the object is projected onto the unit
sphere. This projected surface area is called the solid angle of that object. As
reference, the solid angle of an object that completely surrounds a point is 4π sr.

The most basic satellite instrument, the radiometer, has detectors whose out-
put is proportional to the amount of energy per unit time reaching it. Such a
detector has a fixed surface area, the radiation beam always reaches it from a
certain solid angle, and band pass filters and the material the detector is made
of regulate which wavelength range of the radiation is measured by the detector.

2More information on the whole energy balance of the Earth and how the atmosphere and
oceans redirect heat internally, can be found in Chapter 2 of Burroughs (2007).

3This definition of flux is in the literature also often called flux density, distinguishing it from flux
which then represents the amount of energy per unit of time (W).
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Figure 1.3: Solar irradiance spectrum at sea level (dark grey surface), at the TOA
(light grey surface), and the black-body spectrum (grey full line). Adapted from
Pagliaro et al. (2008).

For that reason, the radiance is the most fundamental satellite radiation quan-
tity used. This is further discussed in Section 1.3 where it is described how the
calibration of instruments happens.

Spherical coordinate system

Figure 1.4 shows a typical Sun-Earth-Satellite geometry where the radiation com-
ing from a target on the Earth’s surface (either reflected solar or emitted ther-
mal) is observed by a satellite and the whole system is irradiated by the Sun. The
zenith is the imaginary point directly above the target, perpendicular to the sur-
face. The angle between the zenith and the Sun is called the solar zenith angle θ0,
while the angle between the zenith and the satellite is called the viewing zenith
angle θ. The plane that runs through the target and is perpendicular to the verti-
cal through the target and the zenith, is called the azimuth plane. The direction
of forward scatter in the azimuth plane on Figure 1.4 is the direction of the com-
ponent of the Sun’s reflected radiation in the azimuth plane if the Earth’s surface
would be a perfect mirror. The relative azimuth angle ψ is defined as the angle
between this forward scattering direction and the projection of the satellite po-
sition on the azimuth plane. If ψ would be equal to zero, and θ0 = θ, a perfect
mirror would reflect all radiation from the Sun right back in the direction of the
satellite (specular reflection).
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1.1. Scientific background

Figure 1.4: The upper hemisphere, showing the definition of the geometry angles
θ0, θ and ψ. Adapted from the CERES home page.

Lambertian reflector

As mentioned, part of the radiation from the Sun is reflected by the Earth’s sur-
face and atmosphere. Even though the beam of solar radiation comes from a
specific direction, the Earth is not a perfect mirror and so the radiation is re-
flected in more than one direction, depending on the type of reflecting surface.
A Lambertian surface is a special case, which reflects the incoming radiation uni-
formly in all directions. As the reflected spectral flux F (λ) is equal to the reflected
spectral radiance L(λ,θ,ψ) integrated over all angles in the upper hemisphere,

F (λ) =
∫
Ω

L(λ,θ,ψ)cosθdΩ

where cosθ accounts for the amount of energy reflected perpendicular to the
surface. The reflected spectral radiance L(λ,θ,ψ) is not angle dependent as it
reflects uniformly in all directions, so L(λ) comes out of the integral,

F (λ) = L(λ)
∫
Ω

cosθdΩ. (1.2)

For an infinitesimal solid angle dΩ in the direction of zenith angle θ and azimuth
angle ψ,

dΩ= sinθdθdψ.
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Filling this in into Eq. (1.2), leads to

F (λ) = L(λ)

π/2∫
θ=0

2π∫
ψ=0

cosθ sinθdθdψ

= 2πL(λ)

π/2∫
θ=0

cosθ sinθdθ

=πL(λ). (1.3)

This shows that, for a perfect Lambertian surface, the ratio of reflected flux to
radiance is equal to πsr.

Reflectance ρ – Spectral reflectance ρ(λ)

The spectral reflectance ρ(λ) is a unitless variable, which represents the ratio of
outgoing spectral radiance to incoming spectral radiance

ρ(λ) = Lout(λ)

Lin(λ)
= L(λ,θ0,θ,ψ)

S(λ)cosθ0
πd 2

(1.4)

where the incoming spectral radiance Lin(λ) is written as a function of the
known spectral solar irradiance S(λ), assuming a uniform Lambertian distribu-
tion. Lin(λ) decreases with increasing θ0 and with increasing Earth-Sun-distance
d . The angle dependency is shown by the added cosθ0 in the denominator of
Eq. (1.4), and the distance dependency by the 1/d 2. The solar spectrum (S(λ))
from Figure 1.3 is measured at a fixed distance of 1 Astronomical Unit (AU) =
149 597 871 km, which is the mean distance between the Earth and the Sun. As
the orbit of the Earth around the Sun is not a perfect circle, the distance between
both does not stay the same all year, and so the d 2, expressed in AU, is added to
Eq. (1.4) to correct for the elliptic orbit.

When both outgoing and incoming spectral radiances are integrated over the
same wavelength region, the reflectance ρ is defined as the ratio of outgoing to
incoming radiance.

Albedo A – Spectral albedo A(λ)

Compared to the reflectance, which is a ratio of radiances, the spectral albedo
A(λ) is defined as the ratio of outgoing to incoming spectral flux,

A(λ) = Fout(λ)

Fin(λ)
= F (λ)

S(λ)cosθ0
d 2

. (1.5)

When integrating over a fixed wavelength region, the albedo A is the ratio of out-
going to incoming flux.
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1.1.3 MONITORING THE CLIMATE

Climate changes have always been part of the Earth’s history. Enough evidence
is available to confirm that (Burroughs 2007). Between 1950 and 2011, a global
near-surface temperature increase has been observed of about 0.6◦C (Brohan
et al. 2006), with a slightly higher temperature rise in the northern than in the
southern hemisphere. As was already clear from Figure 1.2, due to the many
sources reflecting and emitting radiation, it is not easy to perfectly identify the
cause of this energy imbalance. It is even more difficult to know how much of it
is human caused (due to the emission of greenhouse gases4, desertification and
deforestation, etc.) and how much is the result of naturally occurring phenom-
ena (volcanoes, solar activity, etc.)5. For decades now, climatologists have been
trying to understand all the mechanisms and how big the influence of these cli-
mate forcings exactly are.

Global Climate Observing System

In 1992, the Global Climate Observing System (GCOS) was established. It is an
international initiative of the World Meteorological Organization (WMO) with
the goal to organise a global network of observing systems to provide the min-
imal information on the global climate needed to observe, understand, predict
and assess the impact of climate changes. GCOS provides recommendations for
the delivery of long-term data records, called fundamental climate data records
(FCDRs) and thematic climate data records (TCDRs). The FCDRs contain fluxes
or radiances that have been derived directly from a series of different instru-
ments, preferably with overlaps, and which have been extensively tested and
calibrated6 to ensure consistency over the entire record. Ground (in situ), air-
borne and space-based measurements are combined to provide global observa-
tions for the so-called essential climate variables (ECVs). All the GCOS ECVs are
shown in Table 1.1, where the ones that can be measured from satellite observa-
tions, are indicated in bold. Specific geophysical variables, important for climate
change, are derived from these ECVs and data records are created for them from
the long-term FCDRs, creating the TCDRs. Accuracy and stability requirements
for the FCDRs and TCDRs were written down in the GCOS Implementation Plan
(GIP) for the global observing system for climate in support of the United Na-
tions Framework Convention on Climate Change (UNFCC) (WMO 2006). These

4Greenhouse gases are gases in the Earth’s atmosphere, which absorb radiation, both from the
Sun and the Earth, and in their turn emit infrared emission, both back to the Earth and into space,
with the net effect of warming up the lower atmosphere and cooling down the upper layers.

5For the interested reader, more information on these different sources of climate change can be
found in Chapters 6 and 7 of Burroughs (2007).

6Section 1.3 discusses the calibration of instruments.
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Table 1.1: Table of all GCOS ECVs. The ones that can be measured through
satellite observations are indicated in bold.

Domain GCOS Essential Climate Variables (ECVs)

Atmospheric
(surface)

Air temperature, wind speed and direction, water vapour, air
pressure, precipitation, surface radiation budget

Atmospheric
(upper-air)

Temperature, wind speed and direction, water vapour, cloud
properties, Earth radiation budget1

Atmospheric
(composition)

Carbon dioxide, methane and other long-lived greenhouse gasses,
ozone and aerosol, precursors2

Oceanic (surface)
Sea-surface temperature, sea-surface salinity, sea level, sea state,

sea ice, surface current, ocean colour, carbon dioxide partial
pressure, ocean acidity, phytoplankton

Oceanic
(sub-surface)

Temperature, salinity, current, nutrients, carbon ocean acidity,
oxygen, tracers

Terrestrial

River discharge, water use, groundwater, lakes3, snow cover, glaciers
and ice caps, ice sheets, permafrost and seasonally frozen ground,

albedo and reflectance anisotropy, land cover4, fraction of absorbed
photosynthetically active radiation (FAPAR), leaf area index (LAI),

above-ground biomass, soil carbon, fire disturbance, soil moisture,
land surface temperature

1 Including solar irradiance
2 Supporting the aerosols and ozone ECVs
3 Water level in lakes and reservoirs, water storage
4 Including vegetation type

requirements were based on the expected variability of the ECVs on different
timescales and were meant mostly as a starting point for discussions. Interna-
tional data centers work together to create these climate data records and assure
the best possible accuracy and stability.

Climate Monitoring Satellite Application Facility

The European Space Agency (ESA) launched the first European weather satel-
lite in 1977. Soon, more instruments followed and it was recognised it would
be useful to create an organisation which would focus on the operation of the
meteorological satellites alone. On 19 June 1986, the European Organization for
the Exploitation of Meteorological Satellites (EUMETSAT), based in Darmstadt,
Germany, was created to take over the operations of the meteorological space
instruments from ESA. EUMETSAT was formed with the primary objective to es-
tablish, maintain and exploit European systems of operational meteorological
satellites. Later on, the member states recognised the increasing need for clima-
tological research and responded by extending EUMETSAT’s mandate in 2000.
Next to governing the operations of meteorological satellites, this extended man-
date allowed also to contribute to the operational monitoring of the climate, as
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well as the detection of climate changes. This enabled a shift from a single fo-
cus on operational meteorology toward involvement with European partners in
climate and environmental monitoring.

To participate with GCOS, EUMETSAT created in 1999 the Climate Monitor-
ing Satellite Application Facility (CM SAF) (Schulz et al. 2009). It is a joint activ-
ity of 6 European national meteorological and hydrological services, under the
supervision of the Deutscher Wetterdienst (DWD), including the Royal Meteo-
rological Institute of Belgium (RMIB). As required by the GIP, the CM SAF pro-
vides long-term datasets of ECV products using satellite data (e.g. Roebeling et al.
(2006), Peltoniemi et al. (2010), Reuter et al. (2010), Bugliaro et al. (2011), Mueller
et al. (2011), Posselt et al. (2012)). RMIB has been involved since the beginning in
the generation of climate data records for the TOA ERB (Dewitte et al. 2008), and,
more recently, also in aerosol optical depth (AOD) (medium and) long-term data
records (De Paepe & Dewitte 2009). Currently, CM SAF is in its Second Continu-
ous Development and Operations Phase (CDOP-2), which runs from 2012 until
2017, containing a series of datasets which will be delivered during the course
of this project. The work explained here supports EUMETSAT in the delivery of a
TCDR for the TOA outgoing radiation within this CDOP-2, using the observations
from the MFG imagers.

Satellite measurements

To do climate research, global observations are necessary, and for this, satel-
lite data have been extremely useful (Yang et al. 2013). The first instrument
in space measuring the ERB was called the ERB instrument, and was observ-
ing onboard the National Aeronautics and Space Administration (NASA) satel-
lites Nimbus-6 and -7. These instruments measured both solar and Earth ra-
diances in the UV, VIS, and IR wavelengths, from 1975 onwards. An improved
generation of ERB instruments came with the Earth Radiation Budget Experi-
ment (ERBE), also measuring both Sun and Earth radiation, where the first two
instruments were put onboard the Earth Radiation Budget Satellites (ERBSs) in
1984, and more followed on the NOAA-9 and -10 satellites in 1984 and 1986. In
1994, the Scanner for Radiation Budget (ScaRaB) cooperative project between
France, Russia and Germany was launched onboard of the Russian Meteor-3/7
satellite, and took measurements of the Earth in four channels (VIS, solar, to-
tal and IR window). NASA made sure there was a follow-up of the ERBE instru-
ments when they created the Clouds and Earth’s Radiant Energy System (CERES)
instruments. The first was onboard of the Tropical Rainfall Measuring Mission
(TRMM), launched in November 1997, and more followed on the Terra, Aqua
and NPP satellites, with the more recent ones still in space. The CERES instru-
ments also take measurements of the Earth’s reflected and emitted radiation.
EUMETSAT added the Geostationary Earth Radiation Budget (GERB) instrument
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to the Meteosat Second Generation (MSG) satellites, with the first one launched
onboard Meteosat-8 in August 2002, which measures the outgoing Earth radia-
tion in the VIS and IR bands.

All of these instruments were made to measure explicitly two or three
of the ERB components, through spectrally flat and broad channels in
the VIS, IR, and/or UV parts of the wavelength region. However, many
more instruments were launched in the meantime, meant to do measure-
ments for climate research. A few examples are summed up here. The
Advanced Very High Resolution Radiometer (AVHRR) instruments of the
National Oceanic and Atmospheric Administration (NOAA) measure the radia-
tion coming from the Earth in 4 to 6 narrow VIS and IR channels, where each
channel is used for different purposes (daytime cloud and surface mapping,
snow and ice detection, sea surface temperature, etc.). The High Resolution In-
frared Sounder (HIRS) instruments, provided by NOAA and onboard EUMET-
SAT’s Metop-A and -B and NOAA’s NOAA-18 and -19, measure the Earth’s tem-
perature profile, moisture content, cloud height and surface albedo through 19
IR channels and 1 VIS channel. Onboard the American Geostationary Oper-
ational Environmental Satellitess (GOESs), the Solar Ultraviolet Imager (SUVI)
measures the solar irradiance in the extreme-UV region through 6 bands. The
Global Ozone Monitoring Experiment (GOME) covers the UV and VIS ranges
to measure stratospheric ozone and other types of aerosols and atmospheric
molecules for climate studies, atmospheric pollution, etc. EUMETSAT’s Metop
satellites also carry the Infrared Atmospheric Sounding Interferometer (IASI).
Apart from very accurate measurements used for medium range weather fore-
casting, IASI was also designed to monitor atmospheric gasses like ozone,
methane and carbon monoxide. CloudSat and the Cloud-Aerosol Lidar and In-
frared Pathfinder Satellite Observation (CALIPSO) were launched together by
NASA to study clouds and aerosols and their role in the weather and climate sys-
tem.

Section 1.2 goes into more detail into the type of orbits these meteorological
instruments are in, focussing more specifically on EUMETSAT’s geostationary
Meteosat series of satellites.

1.2 METEOROLOGICAL SATELLITES

In the second half of the 20th century, the launch of artificial satellites around the
Earth led to a new era for the geophysical scientists. The first satellite which was
successful in observing the Earth was the Explorer 7, with the Suomi radiometer
onboard, which was launched in October 1959. This was the real start of Earth
observations from space. These first meteorological satellites took low resolution
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pictures to observe weather, ocean and land. Over the years, the resolution im-
proved and at the same time also the possibilities to use the data for forecasting
purposes. Only by the end of the 20th century, instruments were put onboard to
specifically make measurements needed to monitor the Earth’s climate. The two
typical orbits in which meteorological satellites observe the Earth are explained
in the next section.

1.2.1 SATELLITE ORBITS

Low-Earth orbits

The low-Earth orbits (LEOs) are defined as orbits with an altitude between
160 km7 and 2000 km. The inclination angle of the orbit with respect to the equa-
tor, can range from close to 0◦ to close to 90◦. An often used LEO is the (near)
polar orbit, when the satellites fly close to the poles, and cross the equator at an
(inclination) angle close to 90◦. Because the Earth is not a perfect sphere, but
instead has an equatorial bulge, the orbital plane of the satellites does not stay
fixed with respect to the rotation axis of the Earth. This allows meteorological
satellites, for example, to fly in sun-synchronous orbits. In this type of LEO, the
satellite passes the equator every time at a different place (as the Earth turns), but
every time at the same local time. This is possible by combining the flight altitude
and inclination angle in such a way that the angle between the orbital plane and
the Sun always remains constant, and so the satellite orbit precesses exactly one
time per year around the rotation axis of the Earth. A typical altitude for this type
of satellites is 600–800 km with a period of 96–100 minutes and an inclination of
about 98◦. This way the satellite orbits the Earth roughly 16 times a day. Exam-
ples of meteorological satellites in these sun-synchronous orbits, are the NOAA
satellites, the EUMETSAT Polar System Metop satellites, NASA’s Terra and Aqua
satellites, CALIPSO, CloudSat, the Polarization & Anisotropy of Reflectances for
Atmospheric Sciences coupled with Observations from a Lidar (PARASOL), and
the Japanese Global Change Observation Mission-Water (GCOM-W1). Each of
these satellites carries its own instruments onboard, useful for all different kinds
of climatological measurements.

Apart from the sun-synchronous LEOs which precess about 1◦/day, a whole
range of inclination angles and precession rates are possible. For example,
TRMM flew at an altitude of 350 km, an inclination angle of 35◦, and a preces-
sion rate of about 6.6◦/day. This way, TRMM passed above a certain location on
the Earth’s surface at a different local time each day, allowing to observe that lo-
cation from different angles. The ERBS observed the Earth between 1984 and
2003, flying at an altitude of 585 km and inclination angle of 57◦.

7Orbits lower than this would circle inward too fast due to the atmospheric air resistance.
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Table 1.2: The advantages and disadvantages of the sun-synchronous LEOs, pre-
cessing LEO, and GEOs for climatological purposes.

Orbit Advantages Disadvantages

Sun-synchronous
LEO

Full Earth coverage, higher spatial
resolution, possibility of active

instruments (lidar, radar,
scatterometer), observations from

different viewing geometries

Lower revisit time, observation at
fixed solar time, subject to orbital

drifts

High precessing
LEO

Observation of the diurnal cycle,
higher spatial resolution,

possibility of active instruments
(lidar, radar, scatterometer),
observations from different

viewing geometries

Lower irregular revisit time,
limited Earth coverage

GEO
Higher observation frequency,

Observation of the diurnal cycle

Limited Earth coverage (±40%),
lower spatial resolution, each part

of the field–of–view (FOV) is
observed from the same viewing
geometry, needs powerful optics,
no observations of polar regions,
no active instruments onboard

(lidar, radar, scatterometer)

Geostationary orbits

A geostationary orbit (GEO) is a circular orbit in the plane of the equator which
follows the rotation of the Earth. This means that the satellite always looks at the
same part of the Earth (about 40% of the Earth surface) and so has a period of one
sidereal day (≈ 23 hours 56 minutes and 4 seconds). To be able to accomplish this
exact orbital period, the satellite needs to be at an altitude of 35 786 km above the
equator, so much higher than the LEOs. Table 1.2 compares the advantages and
disadvantages of the LEOs and the GEO from climatological point of view. This
shows why the LEOs are more often used to put instruments in space which are
useful for climatological research.

Compared to the LEOs, for which there can be lots of different possible orbits
depending on the altitude and inclination, there is only one GEO, also called the
geostationary belt. ESA launched its first satellite in 1977 in a GEO and called
the satellite Meteosat. In the years that followed, more and more satellites in
the Meteosat series were sent into space, with the most recent one, Meteosat-10,
launched in 2012. All satellites were operationally exploited close to 0◦ longitude.
Some of them were moved to the west or to the east of the geostationary belt
when their successor became the operational satellite at 0◦ longitude. Since the
late nineties, the full belt is covered by geostationary instruments taking mea-
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Figure 1.5: The occupation of the geostationary belt by meteorological satellites
between 1974 and 2011. From Knapp et al. (2011).

surements of the Earth. As shown in Figure 1.5, initially this was done only by
NASA with the GOES satellites, EUMETSAT with the Meteosat instruments, and
Japan with the Geostationary Meteorological Satellite (GMS). More recently, Rus-
sia, China and India added their own instruments to the geostationary ring.

In the next two sections, EUMETSAT’s geostationary satellites are described,
giving more information about the instruments onboard of the Meteosat satel-
lites, and showing a historic overview of these instruments in space.

1.2.2 METEOSAT FIRST GENERATION

The MFG programme consists of 7 spin-stabilised geostationary satellites, called
Meteosat-1 till -7, for which the timelines are shown in Figure 1.6. The
first three satellites were part of the pre-operational phase. The imager of
Meteosat-1 failed after two years due to a design fault (EUMETSAT 2011),
and as its images were never transcribed into the archive, it is not used
here. The Data Collection System (DCS) onboard Meteosat-18, however, con-

8The Meteosat satellites carry a DCS, through which they provide a relay service to the Meteosat
ground station for observations from about 1000 Data Collection Platforms (DCPs) carried by ships,
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Figure 1.6: The timeline of all 7 MFG satellites in their different operational
modes.

tinued relaying signals to the ground station until 1984. With Meteosat-4,
the Meteosat Operational Programme (MOP) started, also launching Meteosat-
5 and -6 into space. The last of the MFG instruments was part of the Meteosat
Transition Programme (MTP) to the second generation of Meteosat satellites,
and was called Meteosat-7. All 7 instruments mainly worked at the nominal po-
sition at 0◦ longitude, but some were also used in other programs, covering other
parts of the geostationary ring. For example, Meteosat-3 was used over the At-
lantic Ocean, providing data to NOAA in the Atlantic Ocean data coverage (ADC)
and Extended ADC (X-ADC), to bridge a gap of GOES-East data. Meteosat-5, -6
and -7 were operational over the Indian Ocean to support the Indian Ocean Ex-
periment (INDOEX) in the Indian Ocean data coverage (IODC). Meteosat-6 was
also part of the international Mesoscale Alpine Programme (MAP) for a short pe-
riod of time, where it scanned the alpine region at five-minute intervals, and in
the Rapid Scanning Service (RSS) afterwards. Table 1.3 shows the time period
and position while each of the satellites was operational.

The imager onboard of the MFG satellites is called the Meteosat Visible and
Infrared Imager (MVIRI), which scans the Earth in three spectral channels: the
VIS, the water vapour (WV), and the IR band. The normalised spectral response
(SR) curve of a channel shows for each wavelength the percentage of incoming

aircrafts and other mobile platforms.
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Table 1.3: Timeline of the MFG satellites, showing the time period when and the
longitude where each instrument was operational.

Satellite Launch – graveyard Status

Meteosat-1 23/11/1977 – 12/1984 0◦: 12/1977 – 11/1979
Meteosat-2 10/06/1981 – 12/1991 0◦: 08/1981 – 08/1988

Meteosat-3 15/06/1988 – 05/1995
0◦: 08/1988 – 01/1991

50◦ W (ADC): 08/1991 – 01/1993
75◦ W (X-ADC): 02/1993 – 05/1995

Meteosat-4 19/04/1989 – 11/1996 0◦: 06/1989 – 02/1994

Meteosat-5 02/03/1991 – 02/2007
0◦: 02/1994 – 02/1997

63◦ E (IODC): 07/1998 – 02/2007

Meteosat-6 20/11/1993 – 04/2011
0◦: 02/1997 – 06/1998

9◦ W (MAP): 08/1999 – 11/1999
10◦ E (RSS): 11/1999 – 01/2007

Meteosat-7 03/09/1997 – TBD
0◦: 06/1998 – 07/2006

57.3◦ E (IODC): 11/2006 – TBD

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14

N
o

rm
a

liz
e

d
 s

p
e

c
tr

a
l 
re

s
p

o
n

s
e

Wavelength (µm)

VIS WV IR

Figure 1.7: The normalised SR curves of the VIS, WV, and IR channels of
Meteosat-7.

radiation that is actually observed by the telescope and detectors. For a perfect
instrument, this would be equal to 1 over the whole range. In reality, however,
this is not the case. The SR curves of the three MVIRI channels are shown as a
function of wavelength in Figure 1.7 for the last of the MFG series, Meteosat-7,
while Table 1.4 summarises their most important characteristics. The radiation
observed by MVIRI is first captured by the tilting and rotating section (made of
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Table 1.4: Characteristics of the three MVIRI channels.

Property VIS WV IR

λmin – λmax 0.5 – 0.9µm1 5.7 – 7.1µm 10.5 – 12.5µm

Temporal frequency 25 minutes scanning + 5 minutes retracing scan mirror

Pixel resolution2 2.5×2.5 km 5×5 km 5×5 km

Spinning speed 100 rotations per minute, from East to West

Scanning speed 1.25×10−4 radians per rotation, from South to North

Number of detectors 2 1 1

Detector material Si HgCdTe HgCdTe

Number of bits 6/83 6/83 8

Level 1.5 image size4 5000×5000 pixels 2500×2500 pixels 2500×2500 pixels

Field of view (FOV) 18◦ (0.314 rad)

1 This is the bandwidth for which the pre-launch characterisation was done. After-
wards, an extrapolation was performed increasing the bandwidth to 0.3 – 1.3µm

2 The resolution is at nadir, which is the point right below the observer, the point oppo-
site the zenith.

3 6 bits for Meteosat-1, -2, -3 and 8 bits for Meteosat-4, -5, -6 , -7.
4 The Level 1.5 images are geolocated and rectified.

3 mirrors) which allows to observe the full Meteosat FOV from South to North
and from East to West. The rotating section contains a Ritchey-Chrétien tele-
scope, shown at the right side of Figure 1.8. This type of telescope consists of
a hyperbolic primary mirror with a diameter of 400 mm and a hyperbolic sec-
ondary mirror with a diameter of 140 mm. Through a series of smaller mirrors,
the radiation is focused onto the detectors of the different channels (towards the
left side of Figure 1.8). A black body is present on the Meteosat-7 satellite alone,
used for calibration purposes of the IR and WV detectors. Right in front of all
detectors, a field stop aperture makes sure that the radiation that falls onto the
detector always comes from the same size of rectangular spot on the Earth.

MVIRI VIS channel

The VIS detectors, which convert the observed VIS radiation into electrical cur-
rents, are silicon photodiodes. Darmont (2009) explains with Figure 1.9 the work-
ings of these types of diodes, showing the amount of electrical current coming
from each region in the semi-conductor, for incoming radiation with different
wavelengths. Silicon has a natural wavelength range of absorption, which runs

22



1.2. Meteorological satellites

Figure 1.8: MVIRI optics, showing at the right the Ritchey-Chrétien telescope,
which redirects the radiation, through a series of mirrors, to the three types of
detectors (at the left side). Image from EUMETSAT.
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mont (2009).

23



1. METEOROLOGICAL SATELLITES IN SUPPORT OF CLIMATE RESEARCH

!"#$%&#"'(%)'*+,*'-./"0"&,1*#'+&2)".#"#'+('1*"'34&21+%&'5""$'634&21+%&'20%#"'1%'1*"'#4)(.2"78

!"#$%&#"'(%)'*+,*'-./"0"&,1*#'+&2)".#"#'+('1*"'"$+1.9+.0'0.:")'+#'(.)'()%;'1*"'#4)(.2"8

<*"'0+&"'%(';.9+;4;'"((+2+"&2:'+#',+/"&'=:'1*"')"0.1+%&'

!!"
#$""# %

>?@A
%
#!>

-*")"' ! )"$)"#"&1#'1*"')"#$%&#+/+1:'.&5' # )"$)"#"&1#'1*"'B4.&14;'"((+2+"&2:8

C+,4)"'DE'$*:#+2.0'"(("21#'1*.1'.(("21'1*"'#*.$"'%('1*"'#$"21).0')"#$%&#"'24)/"

F4.&14;'"((+2+"&2:'/")#4#'-./"0"&,1*'+#'5"(+&"5'.#'1*"').1+%'="1-""&'1*"'.214.0')"#$%&#+/+1:'.&5'

1*"'0+&"'%(';.9+;4;'"((+2+"&2:8

G$"21).0')"#$%&#"'24)/"#'.)"'#%;"1+;"#'$0%11"5'/")#4#'$*%1%&'"&"),:'+&#1".5'%('0+,*1'-./"0"&,1*8'H&'

1*+#'2.#"'1*"'#$"21).0')"#$%&#"'#*%-#'.')".0'$0.1".4'+&'+1#';+550"'$.)18

!"#$%&'()*#+,,+(&-#'.#/)&+0')*#-&)(1-

I+,*1'(.00+&,'%&'.&'+;.,"'#"&#%)')".2*"#'1*"'=%4&5.):'="1-""&'1-%';"5+4;#E'.+)'.&5'#+0+2%&8'J&:'

"0"21)%;.,&"1+2'-./"')".2*+&,'#42*'.'=%4&5.):'*.#'1%'4&5"),%'2*.&,"#'+&'.;$0+145"'.&5'5+)"21+%&'

.&5'"/"&14.00:'.'#$0+1'+&'#"/").0').:#'%)'.'2*.&,"'%('$%0.)+K.1+%&8

H&'1*"'2.#"'%('.')".0'+;.,"'#"&#%)'1*")"'+#'&%1'%&0:'%&"'=%4&5.):'=41'.'#")+"#'%('=%4&5.)+"#'54"'1%'

1*"'#1.2L'%(';.1")+.0#'4#"5'1%';.L"'1*"'#"&#%)8'C+,4)"'M'#*%-#'.'1:$+2.0'5"/+2"'#1)4214)"'-+1*%41'

2%0%)'(+01")#8

N.)1'%('0+,*1')".2*+&,'".2*'=%4&5.):'-+00'="')"(0"21"5'=.2L'6.0;%#1'#$"240.)')"(0"21+%&'+('1*"'#4)(.2"'

+('#4((+2+"&10:'(0.17'.&5'1*"')";.+&5")'-+00'="'1).&#;+11"5'1%'1*"'&"91';"5+4;'=:')"().21+%&'(%00%-+&,'

G&"00O#'0.-8'<*"'0+,*1')"(0"21"5'=.2L'-+00',%'=.2L'1%'.'$)"/+%4#'=%4&5.):'-*")"'+1'-+00'="'$.)10:'

)"(0"21"5'+&1%'1*"'#"&#%)'.&5'$.)10:')"().21"5'%41#+5"'%('1*"'#"&#%)'6#""'(+,4)"'P78'<*"'0+,*1')"(0"21"5'

=.2L'+&1%'1*"'#"&#%)'-+00'+&1")(")"'-+1*'1*"'%)+,+&.0').:8'<*+#'#1)4214)"'+#'#+;+0.)'1%'1*"'#%'2.00"5'

C.=):QNR)%1'+&1")(")%;"1")8 'G"/").0'C.=):QNR)%1Q0+L"'+&1")(")%;"1")#'.)"'#1.2L"5'+&'.')".0'5"/+2"'

.22%)5+&,'1%'(+,4)"'M8'S"'-+00'2%&#+5")'.214.0'C.=):QNR)%1'+&1")(")%;"1")#'(%)'1*"'5+#24##+%&8

G$"21).0'!"#$%&#"'%('G+0+2%&'H;.,"'G"&#%)# N.,"'D

Figure 1.10: The dependencies of the SR curve of a silicon detector to different
photodiode properties. Figure from Darmont (2009).

up to 1.1µm, covering the VIS wavelength range. Even though the diode material
of the detector can stay the same, and a similar optical system can be used, the
SR of a channel changes from instrument to instrument. Darmont (2009) shows
with Figure 1.10 the dependencies of the shape of the SR of such silicon detec-
tors to different parameters (how far the junction is from the surface, how long
it takes before recombination occurs, etc.). Apart from these different properties
of the photodiode itself, the paper also explains the optical effects that can occur
when the incoming light needs to cross boundaries between stacked layers in the
detector. Part of the light will be reflected back, and part will be refracted. The
reflected ray will partly be reflected on the boundary with the previous layer, and
will interfere with the original light beam. They show how this affects the SR of
the detector, and how this results in a dependency on the angle of the incoming
light with respect to the detector surface. No filter was used for the VIS channel
of the MVIRI instruments, so the shape of the SR is determined mainly by the
silicon detectors.

Apart from the SR of the detectors, the mirrors, which direct the incoming ra-
diation to the detectors, also have a specific SR. Either the SR of each of these
individual components is measured by the instrument manufacturers, or the
total summated SR curve of the instrument is calculated at once. These mea-
surements are done by illuminating the instrument with light at different wave-
lengths. As, at the time the SR of the MVIRI instruments were characterised no
lasers were available yet, the light beams used for this characterisation were not
monochromatic, but usually had a gaussian shape around a central wavelength.
This is an extra source of uncertainty on the SR curves.
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Figure 1.11: The VIS SR curves of the MVIRI instruments onboard of the
Meteosat-2 till -7 satellites.

The pre-launch characterisations of the VIS channels of the MVIRI in-
struments of Meteosat-2 till -7 are shown in Figure 1.11. Although the SR
curves that have been made available to the public on the EUMETSAT webpage
(www.eumetsat.int) range from at least 0.3 – 1.3µm, they were only characterised
between 0.5 – 0.9µm. The rest has been empirically extrapolated by hand. Go-
vaerts et al. (2004) show the uncertainty on the SR curves of Meteosat-2 till -7.
Next to the extrapolation, a part of the uncertainty comes from the use of non-
monochromatic light beams (as explained before), and another part comes from
the errors on the instruments used to do the SR measurements. Govaerts et al.
(2004) computed a total uncertainty that varies between 0 and 20% of the SR,
depending on the wavelength range.

After the detectors convert the incoming radiation into electrical currents,
this electrical current is digitised, through either 6 or 8 bits. The 6-bit digitisa-
tion transforms the signal into a value between 0 and 63, the 8-bit digitisation
into a value between 0 and 255. For Meteosat-1, -2, and -3, the digitised signal of
the VIS channel was multiplied by 4 to get a number in the same 0 – 255 range
as the other 8-bit channel. To optimise this digital range, for each satellite, an
electronic gain level can be selected between 0 and 15. This way, saturation can
be avoided by lowering the gain, or the gain can be increased when the highest
measured value at local noon is less than 2129. This digitised and optimised sig-

9The gain steps have an approximate ratio of 1.2. Because of this, an increase in gain level can
only be done when the maximum daily value becomes less than 212, so that after the gain change the
maximum value is still less than 255 (i.e. 212×1.2).
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1. METEOROLOGICAL SATELLITES IN SUPPORT OF CLIMATE RESEARCH

Figure 1.12: Long-term planning of the positions of the current and future MFG
and MSG satellites in space.

nal is then sent to Earth to create the images, expressed in so-called digital count
(DC), which can be retrieved from the EUMETSAT Portal.

1.2.3 METEOSAT SECOND GENERATION

The MTP was established to ensure the operational continuity between the end
of the MOP (Meteosat-4, -5 and -6) and the MSG (Schmetz et al. 2002), where the
latter has brought three satellites (Meteosat-8, -9, and -10) into orbit so far, and is
planning on launching the last, Meteosat-11, in 2015. All four MSG instruments
start their operational period around the nominal position of 0◦ longitude, as
did the MFG satellites. Figure 1.12 shows the planning (from 2011 onwards) of
the positions of the current and future operational Meteosat satellites.

Onboard of these satellites are two important instruments. The Spinning
Enhanced Visible and Infrared Imager (SEVIRI) is the successor of MVIRI, scan-
ning the Earth through 12 channels: 11 narrow channels and one broader high
resolution visible (HRV) channel. Their SR curves are shown in Figure 1.13
for Meteosat-8, while some important characteristics of the channels are given
in Table 1.5. The HRV channel of Meteosat-8 is used later on in this work in
Chapter 6, in a validation study of the Meteosat-7 VIS SR curve at launch. The
second instrument onboard the MSG satellites is called the GERB instrument
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Figure 1.13: The SR curves of the 12 SEVIRI channels of Meteosat-8.

Table 1.5: Characteristics of the twelve SEVIRI channels.

Property HRV 11 narrow channels

λmin – λmax 0.45 – 1.05µm1 0.6, 0.8, 1.6, 6.2, 7.3, 3.9, 8.7,
9.7, 10.8, 12.0, and 13.4µm

Temporal frequency 15 minutes

Pixel resolution2 1×1 km 3×3 km

Spinning speed 100 rotations per minute, from East to West

Scanning speed 1.25×10−4 radians per rotation, from South to North

Number of detectors 9 3

Number of bits 10

Image size 11136×5568 pixels 3712×3712 pixels

Field of view (FOV) 18◦

1 This is the bandwidth for which the pre-launch characterisation was done. After-
wards, an extrapolation was performed increasing the bandwidth to 0.3 – 1.3µm

2 The resolution is at nadir, which is the point right below the observer, the point
opposite the zenith.
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1. METEOROLOGICAL SATELLITES IN SUPPORT OF CLIMATE RESEARCH

(Harries et al. 2005). It monitors the Earth through a shortwave (SW) channel
and a total (TOT) channel. The longwave (LW) measurements are obtained from
subtracting the shortwave from the TOT channel.

1.3 CALIBRATION AND DEGRADATION

In order to use data from different satellites to create long-term climate data
records, a consistent calibration is needed between the different instruments.
Calibrating data means converting the digital output of the imager into physi-
cal values10. As mentioned in Section 1.1.2, the digital output of a radiometer is
proportional to its radiance. As a radiometer is constructed to respond linearly
to the incoming radiance intensity, a linear relation is used between the original
values v in DC and the radiances L, which should be the same for all scene types
at launch,

L =C (v −O) (1.6)

where C is the calibration coefficient and O the offset.
For some instruments, devices are present in space to calibrate the instru-

ments on a regular basis. This is often the case for the IR channels, making use of
a black body at a controlled temperature. If there is, however, nothing onboard
the satellite to do the calibration, as is the case for the MFG satellites (except for
the black body onboard Meteosat-7), other ways need to be found. These substi-
tute calibration techniques are called vicarious calibrations. As this thesis only
works with the VIS data, the next section will only discuss vicarious calibration
techniques used for the VIS channels of space instruments.

1.3.1 VICARIOUS CALIBRATION

There are several ways to do vicarious calibration of VIS images, with the
majority being either intercalibrations with well calibrated instruments, or
calibrations using radiative transfer models. Concerning Meteosat, among
the intercalibration studies, Brooks et al. (1984) did an intercomparison
study between the Meteosat-1 and GOES-2 VIS data for calibration purposes.
Kriebel & Amann (1993) used an airborne radiometer which viewed stable Earth
targets simultaneously with the Meteosat-1, -2 and -4 satellites. In the work of
Cabot et al. (1994), Meteosat-4 VIS data were compared with AVHRR to calibrate
it. In these studies, the calibration of the Meteosat imager is always relative to

10As the digital output depends on the gain settings, the calibration changes when the gain level
is adjusted during the lifetime of an instrument in space.
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the other instrument, of which the assumption is made that it is stable in time
and has been calibrated well enough to use as a reference. In 2005, the Global
Space-based Intercalibration System (GSICS) was founded from an international
idea to create a worldwide intercalibrated system of observations (Goldberg et al.
2011). This consistent calibration among space-based observations worldwide
would improve climate monitoring, weather forecasting and environmental ap-
plications. In a first step, the main focus is on the intercalibration of IR channels
worldwide, with an increasing interest and contribution to the VIS images.

The other type of vicarious calibration makes use of modelled radiances.
Here, the digital output of the radiometer over certain well known sites (often
bright desert, clear ocean, and/or convective clouds) is compared to simulated
radiances L of these types of sites, taking into account the specific SR curve φ(λ)
of the instrument through

L =
∫

VIS

L(λ)φ(λ)dλ

where L(λ) is the simulated spectral radiance at the TOA at wavelength λ. For
each site, the linear relation of Eq. (1.6) can be measured between the simulated
radiance and the measured digital output. The slope of the regression through a
whole series of such site comparisons, then leads to the calibration coefficient C .
The offset O can be derived from night time observations. In preparation of the
MSG satellites, EUMETSAT developed this type of vicarious calibration for the
VIS bands of SEVIRI, called the SEVIRI Solar Channel Calibration (SSCC), which
is based on radiative transfer model computations over bright desert and clear
ocean targets with relatively well known spectral reflectances (Govaerts et al.
2001). The method was also applied to the MFG VIS archive (Govaerts et al. 2004)
and proved to be successful in increasing the precision of the initial vicarious cal-
ibration. The full MFG archive has been reprocessed to derive this new calibra-
tion, and the SSCC method is now the official one, published on the EUMETSAT
website. Other examples of vicarious calibration of the Meteosat instruments
are shown in Koepke (1982a), Koepke (1982b), Moulin et al. (1996), and Arriaga
& Schmetz (1999).

1.3.2 DEGRADATION

Already in the early years of Meteosat’s operational program, it was clear that,
when performing the vicarious calibration, there was a drift in time in the data of
Meteosat-2 due to degradation of the instrument’s optics and detectors (Koepke
1982a). This ageing process can be explained as a decrease of the SR of the in-
strument, uniformly over the spectrum of the channel, so that, in time, less and

29



1. METEOROLOGICAL SATELLITES IN SUPPORT OF CLIMATE RESEARCH

Calibration of Meteosat visible channel 1193
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Figure 4. Histograms of the {i coefficient for yearly minimal image of a Mediterranean
window of 1908 82 pixels for Meteosat-2 (1983-84), -3 (1988-89), -4 (1993) and -5
(1994). The values of the ofTset numeric count (NCo) come from table 5.-- Met -2,
--- Met -3,-- Met -4, --- Met -5.

performed a linear regression fit of the data. Coefficients, uncertainties and confi-
dence levels are given in table 4. Figure 5 clearly shows that the various sensors are
strikingly different. The difference in the mean values of the calibration coefficients
between successive Meteosat configurations is always higher than the dispersion of
points within a given configuration. The slope represents the drift of the given sensor;
very low for Meteosat-2 and -5, about 0·5 per cent per year, and higher for Meteosat-4
(2 per cent per year). The drift of Meteosat-3 seems to be high (around 10 per cent per
year), although the uncertainties remain important (see table 4).
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Figure 1.14: The time dependent calibration coefficients for Meteosat-2 (parts
(a) and (b)), Meteosat-3 (parts (c) and (d)), Meteosat-4 (part (e)) and Meteosat-5
(part (f)). From Moulin et al. (1996).

less of the incoming radiation is actually captured by the detectors. It seemed
possible to correct for this decreasing response by allowing the calibration coef-
ficient to increase in time in a linear way. Moulin et al. (1996) calculated these
time dependent calibration coefficients for Meteosat-2 till -5. This was done
through vicarious calibration based on radiative transfer models, making use of
four spectrally well known African sand desert targets. The calibration coeffi-
cients are shown in Figure 1.14 for these four instruments. Parts (a) and (b) rep-
resent Meteosat-2, where different gain levels were used for part (a) than for part
(b). Parts (c) and (d) show the values for Meteosat-3, again for 2 different gain
settings. Part (e) gives the Meteosat-4 calibration coefficients and part (f) shows
the ones for Meteosat-5. Moulin et al. (1996) calculated a low linear drift for
Meteosat-2 and -5 of about 0.5% per year, about 2% per year for Meteosat-4 and
around 10% per year for Meteosat-3, although it is important to take the signifi-
cant uncertainty into account for the latter. Also for other instruments degrada-
tion effects have been measured. Through vicarious calibration of Libyan desert
scenes, Staylor (1990) measured 6% degradation per year for the VIS channel of
NOAA-9. An exponential decay rate was measured by Bremer et al. (1998) for
both the imager and sounder onboard the GOES-8 and -9 satellites, through
measurements of approximately 30 stars. For GOME, ageing was measured by
Snel (2001) using the Sun and the Moon as stable radiation sources. Even though
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1.3. Calibration and degradation

(a)

(b)

Figure 1.15: Figure from Govaerts et al. (2004) showing the linearly increasing cal-
ibration coefficient in time for (a) the Meteosat-5 VIS band, and (b) the Meteosat-
7 VIS band data. The blue dashed line corresponds to the linear fit through the
coefficients computed for the sea, the red line is for the desert and the green one
for both scene types.

this is only a short list of instruments for which the decrease in response has
been reported, in reality the majority of space instruments suffers from in-flight
(or some even pre-flight) degradation effects.

The ageing of the 6 MVIRI instruments was also taken into account with the
SSCC method. For each imager, the observed drift can be found on the EUMET-
SAT website, allowing the user to let the calibration coefficient increase linearly
in time to correct for the degradation. Figures 1.15(a) and (b) show the calibra-
tion coefficients for Meteosat-5 and Meteosat-7 respectively, as deduced using
the SSCC method.

1.3.3 SPECTRAL DEGRADATION

Validation of the SSCC calibration method, which was also done by Govaerts
et al. (2004), showed that the in-flight change of the SR is stronger for the short
VIS wavelengths than for the longer ones. This was concluded from the follow-
ing. In Figures 1.15(a) and (b) it can be seen that the calibration coefficients de-
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Figure 1.16: Spectral degradation for the GERB instrument onboard Meteosat-8
(unpublished results).

rived for the sea targets increase more strongly than for the desert targets, com-
pensating for the stronger drift in the signal observed over sea than over desert.
As the ocean reflectance spectrum is centered in the blue part of the VIS spec-
trum (shortest wavelengths), while the desert targets reflect more energy in the
red part of the VIS spectrum (longer wavelengths), it is clear that the degradation
has a spectral character. Resulting from this, it seems that the SR of the instru-
ment does not decrease uniformly over the spectrum, as was initially assumed,
but that it decreases stronger in the shorter wavelengths of the VIS channel than
in the longer ones. Apart from the spectral degradation, the validation work of
Govaerts et al. (2004) also showed a saturation of the drift in time. This means
that the decrease of the signal starts linearly, but becomes less after a certain
amount of time. This makes one believe the ageing is not fully captured by a lin-
ear model, but might be better modelled adding an exponential change in time.

The spectral degradation has also been observed for other instruments. It
was reported by Matthews et al. (2005) for the CERES instruments (Wielicki et al.
1996), where different drifts were measured for clear-sky ocean scenes than for
the other scenes. Hints of this spectral degradation are also visible in the data of
the GERB instrument onboard of the MSG satellites (see Figure 1.16). Additional
proof of spectral degradation was given by Delwart et al. (2006) for the Medium
Resolution Imaging Spectrometer (MERIS) on-board the Environmental Satel-
lite (ENVISAT), where a stronger modification of the SR was needed over time for
the blue end of the spectrum than for the red end. Also the Moderate Resolution
Imaging Spectro-radiometer (MODIS) and the Sea-viewing Wide Field–of–view
Sensor (SeaWiFS), which are both narrowband instruments, suffer from a spec-
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1.4. Context of this work

tral on-orbit degradation. Doelling et al. (2010) and Xiong et al. (2009) report a
higher degradation rate for the blue channels of these instruments than for the
ones with a larger central wavelength. For narrowband detectors, however, it is
sufficient to change the calibration coefficient for each channel independently,
as the channels are small enough for the degradation to stay more or less con-
stant over its spectral range.

It is already well known that self-contamination of instruments due to out-
gassing of lightweight molecules coming from moisture, lubricants, adhesives,
etc., can lead to a decreasing SR of the instrument. It was also already known
that the combination of ultraviolet light and large organic molecules can result
in the deposition of tenacious films on, for example, the mirrors of the tele-
scope, an effect called photo-deposition. More work was done to characterise
the satellite contamination by e.g. Stewart et al. (1990), Frink et al. (1992), and
Tribble et al. (1996). They show that typically, degradation that is induced by
self-contamination, decreases exponentially as a function of time. On top of
that, they prove that photo-deposition of contamination onto sensitive surfaces
(detectors, mirrors), is a true source of spectral degradation. When the contami-
nants condense onto these surfaces and are then exposed to solar UV radiation,
they will be photo-deposited. The high-energy UV radiation from the Sun also
seems to polymerise the deposited material and thus change its optical proper-
ties so that it absorbs more radiation in the shorter wavelengths (UV and blue
VIS) than in the longer (red VIS and near IR), explaining the effects reported by
Govaerts et al. (2004).

1.4 CONTEXT OF THIS WORK

As mentioned before in Section 1.1.3, the CM SAF provides long-term datasets of
ECVs from, among others, the Meteosat satellite data. RMIB is involved in cre-
ating a TCDR of the TOA outgoing GERB-like radiation from the MFG database.
This climate data record will be created based on the overlap period of 2 years
(2004 – 2006) between the Meteosat-8 GERB SW and the Meteosat-7 MVIRI VIS
datasets. Empirical regressions will be computed for different scene types and
Sun-Earth-satellite geometries, which can be used to convert these two years of
Meteosat-7 VIS data into so-called GERB-like SW data. To do this regression cor-
rectly, however, it is important to use Meteosat-7 VIS images which have been
corrected for spectral degradation effects. Also, in order to convert the rest of the
Meteosat-7 database, and the VIS images of the previous satellites (Meteosat-2
till -6) based on these two years of GERB-like images, it is important to correct
for the spectral ageing effects, and this way, improve the calibration consistency
between the different Meteosat instruments.
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For that reason, in this work, a semi-empirical model φ(λ, t ) is created which
incorporates the spectral effect discussed in the previous section. It models the
way the pre-launch SR curve φ(λ,0) of the VIS channel of the MVIRI instruments
changes in time over its wavelength range, as seen in the rectified Level 1.5 im-
ages. The mathematical formula of the model is presented in Chapter 3 with-
out the possibility of giving a full physical justification. The reason for this is
that during the whole MFG history, real physical modeling of the degradation of
the MVIRI instruments has never been carried out due to a lack of knowledge
of the instrument characteristics and their behavior in space. As mentioned be-
fore, these instruments had already been designed by 1970, and have only been
characterised with the accuracy permitted at that time. On top of that, these in-
struments were not meant to be used quantitatively at the moment they were
built. Their primary goal was to take images of the clouds, the Earth’s surface
and atmosphere for forecasting purposes.

The fact that this work is based on the SR curve as it was characterised be-
fore launch, and there is serious doubt about the accuracy of these curves, poses
a limitation to the generation of a FCDR from the corrections proposed in this
work. It would have been possible to start this work on a more basic level, and
try to model the sensor degradation based on the non-rectified non-geolocated
Level 1.0 data. As the goal of the work, however, was to improve the consistency
between the different satellites in order to generate the GERB-like database, it
was sufficient to correct the Level 1.5 images at this point. On top of that, at the
beginning, it was not clear which problems would be encountered along the way.
Only at the end of this work, it was clear that there are other issues that need to
be dealt with in order to generate the FCDR of visible reflectance for the MFG
satellites, in particular a more thorough study of the sensor behavior is needed
(i.e. before any image processing like the image linearization and rectification
have been done). However, this is not a mandatory step when generating the
TCDR of TOA outgoing radiation.
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Chapter Two

Data selection and processing

The spectral ageing model, developed in this work, depends on three satellite de-
pendent model parameters. In order to find these parameters, and this way char-
acterise the shape of the ageing process for each satellite independently, time
series are needed which show how the Meteosat visible (VIS) images change in
time due to the in-flight degradation. In order to see the decreasing sensitivity
clearly, the time series need to have as little variability1 as possible. For that rea-
son, the data used in this work to generate the spectral ageing model, is only a
selection of the data available. This chapter explains how targets with a low vari-
ability in time are selected in the Meteosat field–of–view (FOV), how their time
series are converted from digital count (DC) into so-called reflectance ratio val-
ues, and how these reflectance ratio time series are then grouped according to
scene type to be of maximum use in this thesis.

2.1 METHOD

As explained in Chapter 1, the observed signal of the Meteosat VIS channel de-
creases in time due to the degradation. The spectral ageing model estimates how
the instrument’s spectral response (SR) curve changes due to this ageing pro-
cess. As the observations have already been filtered by the real degrading SR, the
model cannot be directly applied to the images. Instead, the incoming radiation
is simulated and filtered by the modelled degrading SR to be able to compare
observed degrading time series with the modelled ones. The images are then
corrected using a reference which does not degrade in time, i.e. the unfiltered re-
flectance. This is the reflectance that would be observed by a non-degrading in-
strument with a perfect SR equal to 1 over the full wavelength range. The reason

1The variability refers to signal changes in time due to sources different than the ageing of the
instrument.
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why the full wavelength range is chosen for this simulated perfect instrument
instead of the Meteosat Visible and Infrared Imager (MVIRI) VIS range, is partly
to be able to see if it is possible to apply the model and create broadband obser-
vations, similar to the future Geostationary Earth Radiation Budget (GERB)-like
data, and partly for reasons further on explained in Section 2.6. A linear rela-
tion exists between filtered and unfiltered reflectances. If the degradation in the
observations is estimated correctly by the model, and so the right model parame-
ters have been found, the same relation which converts the simulated degrading
filtered reflectances into simulated non-degrading unfiltered reflectances, is able
to convert the observed degrading reflectance time series into ageing corrected
unfiltered reflectance time series.

As the search towards this best set of satellite dependent model parameters is
based on how strongly the observed time series are still decreasing after adjust-
ing the parameters, it is important to decrease the variability in the time series as
much as possible. This way the residual trend in the data will be more clear and
the model parameters can be better tuned with smaller uncertainties. For this
reason, only a selection of sites in the Meteosat FOV is used. In the rest of this
chapter, the data selection and the way the time series are processed in order to
decrease the variability, is explained.

2.2 INPUT DATA

The data from the MVIRI used in this work, are the Level 1.5 VIS images. They
have been generated by correcting the original (Level 1.0) images for unwanted
geometric effects (i.e. rectification), and by geolocating them using the rectified
fixed reference projection. First of all, only one VIS image a day is selected, i.e.
the one at 1200 Universal Time Convention (UTC) when a maximum of pixels in
the Meteosat FOV are in daylight. This image is reduced from the original size of
5000×5000 pixels to 2500×2500 pixels, mainly to average the output of the two
detectors (see Table 1.4), but also to reduce the processing time. Whenever this
image was corrupted or unavailable, nothing is used for this date. Secondly, not
all pixels in the FOV are useful. The sun glint region is removed to avoid satura-
tion. This is the region over ocean for which the angle between the direction of
the solar specular reflection and the direction of observation is too small2, i.e. in
this study less than 25◦. On top of that, some other sites are not stable enough in
time for the study of the instrument degradation effects. This instability can be
due to a change in land use over the years, like the deforestation of the Amazon

2This so-called sun glint angle (SGA) is computed as cos(SGA) = cos(θ0) cos(θ) +
sin(θ0) sin(θ) cos(ψ), where the angles θ0, θ and ψ were defined in Section 1.1.2.
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rainforest or the urbanisation of land adjacent to cities that was previously used
for agriculture (Lambin et al. 2001, 2003). Another reason can be dust in the at-
mosphere coming from e.g. the Sahara, which can cover parts of Europe and the
Atlantic Ocean (Prospero & Carlson 1972, Papayannis et al. 2008), or other types
of aerosols in the atmosphere (Chin et al. 2004, Edwards et al. 2004). As the in-
tention is to see how the Meteosat data vary in time due to the degradation, it is
necessary to reduce the noise on the time series as much as possible, and so only
select a specific set of targets with a low variability in time to work with.

2.3 CONVERSION FROM DIGITAL COUNTS TO REFLECTANCE

Instead of using the original images expressed in DC to search for the targets
with the lowest noise level, all useable 1200 UTC images are first converted into
reflectance. The main reason for this is that values expressed in reflectance are
not dependent anymore on the variable solar incoming radiation.

First, the original values v are converted into radiances L using a fixed cali-
bration coefficient C and offset O

L =C (v −O). (2.1)

The calibration coefficients and offsets used here, are the ones that were calcu-
lated using the SEVIRI Solar Channel Calibration (SSCC) at launch. These values
are given on the webpage of the European Organization for the Exploitation of
Meteorological Satellites (EUMETSAT) and are shown here in Table 2.1 for each
of the 6 Meteosat First Generation (MFG) satellites. The calibration coefficient
C is kept fixed at the value at launch, which means that the SSCC daily drift is
not used. The offset O was measured by EUMETSAT for different periods in time
by . The value given in Table 2.1 is the time average of all these offsets over the
full life time of each satellite. The standard deviation on O that results from this
averageing, is added in the table. This value is as small as 0.003 for the second
part of Meteosat-3 due to the fact that only a limited amount of data are avail-
able, with offsets almost all equal to 4, and as high as 0.484 for Meteosat-4 where
offset values were measured ranging from 4 up to 5.

Next, the radiances L are transformed into reflectances ρ through

ρ = L
FSI cosθ0
πd 2

, (2.2)

which is Eq. (1.4), but where the spectral radiance L(λ) is multiplied with the in-
strument’s SRφ(λ) and integrated over all wavelengths of the VIS MVIRI channel,
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2.4. Selection of cloudy targets

resulting in

L =
∫

VIS
L(λ)φ(λ)dλ. (2.3)

Similarly, S(λ) is multiplied with φ(λ), resulting in the filtered solar irradiance
(FSI) when integrated over all VIS wavelengths. The FSI values used here are
the ones calculated by EUMETSAT using the fixed φ(λ) as it was characterised
before launch (see Table 2.1 for the FSI values). As the radiances and reflectances
from Eqs. (2.1) and (2.2) are filtered by the instrument’s SR, they are sometimes
referred to as filtered radiances and reflectances in the rest of this thesis.

The reflectance images are now used to select sites that have a low noise level
in time. As the degradation of the VIS channel has proven to be spectrally depen-
dent, it is useful to have sites with different spectral characteristics, which reflect
the incoming solar radiation in different parts of the VIS spectrum. Comparing
the degradation of each type of site should then show how the degradation spec-
trally evolves in time. The next two sections explain how the selection was done,
making a distinction between the search for cloudy and clear-sky targets.

2.4 SELECTION OF CLOUDY TARGETS

As only clouds with a relatively high albedo can be detected in the VIS images,
and the selected clouds need to have a low variability in time, the selection pro-
cess is limited to either the low thick marine stratus and stratocumulus clouds
or the deep convective clouds. For the following reasons, the convective clouds
prove to be more suitable targets than the stratocumulus clouds. First of all, deep
convective clouds have much higher and more stable reflectance values (close to
1) than the stratocumulus clouds (0.3 – 0.4), making the former easier to detect.
Secondly, the tops of the deep convective clouds are at the tropopause level3,
reducing the effects of water vapour and tropospheric aerosol absorption, com-
pared to the lower stratocumulus clouds. Finally, Eastman et al. (2011) observed
a decrease in the amount of persistent marine stratocumulus clouds over sev-
eral different regions during the past sixty years, presuming a positive feedback
system with the increasing sea surface temperature. This makes these clouds
bad study targets for this degradation work. Deep convective clouds were also
used to calibrate instruments like the Advanced Very High Resolution Radiome-
ter (AVHRR) and the Moderate Resolution Imaging Spectro-radiometer (MODIS)
(Doelling et al. 2004).

3The tropopause is the boundary in the Earth’s atmosphere between the troposphere and the
stratosphere where a temperature inversion occurs. The part of the atmosphere that ranges from the
Earth’s surface up to the tropopause is called the troposphere, while the stratosphere is the region
right above the tropopause.
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2. DATA SELECTION AND PROCESSING

The selection process for the convective clouds starts by replacing each pixel
in the reflectance images with a local mean of the values in a box of 7×7 pixels
around it. The reason why this is done, is the following. The surface of the top of
the convective clouds is not always parallel to the Earth surface. This means that
the cosθ0 in Eq. (2.2) becomes too large when the angle between the incoming
radiation beam and the cloud surface θ0,cloud is larger than the angle between the
incoming radiation and the Earth surface θ0. In the opposite case, cosθ0 is too
small. These two situations often happen next to each other, e.g. for a cloud lobe
where the effect of the bright side faced to the Sun is canceled by the shadowy
side turned away from the Sun. Averageing out the pixels in boxes, reduces these
effects. Apart from that, this local averageing increases the stability of the time
series of the candidate targets.

Next, each so-called local mean image is scanned for deep convective clouds:
i.e. pixels with reflectance values close to 1. This search is not done over the
whole FOV, but is limited to a box in the InterTropical Convergence Zone (ITCZ).
This is the area around the equator where the northeast and southeast trade
winds come together and result in uplifting air, creating big thunderclouds or,
in other words, deep convective clouds. The region around the ITCZ that is used
in this work is shown by the white box in Figure 2.1. The vertical range of this box
is based on the fact that this is the region with the most deep convective clouds

Figure 2.1: Figure showing the region around the ITCZ from which the selection
of deep convective cloud sites is done.
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2.5. Selection of clear-sky targets

in the Meteosat FOV, while the horizontal range allows to limit θ and avoid the
edge of the FOV. Apart from this, only using this region also prevents from acci-
dentally selecting the snowy clear-sky sites in the outer north and south of the
disk, which also have reflectance values close to 1.

In the following step of the process, the full set of deep convective cloud pix-
els present in one local mean image, is reduced by requiring a minimal distance
between each two candidate targets. Each final selected pixel needs to be the
local maximum reflectance value in a box of 151×151 pixels surrounding it, so
that no two cloudy targets are closer to each other than 75 pixels. This minimum
distance requirement is set to increase the variety in the cloudy selection. Fi-
nally, the 6 targets with the highest reflectance values are averaged out, so that
one convective cloud value is obtained per image (and thus per day).

2.5 SELECTION OF CLEAR-SKY TARGETS

In order to find clear-sky targets, the clouds need to be filtered out from the im-
ages, leaving only the clear-sky Earth below. These clear-sky images are created
following the method of Ipe et al. (2003) with a temporal frequency of one image
every 10 days4. The value of each clear-sky pixel is the fifth percentile of the time
series of that pixel from 30 reflectance images before and 30 after. Taking the fifth
percentile instead of the pixel to pixel minimum, serves to reduce the sensitivity
to cloud shadows. The Meteosat-7 data are used in Figure 2.2 to illustrate this,
with an example of an original image expressed in reflectance ρ in Figure 2.2(a)
and its clear-sky counterpart in Figure 2.2(b).

Similarly as for the cloudy targets, the first step in the selection process of
clear-sky targets is replacing each pixel in the clear-sky images with the local
mean of the values in a box around it. The first reason for this is the same as
before: the Earth surface is not always flat. Mountains, forests, cities, etc. can
make the solar radiation reflect in a way that is not corrected for using the cosθ0

in Eq. (2.2). Another reason is that there is a lot of diversity in the scene types
present on the Earth. By averageing out, peaks of more reflecting or less reflect-
ing surface types are reduced. For that reason, the local mean is taken here over
a larger box (25×25 pixels) than for the convective clouds. Figure 2.2(c) shows
the local mean image derived from Figure 2.2(b).

To know the spectral signature of each clear-sky pixel, a specific scene type
is assigned to it. The spectral subdivision that is used for this, was defined by
the scientists from the Clouds and Earth’s Radiant Energy System (CERES) and

4The reason why the clear-sky images were derived this way instead of using the cloud mask
is to avoid depending on other methods in the determination of the ageing process, as no other
information than the VIS MVIRI images themselves are used in the method of Ipe et al. (2003).
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2. DATA SELECTION AND PROCESSING

(a) (b)

(c) (d)

Figure 2.2: The Meteosat-7 VIS image of 10 June 2003 as (a) the reflectance image,
(b) the clear-sky reflectance image, (c) the local mean reflectance image and (d)
the standard deviation to mean ratio image of the full Meteosat-7 data range.
The black spot in the center of these images is the sun glint region that has been
removed.

is based on the International Geosphere / Biosphere Programme (IGBP) (Eiden-
shink & Faundeen 1994, Loveland & Belward 1997). Figure 2.3 shows the distri-
bution of the 6 different scene types: ocean, dark vegetation, bright vegetation
(i.e. sparse vegetation where the bright underlying soil is visible), dark desert,
bright desert, and snow. As there are almost no all year round snow pixels in
the Meteosat FOV, this surface type is not used in this work. Furthermore, the
snow spectrum in the VIS band is very similar to the convective cloud spectrum
(Dozier 1989).

In the next step, the clear-sky images are scanned for sites which have a low
variability in time. To find these clear-sky targets, a criterion is needed to decide
what noise level on the time series is low enough for this work. The criterion used
here is based on the ratio of standard deviation to mean of each pixel time series
over the full time range of a satellite, in the following way. As the decrease in sig-
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2.5. Selection of clear-sky targets

Figure 2.3: The different scene types used to classify the clear-sky targets: ocean
(1), dark vegetation (2), bright vegetation (3), dark desert (4), bright desert (5)
and snow (6)

nal of the satellite due to the ageing can be approximated to the first order by a
linear function, a linear fit in time is computed for each individual reflectance
clear-sky pixel time series. Based on this fit, the standard deviation to the fit-
ting line is computed and stored for each pixel in a so-called standard deviation
image. In the same way, the mean image is computed as the image where each
pixel is the mean value of the pixels with the same position over the whole time
range of images. Using these two images, the pixel to pixel ratio of the standard
deviation to mean is taken in order to normalise the standard deviation. This
standard deviation to mean ratio image for Meteosat-7 is shown in Figure 2.2(d).
The candidate targets are then selected as the pixels with a normalised standard
deviation smaller than 0.05.

To ensure that the final targets come from different geographical regions, and
that the number of sites stays limited, the final step is again a distance limitation:
no two sites with the same scene type can be located closer than 50 pixels, i.e.
each site is the local minimum of standard deviation to mean ratio for its scene
type in a box of 101×101 pixels. For the ocean sites, it is required that in this
box of 101×101 pixels, at least 95% of the pixels are ocean sites. This is to prevent
from selecting ocean sites too close to the shore or to small islands. All the targets
that are retained after all these eliminations, are used in the rest of the work (see
Figure 4.1 in Section 4.1). By performing the target selection this way, still a few
hundred sites are left to work with. Another option could have been to only select
a limited number of sites per scene type, of which the spectral information is
well known, and it is known that these sites have a low degree of variability in
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2. DATA SELECTION AND PROCESSING

time. Even though this would decrease the processing time, it limits the spectral
information for each scene type individually. As it is important to know if the
spectral ageing model works for sites over the full Meteosat FOV, it is useful to
have targets spread out over all observed continents.

2.6 TIME SERIES IN REFLECTANCE RATIO UNITS

For each of these clear-sky and cloudy targets, reflectance time series are cre-
ated. In order to apply the spectral ageing model φ(λ, t ), these reflectance time
series are unfiltered. The linear unfiltering relation, which converts the observed
filtered reflectance ρ into unfiltered reflectance ρu (see Section 2.1), is given by
the linear regression

ρu = a +bρ. (2.4)

The a and b coefficients are obtained by fitting simulated filtered and unfiltered
reflectances, which are created as follows. Using the Santa Barbara DISORT At-
mospheric Radiative Transfer (SBDART)5 model (Ricchiazzi et al. 1998), spectral
radiances L(λ) are simulated for different geometries and scene types, for which
the spectral signatures are obtained from Clerbaux et al. (2008). In total, 750
surface types are used in this work, which are characterised by a mixture of one
or several surface reflectance models from the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) library (Baldridge et al. 2009). Also,
different types of aerosols and cloudiness are allowed. The simulations cover all
possible solar and viewing geometries with an angular resolution of 10◦ for the
solar zenith angle θ0 and relative azimuth angle ψ, and 5◦ for the viewing zenith
angle θ.

To convert the simulated spectral radiances L(λ) into filtered and unfiltered
radiances, the spectral ageing model φ(λ, t ) is used for the filtered radiances L
and a flat SR function φ(λ) = 1 for the unfiltered radiances Lu. With a sufficiently
fine spectral resolution, the filtered radiances are calculated as

L =
∫

VIS
L(λ)φ(λ, t )dλ (2.5)

where the integration covers the full MVIRI VIS channel, and the unfiltered radi-
ances as

Lu =
∫

0.25−5µm
L(λ)dλ. (2.6)

5The Discrete Ordinates Radiative Transfer (DISORT) model is a multi-layered plane-parallel ra-
diative transfer code applicable to problems from the ultraviolet (UV) to the radar regions of the
electromagnetic spectrum.
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Figure 2.4: Simulated filtered and unfiltered reflectances for different surface
types and with angles θ0 = 50◦, θ = 30◦ and ψ = 50◦. The filter that is used for
the filtered reflectances in this example is the one of Meteosat-7 at launch.

After both filtered and unfiltered simulated radiances are converted into fil-
tered and unfiltered reflectances, using Eq. (2.2) with d = 1 as the simulations
have been performed at 1 Astronomical Unit (AU), the coefficients a and b are
fitted for each geometry, time step t and scene type for which the simulations
were done, through Eq. (2.4). Figure 2.4 shows a sample of simulated filtered and
unfiltered reflectances for four different surface types and for the geometry an-
gles θ0 = 50◦, θ = 30◦ and ψ = 50◦. The filtered reflectances shown in this figure
were created using the Meteosat-7 SR curve at launch (t = 0). The fitted a and b
coefficients are then used to convert, for each scene type, geometry and time, the
observed filtered reflectance time series into unfiltered reflectance time series. If
the degradation is modelled correctly, this results in stable, non-degrading time
series.

As a final step, the unfiltered reflectances ρu are divided by a modelled
anisotropy factor R and albedo A to correct for the difference in Sun-Earth-
satellite geometry and albedo for the different surface types. For the clear-sky
sites, R and A are provided by the angular distribution models (ADMs) that have
been empirically estimated by Loeb et al. (2003), using data of the CERES in-
strument on the Tropical Rainfall Measuring Mission (TRMM) (Kummerow et al.
1998)6. As the CERES short wave band is broader than the VIS MVIRI chan-

6The availability of these broadband CERES models is also the reason why the unfiltering is done
for Meteosat and why no other stable reference is used.

45



2. DATA SELECTION AND PROCESSING

nel, the cloudy R and A contain the effects of the deep ice and water absorp-
tion bands between 1–2µm. For this reason the anisotropy and albedo models
for deep convective clouds are not taken from Loeb et al. (2003). Instead they
are modelled with the radiative transfer program libRadtran (Mayer & Kylling
2005) using the Key et al. (2002) ice crystal parameterisation, assuming solid
column shaped particles. The result of the division of the observed unfiltered
reflectances by these modelled broadband reflectances is called the reflectance
ratio r , given by

r = ρu

R(θ0,θ,ψ) A(θ0)
(2.7)

in which the dependency on the angles θ0, θ and ψ is now expected to be re-
moved.

In the most perfect situation, the r values should be equal to 1. In practice
this is, for different reasons, not the case. First of all, the Meteosat SR curve on
which the spectral ageing model is based, is not perfect, with possibly larger un-
certainties for the older instruments when the characterisation was done less
accurately than nowadays. In Chapter 6 a study is done, showing that even the
SR characterisation of the VIS channel of Meteosat-7 is not perfect. Secondly,
the unfiltering correction relies on simulations which may not exactly represent
the observed surface type. The final reason is that the CERES TRMM ADMs used
to convert the unfiltered reflectance values ρu into reflectance ratio r , are not
perfect for this use here. As they are global tropical models, they are adequate
as an average over the tropical region (latitude between 35◦S and N), but might
slightly misrepresent targets in the Meteosat FOV. The deficiency of the CERES
TRMM models in the Meteosat FOV was reported for dark vegetation by Bertrand
et al. (2006). On top of that, the ADMs depend on the CERES calibration, while
Meteosat and CERES have not been intercalibrated. Also, there can be sampling
errors in these ADMs: when calculating the R and A values, averages were taken
over boxes, subdivided per angle. This introduces some variability on these val-
ues, which enters the reflectance ratio time series.

2.7 SEASONAL CORRECTION

In the previous step, when the unfiltered reflectance values were converted
into reflectance ratio, a division was made for each observation by an empir-
ical anisotropy factor and albedo value (Eq. (2.7)). As explained, these values
were not derived from the same FOV which is covered by the Meteosat satellites,
but come from observations over the tropical region. This results, among other
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Figure 2.5: Ageing corrected Meteosat-7 time series for a site in the Indian Ocean
with latitude 37.26◦ S and longitude 41.30◦ E, both before and after the seasonal
correction.

things, in residual seasonal effects7 which are empirically corrected in this work
by subtracting the difference between the monthly mean annual cycle and the
overall mean from the reflectance ratio time series (Qian et al. 2011). As the orig-
inal time series decrease in time due to degradation, and this degradation can
be approximated to the first order by a linear relation, the mean values are cal-
culated with respect to a linear first order fit. An example of an ageing corrected
time series of a site with high seasonal variation is shown before and after sea-
sonal correction in Figure 2.5 for a site in the Indian Ocean (observed during the
Indian Ocean Experiment (INDOEX) and Indian Ocean data coverage (IODC)).
Due to the fact that a minimum of two cycles is necessary to calculate these cor-
rection factors (due to the linear fit), a minimal duration of 2 years of continuous
data is required in this work to do the seasonal correction.

2.8 SCENE TYPE AVERAGEING

Finally, the seasonally corrected clear-sky reflectance ratio time series are aver-
aged out according to the 5 different surface types used in this work (ocean, dark
vegetation, bright vegetation, dark desert and bright desert). The reason for this

7Another source of seasonal effects is the seasonal changing of vegetation cover or leaf area. By
using a lot of targets, this effect is averaged out.
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Figure 2.6: Simulated average spectral radiance curves at the TOA for the 6 differ-
ent scene types used in this work. The spectra come from Clerbaux et al. (2008).

is the following. First, the grouping is done to decrease the number of time series
to work with while at the same time still keeping information about the whole
Meteosat FOV. Second, the stability is increased by averageing out the some-
what more noisy time series. And finally, the ageing effect is stronger for scene
types with a strong component in the blue part of the VIS spectrum. By select-
ing the sites with the same surface type, similar spectral characteristics are being
grouped together and targets with distinct spectral properties can be compared
with each other. The sixth time series, i.e. the convective cloud time series, is
averaged out over 10 days to have the same temporal resolution as the clear-sky
time series. As each value in the original cloud time series already was the mean
of 6 targets, the time averaged cloud time series contain the averages of 60 deep
convective cloud observations every 10 days.

For each of the 6 scene types, Figure 2.6 shows typical TOA outgoing spectral
radiance curves L(λ). These clearly show the different spectral characteristics of
the different scene types, where each reflects different amounts of radiation in
the different wavelengths. In Table 2.2, the mean wavelength in which each of
the 6 scene types reflects its energy is calculated, weighted by the spectra shown
in Figure 2.6. The second column shows the mean wavelengths following

〈λ〉 =
∫

L(λ)λdλ∫
L(λ)dλ

,
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2.8. Scene type averageing

Table 2.2: Weighted average wavelengths of each of the 6 spectra from Figure 2.6,
with and without filter.

Scene type 〈λ〉 〈λ〉filtered

Clouds 0.7338 0.6665
Ocean 0.5129 0.5638

Dark vegetation 0.8611 0.7299
Bright vegetation 0.8887 0.7205

Dark desert 0.8735 0.6912
Bright desert 0.8421 0.6801

while the values shown in the third column are filtered using the pre-launch
characterised Meteosat-7 SR curve:

〈λ〉filtered =
∫

L(λ)φ(λ)λdλ∫
L(λ)φ(λ)dλ

.

Both columns show that the ocean spectrum reflects on average in the lowest
wavelengths, followed by the deep convective clouds, the desert, and the veg-
etation. By multiplying the spectra with the SR curve of Meteosat-7, the mean
wavelengths change as the weighting shifts to the wavelength region where the
SR observes most radiation (roughly between 0.4 and 1.1µm). This means that
the contributions of both the parts of the spectra for the shortest wavelengths
(0.3 – 0.4µm) and the longest wavelengths (1.1 – 1.4µm) become almost negligi-
ble in the calculations. For the ocean, this results in a higher mean wavelength
when filtering, because the ocean spectrum peaks in the shortest wavelengths,
while for the other scene types, the mean wavelength becomes smaller as these
scene types still reflect a lot of radiation in the higher wavelength region.
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Chapter Three

Spectral ageing model

Right before the satellite is launched, when no degradation should have1 taken
place yet, it is assumed that the spectral response (SR) curve of the Meteosat
Visible and Infrared Imager (MVIRI) resembles the one that was measured by the
spacecraft manufacturer. After the satellite is launched into space, degradation
starts, though it is unknown at what exact point this happens. As more and more
contamination blocks the radiation from reaching the detectors, the SR of the
instrument starts to decrease, resulting in a degraded SR curveφ(λ, t ) at a certain
time t , expressed in days since launch. In this chapter, the different attempts
that led toward the creation of the spectral ageing model are shown, giving the
formula of the model itself, and presenting the three parameters the model relies
on. It is explained at the end of this chapter how these parameters are fitted for
each satellite.

3.1 CREATING THE MODEL

3.1.1 LINEAR DEGRADATION

In the most simple case, the decrease of the SR can be approximated by a linear
function in time,

φ1(λ, t ) =φ(λ,0) (1−αt ),

where φ(λ,0) is the SR curve of the instrument as it was characterised before
launch, and α the parameter that represents the degradation rate of the instru-
ment. As there is no spectral dependency assumed in this model, one speaks of
‘grey degradation’. It is known, however, that there is a spectral component to

1There is a precedent (Global Ozone Monitoring Experiment (GOME)) where degradation al-
ready happened before launch, during storage. This is, however, a rare case.
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Figure 3.1: Normalised SR curves of the Meteosat-7 VIS channel at launch and
after 8 years, using models φ1(λ, t ) and φ2(λ, t ). The model parameters used for
these curves are the ones leading to time series as stable in time as possible.

the ageing of the visible (VIS) channel of the Meteosat First Generation (MFG)
instruments. Adding a factor to the model φ1(λ, t ), which is on itself also a linear
dependency on time, results in the quadratic time dependent model

φ2(λ, t ) =φ(λ,0) (1−αt )
(
1+γ (λ−λ0)t

)
,

where γ (λ−λ0) represents the spectral degradation rate of the instrument, i.e.
the rate at which the optical properties of the contamination are changed, and
λ0 is the central wavelength of the SR curve at launch φ(λ,0). The tilt around λ0

in this function shows how, for a positive γ value, the blue part of the spectrum
(λ<λ0) is allowed to decrease more than the red part of the spectrum (λ>λ0).

The difference between φ1(λ, t ) and φ2(λ, t ) is shown in Figure 3.1, based on
the SR curve at launch of the Meteosat-7 VIS channel. The full line shows the
originalφ(λ,0), while the other two curves are the degraded modelled SRs after 8
years, usingα= 0.000055 days−1 for the first model, andα= 0.000050 days−1 and
γ = 0.000125 days−1 µm−1 for the second. These parameters are the best possi-
ble ones, i.e. the parameters that lead to 6 reflectance ratio time series as flat as
possible2. The reason whyα is bigger for the first model than for the second, can
be explained like this. In the grey model,α is taken as the value that leads all time
series as close as possible to flat ones. Knowing that there is a spectral degrada-
tion, and that the model tries to find the best solution for all time series (and

2The way these parameters are found is explained in the Section 3.2.
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3.1. Creating the model

thus all parts of the spectrum), φ1(λ, t ) is overcompensating in the red part, and
not correcting enough in the blue part of the spectrum. Adding the γ parameter
shows that the overall ageing is in fact not so strong, but that the spectral part is
needed to correct the blue ocean time series more than the red desert ones.

3.1.2 EXPONENTIAL GREY DEGRADATION

Based on the research from Matthews et al. (2005) and Xiong et al. (2009), and
the National Aeronautics and Space Administration (NASA) studies performed
by Stewart et al. (1990) and Tribble et al. (1996), the grey part in the ageing model
is now changed from a linear degradation to an exponential one

φ3(λ, t ) =φ(λ,0) e−α t (
1+γ (λ−λ0)t

)
(3.1)

whereα is still the grey degradation rate and γ (λ−λ0) the spectral one. Although
the visual difference between the SR curves seems to be negligible in Figure 3.2
for the two models after 8 years, the exponential grey degradation is easier to
substantiate physically than the linear one. Assuming for now that the contami-
nated surfaces do not reflect radiation anymore, at each time t it can be said for
any part of the surface of the mirrors and detectors that it either reflects radiation
or it does not. If, in this case, the contamination arrives at these sensitive surfaces
at a constant rate α, the amount of contamination-free surface decreases expo-
nentially in time, following e−α t . Consequently, the amount of visible radiation
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Figure 3.2: Normalised SR curves of the Meteosat-7 VIS channel at launch and
after 8 years, using models φ2(λ, t ) and φ3(λ, t ). The model parameters used for
these curves are the ones leading to time series as stable in time as possible.
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captured at the detectors, decreases at the same rate, as the contaminated sur-
faces absorb all incident radiation. The model parameters used in Figure 3.2 for
φ2(λ, t ) are the same as in Figure 3.1, and for φ3(λ, t ), α = 0.000050 days−1 and
γ = 0.000115 days−1 µm−1. This means that the overall grey degradation rate
stays the same, with a slightly smaller spectral one.

For the spectral part of the degradation model, different possibilities were in-
vestigated. In the case of the Clouds and Earth’s Radiant Energy System (CERES),
Matthews et al. (2005) proposed a model with an exponential dependency on
wavelength. This idea is based on the fact that atomic oxygen is a major source
of contamination for polar orbiting instruments (Dooling & Finckenor 1999). Po-
lar satellites, like the ones carrying the CERES instruments, fly on altitudes where
there is enough atomic oxygen in the atmosphere to cause degradation effects.
The Meteosat instruments in their geostationary orbits, however, are too high up
in space to be bothered by this. The material causing the degradation for geo-
stationary instruments is thus not the same as for satellites in polar orbits and
so the model of CERES could not be followed. An exponential decrease in time
could have worked, but it was not supported by any other works and it did not
lead to significantly better results.

In the three models that were discussed here, it was assumed that the con-
taminated parts of the mirrors and detectors do not reflect any light anymore
because the contamination absorbs it all. If this would be the case, the reasoning
behind the spectral degradation as being caused by the contamination absorb-
ing more short wave radiation (and so reflecting less) than long wave radiation,
would be nonsense. To incorporate the fact that the contaminated parts of the
surfaces still reflect part of the incoming radiation, the model is changed even
further, becoming the spectral ageing model used in the rest of this work.

3.1.3 SPECTRAL AGEING MODEL

In the last model (φ3(λ, t )), the sensitivity goes to 0 when the whole surface is
contaminated. In reality some amount of radiation is indeed absorbed, but the
majority is still reflected and captured by the detectors. In this work, the frac-
tion of radiation reflected by the contaminated surfaces, is represented by the
parameter β. Adding this to φ3(λ), leads to the following model

φ(λ, t ) =φ(λ,0)
(
e−α t +β(

1−e−α t ))(1+γ (λ−λ0)t
)

. (3.2)

Here e−α t represents the signal due to the non-contaminated parts of the mir-
rors and detectors, while β

(
1−e−α t

)
is the part that represents the fraction of

incoming light still reflected by the contaminated surfaces. Figure 3.3 shows
the original SR curve φ(λ,0) of Meteosat-7 together with the modelled response
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Figure 3.3: Normalised SR functions of the Meteosat-7 VIS channel at launch,
and after 2, 4, 6 and 8 years. The model parameters used for these curves are the
ones leading to time series as stable in time as possible, and are given in Table 4.2.

curves using the spectral ageing model for t = 2, 4, 6 and 8 years. The model
parameters used in this figure are α = 0.000357 days−1, β = 0.760112 and γ =
0.000126 days−1 µm−1 (as given in Table 4.2)3.

3.2 PARAMETER FITTING

Next, the three model parameters α, β and γ need to be estimated for each MFG
satellite. In Section 2.1, it was already stated that, if the degradation in the data
is estimated correctly by the model, the same relation which converts the sim-
ulated degrading filtered reflectances into simulated non-degrading unfiltered
reflectances, is able to convert the observed degrading filtered reflectance time
series into ageing-corrected flat unfiltered reflectance time series. With the mod-
elled SR curveφ(λ, t ) from Eq. (3.2), the simulated filtered radiance from Eq. (2.5)

3The reason whyα is much bigger here than in the previous model is due to the fact that in reality
the signal does not go to zero, but saturates to a certain value. To model this with Eq. (Mod3), α had
to be much smaller due to the absence of the β parameter.
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3. SPECTRAL AGEING MODEL

becomes

L =
∫

VIS
L(λ)φ(λ, t )dλ

=
∫

VIS
L(λ)φ(λ,0)

(
e−α t +β(

1−e−α t ))(1+γ (λ−λ0)t
)

dλ

= (
e−α t +β (

1−e−α t )) (
L0 +γ t L′

0

)
(3.3)

with

L0 =
∫

VIS
L(λ)φ(λ,0)dλ

L′
0 =

∫
VIS

L(λ)φ(λ,0)(λ−λ0)dλ.

The simulated unfiltered radiance stays independent of the instrument’s SR
curve:

Lu =
∫

0.25−5µm
L(λ)dλ. (3.4)

For a certain set of (α, β, γ) parameters, the unfiltering from Eq. (2.4) can be
fitted for each scene type using the simulated filtered and unfiltered reflectances
derived from the simulated filtered and unfiltered radiances of Eq. (3.3) and (3.4).
If that set of parameters is able to convert the observed filtered reflectance ratio
time series into flat unfiltered reflectance ratio time series using the same fits
from the simulations, then the model is able to estimate the degradation in the
data and the right parameters have been found. That best set of parameters is
found through the minimisation process of Powell (1964), which requires an ini-
tial value and search vector as input for each parameter. The algorithm works
through a bi-directional search for each of the parameters, starting at the initial
value in a direction normal to one of the axes of the parameter space, using the
initial step size, and working its way towards the parameters which minimise the
cost function C . This function is the mean square variance of the six (observed)
unfiltered time series with respect to the mean ui :

C =
6∑

i=1
wi

(
1

N

N∑
j=1

(
ri j −ui

)2

)
(3.5)

where index i runs over the 6 time series and index j over all points in the time
series, wi is the weight given to each of the 6 scene types, N is the number of
points in the time series (which is the same for each scene type) and ri j is the
reflectance ratio for time series i and time j . The weights wi for the clear-sky
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3.2. Parameter fitting

Surface type weight wi

Convective clouds 0.6562
Ocean 0.1611

Dark vegetation 0.0252
Bright vegetation 0.0554

Dark desert 0.0268
Bright desert 0.0753

Table 3.1: For each time series, the weight used in Eq. (3.5) is given.

scene types are equal to the percentage of pixels of that scene type in the Me-
teosat field–of–view (FOV). For the clouds, the weight was obtained from the
number of pixels in the FOV with a cloud fraction equal to 1, averaged out over
several days. The cloud fraction is retrieved from the Spinning Enhanced Visible
and Infrared Imager (SEVIRI) images. The values for the weights wi are given
in Table 3.1 for each surface type. Figure 3.4 shows the value of the cost func-
tion for different combinations of the three model parameters (slope, β, γ) for
the Meteosat-7 data. The lowest values are situated within a wide V-shape in the
slope-β plane, with decreasing values towards the corner of the V. In Section 4.2
it is shown that the Powell routine is indeed able to find the local minimum that
is shown in Figure 3.4.
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Figure 3.4: A color map showing the value of the cost function in the 3 dimen-
sional parameter space (slope, β, γ).
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In the minimisation process, the parameter α is replaced by the slope s,
through

s =α (1−β)

which is the first derivative of the grey part of the degradation model e−α t +
β

(
1−e−α t

)
at t = 0. The reason for this replacement is that, for short time se-

ries, the saturation of the drift is not yet visible, and so it is difficult to know if
either α and β are both big or both small. The slope, however, will always stay
the same, and becomes a more reliable, and numerically stable, variable in that
case. The whole minimisation routine is summarised in the following roadmap:

1. Simulate the spectral radiance L(λ) for different scene types, cloudiness
types and geometries

2. Set the model parameters (s, β, γ) to an initial value
3. Calculate L and Lu using Eqs. (3.3) and (3.4) with the given values for s, β

and γ
4. Convert these simulated radiances into reflectances using Eq. (2.2)4

5. Do the unfiltering through Eq. (2.4), fitting the a and b values for these
simulated reflectance values

6. Use this fit to convert the observed reflectances ρ into unfiltered re-
flectances ρu (Eq. (2.4))

7. Transform ρu to reflectance ratio r using Eq. (2.7)
8. Calculate Eq. (3.5)
9. If the variance is not yet the lowest possible, the Powell routine returns a

new set of (s, β, γ) parameters and goes back to step 3.

4In Eq. (2.2), FSI is kept constant in the same way as was done for the observations and d is kept
fixed at 1 as the simulations have been made at d = 1.
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Chapter Four

Model applied to Meteosat-7

In the previous chapter, a model was postulated, showing how the spectral re-
sponse (SR) curve of the visible (VIS) channel of the Meteosat Visible and In-
frared Imagers (MVIRIs) changes in time and wavelength. Together with the
mathematical formula of the model, a way was presented to derive the three
satellite dependent model parameters. In the next phase, these parameters need
to be determined. In doing so, it will be possible to check the validity of the model
assumptions. Meteosat-7 was part of the Meteosat Transition Programme (MTP)
of the European Organization for the Exploitation of Meteorological Satellites
(EUMETSAT) to fill the gap between the Meteosat First Generation (MFG) and
Meteosat Second Generation (MSG) of instruments. Built similarly as its pre-
decessors, the satellite was operational at the nominal position at 0◦ longitude
for 8 years (June 1998 – July 2006). This long time period makes the Meteosat-7
dataset an ideal test case. In this chapter, the model is applied to Meteosat-7 as
explained before. The 6 time series are shown, both before and after ageing cor-
rection, and the model is validated. In the end, a theoretical comparison study is
made between the spectral ageing model and the SEVIRI Solar Channel Calibra-
tion (SSCC), based on the retrieval of 5 essential climate variables (ECVs).

The results shown in Sections 4.1, 4.2, and 4.3 have been published in De-
coster et al. (2013), while the results from Section 4.4 are in preparation for pub-
lication.

4.1 ORIGINAL TIME SERIES

Figure 4.1 shows the positions of the 298 clear-sky targets, which were found
as explained in Section 2.5, using the Meteosat-7 dataset. Averageing out these
298 time series according to the 5 clear-sky scene types (ocean, dark vegetation,
bright vegetation, dark desert and bright desert), and adding the one time series
for the deep convective clouds, results in the 6 time series which are shown in
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4. MODEL APPLIED TO METEOSAT-7

Figure 4.1: Figure showing the position of the 298 selected clear-sky targets for
the Meteosat-7 dataset.

Figure 4.2(a) before seasonal correction and Figure 4.2(b) after. The first thing
to remark is that, as explained in Section 2.6, the initial reflectance ratio values
differ from 1 for four of the six time series. Apart from that, the small differ-
ence in degradation rate for each of the time series can be seen in the figure (e.g.
when comparing the bright desert with the ocean and cloudy time series). The
dark and bright vegetation decrease with 1.4 % per year while the dark and bright
desert decrease with 1.55–1.7 % per year. The ocean time series decrease with
about 1.85 % per year, and the deep convective cloud time series with slightly
more than 1.9 % per year. The exact numerical values of these relative slopes are
given in column 4 of Table 4.1, together with their standard deviation. The expla-
nation of how the latter are calculated, is given in the Appendix. The weighted
mean slope and standard deviation are added at the bottom of the table.

As both the ocean and the convective clouds reflect most radiation in the
blue part of the VIS wavelength range (see Figure 2.6), their slightly stronger de-
crease in time corroborates the wavelength-dependency of the degradation pro-
cess of Meteosat-7. A stronger degradation is expected for the ocean than for the
deep convective clouds due to the nature of the spectral degradation (strongest
for the shortest VIS wavelengths), and because the ocean reflectance spectrum
peaks in somewhat shorter wavelengths than the one of the convective clouds.
Even though this stronger decrease for the ocean than for the convective cloudy
time series is not visible in the unfiltered reflectance ratio time series, it should
be for the filtered version of the data, where the unfiltering step is left out and
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Figure 4.2: Meteosat-7 reflectance ratio time series for (a) the original time se-
ries, (b) after seasonal correction, (c) after ageing correction using the parame-
ters α = 0.000357 day−1, β = 0.760112 and γ = 0.000126µm−1day−1, and (d) after
being corrected using the SSCC method.
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4.1. Original time series

the filtered reflectances are immediately divided by a filtered anisotropy factor
R and albedo A (see Eq. (2.7)). The reason for this difference in slope between
the filtered and unfiltered versions of the blue time series, is to be found in the
unfiltering conversion

ρu = a +bρ

itself. As there is no filtered (narrowband) anisotropy factor and albedo available,
only theoretical proof can be given. For easy reading, in the following explana-
tion, the unfiltered time series will be indicated with ru and ρu like before, while
the filtered versions are written as rf and ρf instead of r and ρ.

Using Eq. (2.7) to rewrite the unfiltering conversion as a function of re-
flectance ratio instead of reflectance (with ρ̃ = R(θ0,θ,ψ) A(θ0)), leads to

ρ̃u ru = a +b ρ̃f rf. (4.1)

By taking the partial derivative of this equation with respect to time, and assum-
ing the temporal change of a and b small enough to ignore in this calculation,
the slopes of the reflectance ratio time series arrive into the equation:

ρ̃u
∂ru

∂t
= b ρ̃f

∂rf

∂t
. (4.2)

To get the relative change of the reflectance ratio time series, Eq. (4.2) is divided
by the unfiltering conversion (Eq. (4.1)),

ρ̃u
∂ru
∂t

ρ̃u ru
= b ρ̃f

∂rf
∂t

a +b ρ̃f rf

(
rf

rf

)
∂ru
∂t

ru
= b ρ̃f rf

a +b ρ̃f rf

( ∂rf
∂t

rf

)

= 1

1+ a
b ρ̃f rf

( ∂rf
∂t

rf

)

= 1

1+ a
bρf

( ∂rf
∂t

rf

)
.

Filling in typical values for the filtered reflectances ρf for both ocean and convec-
tive clouds, and the a and b coefficients for these scene types for typical angles
θ0 = 30◦, θ = 30◦ and ψ= 90◦, leads for the deep convective cloud time series to

1

1+ a
bρf

= 1

1+ 0.04
0.9×0.7

≈ 0.94
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4. MODEL APPLIED TO METEOSAT-7

and for the ocean time series to

1

1+ a
bρ f

= 1

1+ 0.014
0.94×0.1

≈ 0.87.

Filling in the values for the unfiltered slopes, shows that indeed the slope of the
filtered ocean time series is more strongly negative than the slope of the filtered
deep convective cloud time series.

4.2 CORRECTED TIME SERIES

Starting with a set of plausible model parameters, the road map that was given
at the end of Chapter 3 can now be followed to minimise the cost function of
Eq. (3.5). The parameters that come out of this minimisation process are given
in Table 4.2, together with the value of the minimised standard deviation of the
cost function, which is added at the bottom of the table. To have an idea on the
precision of these parameters, the standard deviation on each value is computed
by running the same minimisation technique on 30 different random subsets of
100 from the 299 available time series. As there is only one convective cloud time
series, no subset can be taken here. Instead, 3 different time series are created by
taking once the 6 highest cloudy pixels to average out per day (as usual), once the
5 highest, and once the 4 highest. These three time series are randomly added
to the 30 subsets in such a way that each subset contains 1 convective cloud and
99 clear-sky time series. For each of these 30 subsets, slightly different model
parameters are obtained. The standard deviation in the last column of Table 4.2
is the standard deviation of these 30 values. The significant non-zero value for
the γ parameter indicates the need for a wavelength-dependent correction of
degradation for Meteosat-7.

Table 4.2: The optimal solution is given for each parameter together with their
standard deviation. At the bottom, the value of the minimised standard deviation
of the cost function is shown.

parameter units optimal solution

s day−1 -0.000085 ± 0.000003
α day−1 0.000357 ± 0.000032
β / 0.760112 ± 0.022055
γ µm−1 day−1 0.000126 ± 0.000013

std. dev. / 0.015875 ± 0.003464
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4.3. Validation of the model

Filling in this set of model parameters into the spectral ageing model, leads to
the corrected time series shown in Figure 4.2(c). When comparing Figures 4.2(b)
and (c), one thing that can be seen, apart from the fact that the time series are
now all quasi horizontal, is that the starting points of the six time series in Fig-
ure 4.2(c) are slightly higher than the ones in Figure 4.2(b). The reason for this
is that in the spectral ageing model (Eq. (3.2)), the starting point t = 0 is the mo-
ment of launch (September 1997 in this case) while the dataset used here only
starts in June 1998 when the instrument became operational at the nominal po-
sition. The percentage that the slope of each of these time series changes per
year is given in column 5 of Table 4.1. These values confirm the anticipated im-
provement as they are now all clearly smaller than the original ones. The residual
standard deviation for each individual time series is again calculated as shown in
the Appendix, and added to the table. The resulting corrected SR curves were al-
ready shown in Figure 3.3 for t = 2, 4, 6 and 8 years.

4.3 VALIDATION OF THE MODEL

To prove that the spectral ageing model performs well, it is validated, based on
the Meteosat-7 data. In a first step, the spectral ageing model is applied to ran-
dom all-sky sites, where different scene types are grouped together to create time
series. The result of this regional validation is shown in Section 4.3.1. The second
validation is based on the full dataset of the International Geosphere / Biosphere
Programme (IGBP). Instead of grouping the clear-sky targets into 5 groups1, the
17 classes of the IGBP are used as scene type subdivision. The method and resid-
ual slopes of the 17 time series are given in Section 4.3.2. At the end, in Sec-
tion 4.3.3, the SSCC method is applied to the same 6 time series as used before,
to see the difference with the spectral ageing model for the Meteosat-7 data.

4.3.1 REGIONAL VALIDATION

The two keys to the regional validation are that, first of all, instead of only the se-
lected targets, all pixels in the original reflectance images are corrected for age-
ing. Apart from that, the unfiltering of Eq. (2.4) is now fitted using all-sky simula-
tions2 as the full original images are used instead of only the clear-sky images. To
do the correction, all pixels are converted from filtered reflectance to unfiltered
reflectance, using the model parameters from Table 4.2. As there are no all-sky
angular distribution models (ADMs) (only for strictly clear-sky or cloudy pixels),

1The sixth group, i.e. the deep convective clouds, is not used in this validation step.
2These simulations are also created using the Santa Barbara DISORT Atmospheric Radiative

Transfer (SBDART) model, allowing all types of clouds.
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Figure 4.3: (a) The position of the random selection of 15 boxes of 100×100 pixels,
and (b) their yearly averaged reflectance time series.

the division by R and A is not possible, and thus the unfiltered reflectance values
are not converted into reflectance ratio as before.

To show the results, the Meteosat field–of–view (FOV) is divided into 25×25
boxes, each with a size of 100×100 pixels. In each box, the unfiltered reflectance
values are averaged out and used to create time series. As each box contains
10 000 pixels, this means that different scene types are combined in each time
series. In order to show some of the time series, first, a few random boxes are
selected for which the positions and sizes are shown in Figure 4.3(a). As the un-
filtered reflectance values are not converted into reflectance ratio, the pixels are
not corrected for differences in surface reflection throughout the seasons. To
mitigate these seasonal effects, yearly averages are taken. The resulting time se-
ries are shown in Figure 4.3(b).

Next, the residual slopes of the time series are computed. This is done for all
401 of 625 boxes that are in the Meteosat FOV and satisfy the condition θ < 80◦
and θ0 < 80◦. The spatial distribution of the residual slopes per year are shown
in Figure 4.4(a). Figure 4.4(b) gives the slopes as a function of their mean re-
flectance, where the error bars are their standard deviations. This figure shows
that the slopes are all grouped around zero with a few extreme values going as
high as 0.007±0.0017 in the North Atlantic Ocean and at the East coast of Brazil.
To find the reason for this, the monthly mean Moderate Resolution Imaging
Spectro-radiometer (MODIS) (Terra) Level 3 ‘cloud fraction’ atmospheric prod-
uct is used (MOD 08_M3) for the period of 1 March 2000 until 31 December 2006.
The cloud fraction is originally expressed as a value between 0 and 10 000, but is
rescaled here to a value between 0 and 1. For each of the 360×180 pixels3, a lin-

3This MODIS product is delivered with a pixel resolution of 1◦.
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Figure 4.4: Results of the regional validation. (a) Spatial distribution of the resid-
ual slopes, where the values are expressed per year. (b) Residual slopes per year
as a function of mean reflectance.

ear least squares fit is made through the cloud fraction data for the full time pe-
riod. Figure 4.5 shows the slopes per year of these fits. A cloud fraction increase
of about 0.01 yr−1 is detected by MODIS in the North Atlantic Ocean region, as
can be seen in the figure. The increasing reflectance of 0.007±0.0017 yr−1 can
be explained by this in the following way. On average, a cloud fraction C equal
to 1 corresponds to a mean reflectance ρ of 0.8, while a cloud fraction of 0 cor-
responds to a clear ocean reflectance of 0.05. This means that, on the whole,
∆ρ/∆C = 0.75. Using this ratio together with the observed cloud fraction slope
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Figure 4.5: The slope per year of the cloud fraction, measured by MODIS over the
period of 03/2000 – 12/2006.

of 0.01 yr−1, leads to a predicted

∆ρ = ∆ρ

∆C
∆C = 0.75×0.01 yr−1 = 0.0075 yr−1, (4.3)

which is within error margins equal to the observed reflectance increase of
0.007±0.0017 yr−1. The standard deviation σ of the reflectance slopes is equal
to 0.0022 yr−1, with 95% of the boxes having a slope between -0.0042 yr−1 and
0.0045 yr−1 (about ±2σ, proving a Gaussian error distribution). Using a daily
averaged flux of 100 W m−2 and a daily averaged reflectance of 0.3, the re-
flectance standard deviation can be translated into a flux stability of about 7
W m−2 / decade. This value is clearly higher than the Global Climate Observing
System (GCOS) requirement (0.2 W m−2 / decade), but as shown in the following,
most of this apparent trend over 8 years is due to cloud variability.

For comparison, the same procedure is now applied to the clear-sky images
instead of the original ones (still using the all-sky simulations). Figure 4.6(a)
shows the spatial distribution of the residual slopes for all boxes, while Fig-
ure 4.6(b) gives the slope as a function of their mean reflectance, where each
box still consists of 100×100 pixels. As there are no more clouds adding to the
variability, it is normal that the results are better with smaller error bars. The few
slopes with larger standard deviations in Figure 4.6(b) come from parts in the
FOV with permanent stratus and stratocumulus clouds, where it was not possi-
ble to totally remove the presence of clouds using the clear-sky procedure (e.g. at
the west coast of Africa). To compare with the validation on the original images,
the standard deviation σ is smaller (about 0.0006), with about 95% of the boxes
having a slope between -0.0014 yr−1 and 0.0012 yr−1 (again about ±2σ). This re-
sults in a stability of about 2 W m−2 / decade (using a mean flux of 100 W m−2
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Figure 4.6: Results of the regional validation for the clear-sky images only. (a)
Spatial distribution of the residual slopes, where the values are expressed per
year. (b) Residual slopes per year as a function of mean reflectance.

and a mean ρ of 0.3). Part of this observed trend might still be attributed to the
clear-sky processing.

4.3.2 IGBP SURFACE TYPE SELECTION

In a second validation, the 17 class land cover dataset created by the IGBP Data
and Information System is used. The 298 clear-sky targets are now subdivided
based on these 17 classes (instead of the 5 Clouds and Earth’s Radiant Energy
System (CERES) classes before). 17 time series are created, where all pixels with
the same surface type are averaged out into one time series, and a linear fit is
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4. MODEL APPLIED TO METEOSAT-7

Table 4.3: For each IGBP scene type, the percentage of these surface types
present in the Meteosat FOV is given, together with the slope per year of the fit
through each time series and the standard deviations on the slopes.

Scene name % of scenes slope (% yr−1)

1 Evergreen Needleleaf Forest 0.505 -0.0155 ± 0.1247
2 Evergreen Broadleaf Forest 0.440 -0.1015 ± 0.0262
3 Deciduous Needleleaf Forest 0.003 -0.3025 ± 0.2212
4 Deciduous Broadleaf Forest 0.250 0.0696 ± 0.0498
5 Mixed Forest 0.146 0.1625 ± 0.0622
6 Closed Shrublands 0.763 -0.1217 ± 0.0253
7 Open Shrublands 2.874 0.0607 ± 0.0226
8 Woody Savannas 4.162 -0.1867 ± 0.0319
9 Savannas 5.698 -0.0208 ± 0.0244

10 Grassland 2.262 0.0779 ± 0.0320
11 Permanent Wetlands 0.070 0.0088 ± 0.0590
12 Croplands 2.273 0.1263 ± 0.0541
13 Urban and Built-up 0.021 0.1214 ± 0.0441
14 Cropland Mosaics 4.415 0.0612 ± 0.0286
15 Snow 0.000 NA
16 Bare Soil and Rocks 9.601 0.0922 ± 0.0214
17 Water Bodies 62.26 0.1148 ± 0.0300

made through each of these 17 time series. The residual slopes (expressed in
percentage per year) and the standard deviations on the slopes are given in Ta-
ble 4.3. As there are barely any pixels with snow all year round in the Meteosat
FOV, surface type number 15 is left out. The slopes are comparable to the values
that were given in Table 4.1, giving extra validation of the spectral ageing model.

4.3.3 SSCC MODEL APPLIED TO TARGETS

In the final validation part, instead of using the spectral ageing model, the SSCC
calibration of Govaerts et al. (2004) is applied to the 299 selected target time se-
ries. Figure 4.2(d) shows the same 6 clear-sky and cloudy time series that were
used to create the spectral ageing model, but instead of correcting them for age-
ing following the spectral ageing model, and keeping the calibration coefficient
constant, the SSCC method is used, where the calibration coefficient changes
linearly in time, following

C f (t ) =C f + (D f Nt ×10−5)
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Figure 4.7: Figure showing the ratio of the reflectance ratio values corrected us-
ing the spectral ageing model to the reflectance ratio values corrected using the
SSCC calibration method.

where C f is the fixed calibration coefficient at launch (= 0.9184 W m−2 sr−1DC−1

for Meteosat-7), D f is the daily drift (= 5.3507 × 105 W m−2 sr−1DC−1day−1 for
Meteosat-7) and Nt is the number of days since launch. The first thing that
should be noticed when comparing Figures 4.2(c) and (d), is that the ocean time
series is still decreasing in the latter, while the others are not. This is as expected
due to the fact that the wavelength-dependency in the degradation was not taken
into account in the SSCC calibration. Moreover, most of the time series bend
down a little in the middle of the curve, making them not perfectly horizontal.
The reason for this is that the SSCC method assumes a linear decrease in time,
and although this corrects the majority of the degradation, as mentioned before
in Chapter 1, the validation work of SSCC showed saturation in the degradation
which makes the ageing look more exponential than linear. Figure 4.7 shows the
ratio of the 6 time series corrected using the spectral ageing model (Figure 4.2(c))
to the 6 time series corrected using the SSCC method (Figure 4.2(d)). Both the ef-
fect of the still decreasing SSCC corrected ocean time series and the bending are
clearly visible here: the ratio of spectrally to SSCC corrected time series keeps
increasing for the ocean time series, while for the others it increases in the be-
ginning and decreases again in the second part of the time period, resulting in
the bend.
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4.4 COMPARISON STUDY OF THE SSCC AND SPECTRAL AGEING METHODS

4.4.1 METHODOLOGY

In this section, a theoretical comparison is carried out between the spectral age-
ing model and the official SSCC calibration, applied on the SR curve of Meteosat-
7. The effect of both methods on the retrieval of 5 different ECVs, (aerosol optical
depth (AOD), land surface albedo, cloud optical depth (COD), incoming surface
flux and top of the atmosphere (TOA) outgoing VIS broadband radiance) is in-
vestigated and compared through the use of simulations. Like before, spectral
TOA radiances L(λ) are generated using radiative transfer models (RTMs), but
this time for one specific geometry only, i.e. θ0 = 30◦, θ = 30◦, ψ = 90◦. These
simulations are integrated over the spectral range of the Meteosat-7 VIS chan-
nel, taking into account its SR. This results in the radiances

L =
∫

VIS

L(λ)φ(λ,8yrs)dλ (4.4)

where φ(λ,8yrs) is the SR curve of the MVIRI VIS channel, modelled for 8 years
of degradation. Even though Meteosat-7 was the only satellite that was actually
operational for 8 years at 0◦ longitude, from Table 1.3 it can be seen that this time
period is representative of the mean operational lifetime of the Meteosat satel-
lites. By using the ageing degraded SR curves at t = 8yrs, the comparison is done
for a case with sufficient ageing. The radiances from Eq. (4.4) are simulated using
either the spectrally degraded SR curve or the SR degraded using the SSCC cali-
bration. Both ageing modelled curves are shown in Figure 4.8. Next, for each of
the 5 ECVs discussed hereafter, the difference between the simulated radiances
generated using the SSCC degraded SR curve and the radiances simulated using
the spectrally degraded SR are computed and the relation between these radi-
ances and the ECV itself is shown. This so-called radiance bias∆L = LSSCC−Lspec

is then converted into the ECV bias, ∆ECV, through

∆ECV = ∆L

∂L/∂ECV
(4.5)

where ∂L/∂ECV is the local slope to the simulated data. This way, the difference
between the use of one or the other SR curve for the retrieval of each ECV can be
calculated and compared.

To generate the simulations, two different RTMs are used: SBDART and li-
bRadtran. The main difference in the use of both models in this part of the work,
is the fact that the SBDART simulations add some natural variability. This can be
explained as follows. The same 750 SBDART simulations that were used before
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Figure 4.8: SR curves of the Meteosat-7 VIS channel, modelled for 8 years of
degradation using the SSCC calibration method (solid line) and the spectral age-
ing model (dashed line).

in the unfiltering process (Section 2.6), are used here. They were made for dif-
ferent surface types, amounts of aerosols, types of aerosols, amounts of clouds
present, types of clouds present, etc. For each of the ECVs for which these simu-
lations are useful, subdivisions are made in these 750 simulations, depending on
the variable for which the comparison is made for. These subdivisions can be,
for example, into different scene types or different types or amounts of aerosols,
or clouds. In each of these groups, some variability has been introduced by the
random modification of the input parameters characterising the scene (atmo-
spheric profile, aerosol type, cloud cover, surface type, wind speed, etc.). This
variability then gives an idea on the significance of the ECV bias. Whenever these
simulations did not allow to investigate a particular ECV, libRadtran was used to
model the behavior of the ECV with respect to the two sets of degraded radiance
values. In these simulations, only one parameter is changed at a time, so that the
simulations, the trends, and the differences between the SSCC and the spectrally
degraded SR curves are much clearer, but there is no ‘natural’ noise on the data.

In the following, for each of the 5 ECVs, the impact of using the spectrally cor-
rected SR function instead of the SSCC corrected one is analysed and discussed
separately, where each time it is clearly indicated which of the two RTMs is used.

73



4. MODEL APPLIED TO METEOSAT-7

4.4.2 AEROSOL OPTICAL DEPTH

Aerosols are solid particles suspended in the Earth’s atmosphere, which can ar-
rive there both by natural causes (desert dust, volcanic ashes, etc.) and by human
activities (exhaust fumes from cars or industry, biomass burning smoke, etc.).
They have the effect of absorbing and scattering visible radiation, and producing
brighter clouds, which reflect even more solar radiation4 but release less efficient
precipitation5. Therefore, it is not surprising that aerosols have a strong impact
on the Earth’s radiative balance, and so that it is very useful to know the effect
of any type and amount of particles in the atmosphere. One of the properties
of aerosols that can be measured from satellites using only one channel in the
VIS spectrum (like with the MVIRI instrument), is the AOD, which describes the
degree to which visible light is attenuated6 in the Earth’s atmosphere by these
aerosols, either through scattering of the radiation or through absorption of it.
The most reliable AOD values are retrieved when the clouds and their shadows
are removed from the images. These observed clear-sky radiances are then com-
pared to radiance values simulated for the same clear-sky conditions and un-
derlying surface type, but for different possible AOD values. Interpolation from
these AOD look-up tables (LUTs) then provides the right AOD for the observa-
tion.

Ocean retrieval

AOD retrieval works best over clear ocean as its albedo is very small, and it is
somewhat easier to simulate surface reflectance spectra over ocean than over
land. Of the 750 SBDART simulations, 379 do not contain clouds and 153 of them
were made above ocean. The latter are shown in Figure 4.9 after they were fil-
tered by either the SSCC degraded or the spectrally degraded SR. Two different
trends are visible in the figure, which is due to the different types of boundary
layer7 aerosols used: the simulations made with rural, oceanic and tropospheric
aerosols result in the upper trend (see Figure 4.10(a)) while the urban aerosols

4This is due to the effect aerosols have on the formation of cloud particles. Aerosols can act as
cloud condensation nuclei, resulting, for a fixed water content, in more but smaller cloud particles,
which increase the reflectance.

5The precipitation efficiency is defined as the ratio of the precipitation rate to the sum of all
precipitation sources (Li & Gao 2012), which decreases due to the increased number of (small) cloud
droplets.

6The amount of radiation that passes through the aerosol layers present in the atmosphere, de-
creases exponentially with AOD (e−AOD), but can be approximated by a linear function for AOD val-
ues smaller than 1.

7The boundary layer is the part of the troposphere that is directly influenced by the presence of
the Earth’s surface.
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Figure 4.9: Simulated radiances as a function of AOD for clear-sky ocean condi-
tions, made using the SBDART code.

lead to the lower trend (see Figure 4.10(c)). The following discussion is subdi-
vided into these two groups.

By looking at the upper trend (Figure 4.10(a)), it can be seen that for a fixed
AOD value, the spectrally degraded SR curve leads to smaller radiances L than
the SSCC degraded one. This is explained by the fact that the former has a lower
sensitivity in the blue (where the aerosols reflect most solar light) than the latter
(see Figure 4.8), and so will observe less of the radiance reflected by the aerosols.
From Figure 4.10(a) the direct proportionality between L and AOD is clear. As
linear fits can be made through the data points, the local slope that is needed
to convert the radiance bias ∆L into ∆AOD (see Eq (4.5)), stays fixed over the
full AOD range. For each of the three aerosol types (rural, oceanic and tropo-
spheric), the slopes of their fits are given in the third column of Table 4.4, to-
gether with their standard deviations, and the standard deviation of the linear
fits in the fourth column. As for each aerosol type the slopes of the two fits are the
same (within error margins), their mean value is used in Eq. (4.5). Figure 4.10(b)
shows ∆AOD as a function of AOD. For all three aerosol types, the bias starts be-
tween 0.02 and 0.03 for small AOD values, but slightly increases for the rural and
tropospheric aerosols, while it slightly decreases for the oceanic ones. The rea-
son for this difference must lie in the reflectance spectrum of these aerosols. If
∆AOD decreases with increasing AOD, so does ∆L. This means that the spec-
trally degraded radiances increase more strongly with AOD than the SSCC de-
graded ones, which is confirmed by the values from Table 4.4. From Figure 4.8
it can then be deduced that the spectrum of the oceanic aerosols must have a
stronger component in the longer wavelengths than the rural and tropospheric
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Figure 4.10: Simulations for clear-sky ocean conditions, made using the SBDART
code, for (a)–(b) rural, oceanic and tropospheric aerosols, and (c)–(d) urban
aerosols. The left sided images show the relation between the simulated radi-
ances and the AOD, while the right side shows the relation between the AOD
bias and AOD.

Table 4.4: The slopes and their standard deviations of the linear fits made
through the L(AOD) data for both degraded SR curves, and the four different
aerosol types. The standard deviation of the fits are also given.

Aerosol type SR slope standard deviation
(W m−2sr−1) (W m−2sr−1)

Rural SSCC 9.228 ± 0.415 0.675
Spectral 9.173 ± 0.407 0.663

Oceanic SSCC 9.096 ± 0.598 0.748
Spectral 9.133 ± 0.580 0.725

Tropospheric SSCC 11.097 ± 0.409 0.700
Spectral 11.010 ± 0.400 0.685

Urban SSCC 3.663 ± 0.293 0.544
Spectral 3.733 ± 0.285 0.529
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aerosols (Ricchiazzi et al. 1998). The same procedure is now followed for the
urban aerosols. Figure 4.10(c) shows that for these type of particles too, for an
observed radiance L, the retrieved AOD is larger for the spectrally degraded ra-
diances than for the SSCC degraded ones. Table 4.4 shows the fitted slopes, from
which the mean is used to convert ∆L to ∆AOD. The AOD bias is shown in Fig-
ure 4.10(d) as a function of AOD. Similarly as for the oceanic aerosols, ∆AOD
decreases with increasing AOD, pointing to a reflectance spectrum which has a
stronger component in the longer wavelengths than the shorter.

The following can be concluded for the AOD retrieval over ocean. Even
though the (random) retrieval uncertainty, estimated as the standard deviation
of the fits divided by their slope (≈0.07), is larger than the bias on AOD (≈0.03),
∆AOD is a systematic uncertainty, which is positive for all aerosol types, is rel-
atively constant over the AOD range between 0 and 1, and is of the order of the
background AOD (≈0.05). This means that the spectral ageing affects most of all
the retrieval of background aerosols but also, to decreasingly smaller extent, the
aerosols with higher AOD values.

Land retrieval

Over land, the method of retrieving AOD from satellite data is more difficult as
the observed radiances are a combination of light reflected by the aerosols and
light reflected by the underlying land surface type. As long as the albedo is low
enough (< 20%), a method can be followed which compares clear-sky observa-
tions with and without aerosols, where in the latter the aerosols have been man-
ually removed from the images. The radiance difference between these two is
then used to retrieve the right AOD value from the LUTs. This method was used
e.g. by Knapp et al. (2002, 2005) and Mei et al. (2011). If, however, the albedo of
the land is too high, the absorbing properties of aerosols result in a lower outgo-
ing visible radiance. This is for instance the case over desert or snow, where this
method does not work.

As the SBDART simulations were made using different settings of surface
type, amounts and types of aerosols or clouds, it is not possible to compare clear-
sky simulations made for the same surface conditions, but for varying amounts
of aerosols using this RTM. LibRadtran is used instead to simulate clear-sky TOA
radiances above one type of desert and one type of vegetation, allowing a whole
range of AOD values. Figure 4.11(a) shows in light blue the surface reflectance of
the desert type used from the Advanced Spaceborne Thermal Emission and Re-
flection Radiometer (ASTER) spectral library (sandstone). The other curves are
the TOA spectral radiances L(λ), simulated through the RTM and converted here
for comparison into reflectance spectra ρ(λ), for three different AOD values. This
confirms that, over desert, the reflectance decreases with an increasing amount
of aerosols. This is also clear from Figure 4.11(b).
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Figure 4.11: LibRadtran simulations for default aerosol settings and clear-sky
conditions. (a) Sandstone desert reflectance spectra at the surface and at the
TOA for different AODs. (b) Simulated radiance as a function of AOD over sand-
stone surface. (c) Deciduous vegetation reflectance spectra at the surface and at
the TOA for different AODs. (d) Simulated radiance as a function of AOD over
deciduous surface.

The type of vegetation used is called "deciduous", which is a type of vegeta-
tion (plant, tree or shrub) which looses its leaves in autumn and winter. The sur-
face reflectance spectrum used to define the surface type in libRadtran, is shown
in Figure 4.11(c) in light blue. Again, the RTM is applied to retrieve the TOA re-
flectance spectra for different amounts of aerosols. From the figure it can be
seen that the reflectance at the TOA increases with increasing amount of AOD in
the lower wavelength range (0.4 – 0.75µm), but decreases for larger wavelengths
(0.75 – 1.3µm). This can be understood by looking at the surface reflectance
spectrum (light blue). In the lower wavelength region, the reflectance of these
plants is really low so that aerosols increase the reflection of incoming solar radi-
ation. In the higher wavelength region, however, the absorbing properties of the
aerosols are dominant, reducing the amount of reflected radiation. This dual na-
ture is also visible in Figure 4.11(d). As the radiances here are integrations over
the full spectrum, the bending shape of the curve indicates a switch where for
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small AODs, there is a bigger effect of the decreasing TOA reflectance spectrum
in the larger wavelengths of the VIS channel than of the increasing spectrum in
the smaller wavelengths, and vice versa in the increasing radiances for the larger
AODs. The difference in AOD at which the bending occurs between the blue and
red curves, results from the different degraded SR curve that is used. As for this
surface type too, the aerosols serve partially as a blocking layer for low AOD val-
ues, the method explained is not able to predict the right AOD from observations.

In the case of these two land surface types, it is not possible to estimate the
sensitivity of the AOD retrieval to the two differently degraded SR curves. A so-
lution for land albedo values which are too high, can be to use the Land Daily
Aerosol (LDA) algorithm by Wagner et al. (2007), which uses observations over
the whole day, assuming the aerosol layer stays constant over the day, and this
way estimates the surface reflection at the same time as the AOD through opti-
mal estimation.

4.4.3 LAND SURFACE ALBEDO

Another ECV product of GCOS is the land surface albedo, i.e. the ratio of the out-
going reflected flux to incoming flux at the Earth’s surface. This is an important
component in the Earth radiation budget (ERB) of the Earth (Hansen et al. 1997),
as it determines how much of the incoming radiation is reflected by the land,
back into the atmosphere. It varies from 10% for dark vegetation to 90% for snow.
Small changes to the land, like the presence of snow on trees or the absence of
leaves, have an effect on the amount of radiation that is reflected. Hence, per-
manent changes in land use result in serious shifts in the amount of outgoing
VIS radiation in the affected parts of the world, and thus in the local ERB.

The 750 SBDART simulations were made for different types of surfaces, de-
fined by their spectral albedo A(λ). As these surface spectra show how much ra-
diation is reflected in the full VIS wavelength range, and not how much of the so-
lar radiation is reflected, they need to be transformed into solar albedo A, which
is derived as

A =
∫

A(λ)Ssurf(λ)dλ∫
Ssurf(λ)dλ

, (4.6)

where the spectral albedo A(λ) is weighted by the solar incoming flux measured
at the surface Ssurf(λ), which was shown before in red in Figure 1.3. As this in-
coming surface flux is mostly a direct flux (not indirect scattered flux), the albedo
considered here is the so-called "black sky" surface albedo. The SBDART simu-
lations can then be used to calculate the surface albedo bias ∆A resulting from
the different degraded SR curves. From the clear-sky simulations (379 of the 750)
only the 226 over land are used here. Figure 4.12 shows the simulated radiances
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Figure 4.12: Simulated radiances as a function of surface albedo for clear-sky
conditions, made using the SBDART code.

as a function of surface albedo for three different surface types together (vege-
tation, soil, and rock8). As can be seen from the figure, the spectral degradation
leads to slightly higher simulated radiances than the SSCC degradation. Taking
the integrals of the SR curves of Figure 4.8 shows that the surface below the spec-
trally degraded curve is almost 3% higher (0.430) than below the SSCC degraded
one (0.418), explaining this radiance difference.

The simulated radiances are shown for the three surface types separately in
Figures 4.13(a), (c), and (e) over vegetation, soil, and rock respectively. It is clear
that L(A) can be fitted with a linear function for all three surface types. This
means that, when converting the radiance bias ∆L into albedo bias ∆A follow-
ing Eq. (4.5), the local slope stays constant over the full surface albedo range.
The values of the fitted slopes are given in Table 4.5, together with their standard
deviations and the standard deviations of the fits. As for each surface type, the
slopes are the same (within error margins) for the radiances derived from the
two degraded SR curves, the mean value of the slopes is used in Eq. (4.5). Fig-
ures 4.13(b), (d), and (f) show the surface albedo bias∆A as a function of surface
albedo. For all three surface types, these values are negative, which is due to the
fact that the radiance bias ∆L is negative (LSSCC < Lspec), and become increas-
ingly more negative with increasing albedo A. The latter is a consequence of the
fact that the slopes of the fits through the spectrally degraded radiances are con-
sistently larger for these surface types than the ones through the SSCC degraded
data (see Table 4.5), leading to negatively increasing radiance biases ∆L with in-
creasing surface albedo.

8See Clerbaux et al. (2008) for the list of ASTER spectra used to create these different surface
types.
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Figure 4.13: Simulations for clear-sky conditions, made using the SBDART code,
over (a)–(b) vegetation, (c)–(d) soil, and (e)–(f) rock. The left sided images show
the relation between the simulated radiances and the land surface albedo A,
while the right side shows the relation between the albedo bias and A.
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Table 4.5: The slopes and their standard deviations of the linear fits made
through the L(A) data for both degraded SR curves, and the three different scene
types. The standard deviation on the fits are also given.

Scene type SR slope standard deviation
(W m−2sr−1) (W m−2sr−1)

Vegetation SSCC 140.729 ± 3.921 2.834
Spectral 141.095 ± 4.005 2.895

Soil SSCC 126.753 ± 5.441 2.890
Spectral 130.450 ± 5.517 2.931

Rock SSCC 132.204 ± 2.919 4.579
Spectral 133.967 ± 2.904 4.556

From all these results it appears that the use of the spectral ageing model
instead of the SSCC calibration has a significant effect on the retrieval of sur-
face albedo. This effect is largest over vegetation for small surface albedo values,
where a relative method difference of about 5% is measured for a surface albedo
of 0.2. For the other surface types the effect is much smaller (< 2%).

4.4.4 CLOUD OPTICAL DEPTH

The COD is, like the AOD, the degree to which solar incoming light is attenuated
in the Earth’s atmosphere: clouds with a high COD reflect more radiation, while
clouds with a low COD still let radiation go through. This reflecting property de-
pends on the liquid/ice water content of the clouds and the size distribution of
the cloud droplets/crystals, which is connected to the cloud albedo, and so also
to the energy balance of the Earth. The amount of direct radiation that reaches
the ground, decreases exponentially with COD (e−COD). There are several ways
the COD can be retrieved from satellite observations in the VIS channels. One
method is to derive the COD from the reflected radiances L, comparing with sim-
ulations. An example of this is the cloud physical properties (CPP) method, used
in Climate Monitoring Satellite Application Facility (CM SAF) by, for example,
Roebeling et al. (2006), which makes use of the 0.6µm channel of the Spinning
Enhanced Visible and Infrared Imager (SEVIRI) to derive the COD in an iterative
loop with the retrieval of cloud particle size through the 1.6µm channel, assum-
ing fixed surface albedo maps. A second way to derive the COD from satellite
data is through the cloud cover index (or cloud fraction) n, as was done in Ipe
et al. (2004). RTMs are used to relate the cloud cover index to the amount of
visible radiation observed. Both methods are explored here, (i) using SBDART
simulations to show the effect of the two different degraded SR functions on the
retrieval of COD through radiances L, and (ii) using libRadtran to do the same,
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Figure 4.14: Simulated radiances as a function of COD for cloudy conditions,
obtained by using the SBDART code.

but making use of the cloud cover index n to derive the CODs.

COD versus L

Figure 4.14 shows the 371 cloudy SBDART radiance simulations used, for differ-
ent scene types together (ocean, vegetation, soil and rock). From this figure it
can be seen that the spectrally degraded radiances are consistently higher than
the SSCC degraded ones. As the cloud spectrum covers the whole VIS channel,
the fact that the integral of the spectrally degraded SR curve is larger than the
integral of the SSCC degraded one, explains again this small radiance difference.

The simulated radiances over ocean only are shown in Figure 4.15(a). The
spectrally degraded radiance values are overall larger than the SSCC degraded
ones. The radiance bias ∆L can be converted into ∆(log(COD)) using Eq. (4.5),
where the ECV is now the logarithm of the COD, and the slope is the local slope
to the simulated data ∂L/∂(log(COD)). In contrast to the previous cases, the
L(log(COD)) relation cannot be approximated by a linear function, and so the
slope in Eq. (4.5) is not a constant. It is possible to fit a modified sigmoid func-
tion to Figure 4.15(a),

L = a

1+b .10−log(COD)/c
+d , (4.7)

where the values for a, b, c, and d are given in Table 4.6. For each simulation,
the slope from Eq. (4.5) is taken as the first derivative of the fit (Eq. (4.7)) in that
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Figure 4.15: Simulations for cloudy conditions, made using SBDART code, over
(a)–(b) ocean, (c)–(d) vegetation, (e)–(f) soil, and (g)–(h) rock. The left sided im-
ages show the relation between the simulated radiances and the COD, while the
right side shows the relation between the COD bias and COD.
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Table 4.6: The fitted sigmoid coefficients a, b, c, and d for the L(log(COD)) data
for degraded SR curves and the four different scene types, together with the stan-
dard deviation σ of the fits.

Scene type SR a b c d σ

Ocean SSCC 146.866 19.600 0.895 6.076 4.066
Spectral 148.345 19.568 0.894 5.795 4.176

Vegetation SSCC 122.812 21.911 0.918 32.563 6.326
Spectral 122.690 22.205 0.914 33.831 6.406

Soil SSCC 121.153 32.142 0.788 28.824 6.779
Spectral 121.572 32.491 0.785 29.510 6.911

Rock SSCC 97.287 67.198 0.676 48.142 13.330
Spectral 97.612 68.793 0.672 48.881 13.459

particular point (COD0, L0), as

∂L

∂(log(COD))

∣∣∣
COD=COD0

= a .b . ln(10) .10−log(COD0)/c

c
(
1+b .10−log(COD0)/c

)2 . (4.8)

Figure 4.15(b) shows the bias ∆(log(COD)) as a function of COD, which is overall
negative as the SSCC degraded radiances are on average smaller than the spec-
trally degraded ones. The main shape of this figure comes from the fact that the
slope in the denominator of Eq. (4.5) varies with COD. For intermediate COD
values, the slope is really large, leading to a bias close to zero. For the lower and
higher CODs, the smaller value for the slope leads to a bias different from zero,
which becomes negative when more clouds are present due to the fact that the
integral of the spectrally degraded SR is larger than of the SSCC degraded one,
and becomes positive for the smaller COD values as the underlying ocean peaks
in the blue part of the VIS spectrum, in the wavelength region where the spec-
trally degraded SR curve is lower than the SSCC degraded one.

Figures 4.15(c), (e), and (g) show the radiance simulations for vegetation, soil
and rock, respectively. For all three, the spectrally degraded radiances are con-
sistently higher than the SSCC degraded ones. Sigmoid fits are made through
these curves, and the a, b, c, and d values are also given in Table 4.6. Based on
these fits, the COD bias ∆(log(COD)) is calculated, and shown in Figures 4.15(d),
(f), and (h). The ∆(log(COD)) plot has a bending shape, which can be explained
as follows. For low values of COD, all of these surface types have a reflectance
spectrum with slightly more energy in the red part of the VIS spectrum where
the spectrally degraded SR curve is higher than the SSCC degraded one. In the
central part (COD between 10 and 100), the values become close to 0 due to the
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high slope in the denominator of Eq. (4.5). For the highest COD values, the fully
opaque clouds determine the radiance values in the same way as over ocean,
resulting in a negative bias due to the difference in integral of the degraded SR
curves.

Concluding from this, for vegetation, soil, and rock, the relative method dif-
ference introduced by the spectral ageing model in the retrieval of COD is about
100% for low COD values, and about 10% over ocean. These values, especially
the ones over land, need to be compared however with a quite high standard
deviation of the fit, especially for these lower COD values.

COD versus n

The cloud cover index n was defined by Cano et al. (1986) as

n = L−Lcs

Lov −Lcs
, (4.9)

where L is the measured radiance, Lcs is its clear-sky counterpart, and Lov is the
radiance that would be measured at an optically opaque overcast scene. This
shows that, for a perfectly clear sky, n = 0 and for a totally overcast sky, n = 1. The
SBDART simulations cannot be used here for the same reason as for the AOD re-
trieval over land: there are simulations available for varying amounts of clouds,
but not for the exact same surface conditions. Instead, cloudy simulations are
generated with libRadtran over 3 different surface types (ocean, vegetation and
desert), and for a fully opaque sky, a clear sky and several intermediate COD val-
ues. From the derived simulated radiances, n is calculated and analysed as a
function of COD.

Figure 4.16(a) shows the cloud cover index n above ocean for different COD
values. From this figure, it is clear that the n(log(COD)) relation has the same
sigmoidal shape as the L(log(COD)) simulations from Figure 4.15(a). The two de-
graded SR curves seem to lead to almost equal cloud index values. This is partly
due to the subtraction of the radiances in both nominator and denominator of
Eq. (4.9), so that the effect of the surface is mitigated. Apart from that, the ra-
tio of radiance to overcast-radiance takes care of the majority of the difference
between the two SRs, especially for cloudy observations. The bias of the cloud
cover index ∆n can be converted into the COD bias ∆log(COD) using Eq. (4.5).
For this, Figure 4.16(a) is first fitted with a modified sigmoid function

n = a

1+b .10−log(COD)/c
, (4.10)

where the values for a, b, and c are given in the first two lines of Table 4.7, and
then the local slope ∂n/∂(log(COD)) is calculated through Eq. (4.8), where now
the derivative of n is taken with respect to log(COD). Figure 4.16(b) shows the
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Figure 4.16: Simulations for cloudy conditions, made using libRadtran, over (a)–
(b) ocean, (c)–(d) deciduous vegetation, and (e)–(f) sandstone desert. The left
sided images show the relation between the simulated cloud indices n and the
COD, while the right side shows the relation between the COD bias and COD.
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Table 4.7: The fitted sigmoid coefficients a, b, and c for the n(log(COD)) data
for both degraded SR curve and three different scene types, together with the
standard deviation σ of the fits.

Scene type SR a b c σ

Ocean SSCC 0.9663 18.1426 0.8883 0.0046
Spectral 0.9639 18.1144 0.8874 0.0046

Vegetation SSCC 0.9432 34.1098 0.7983 0.0120
Spectral 0.9394 34.6823 0.7967 0.0121

Desert SSCC 0.9014 83.3949 0.7635 0.0145
Spectral 0.8952 84.9523 0.7613 0.0146

relation of ∆(log(COD)) to COD. Comparing this with Figure 4.15(b) shows that
here too, the shape of the figure depends on the fact that the slope is not constant
over the COD range, but the figure looks like it has been flipped around the x-
axis. This is due to the fact that now the effect of a larger integral of the spectrally
degraded SR curve than the SSCC degraded one, has arrived in the denominator
(in Lov), leading to a smaller n for the spectrally degraded simulations than for
the SSCC ones. The left part of the figure is different, staying almost constant
around 0 as for low values of COD, the nominator of n becomes almost equal to
0.

The same steps are made for vegetation (see Figure 4.16(c)) and for desert
(see Figure 4.16(e)), which show the same sigmoidal shape as over ocean. Here
too, the log(COD) bias can be calculated from ∆n and the local slope of the
sigmoid fit through the n(log(COD)) simulations. Figures 4.16(d) and (f) show
the relation between ∆(log(COD)) and COD. For vegetation, this curve is simi-
lar to the one for ocean, but with a slightly higher bias for clear-sky simulations.
This is due to a combination of the fact that vegetation has a different surface
reflectance than ocean, and the low value of the slope in the denominator of
Eq. (4.5). For desert, the bias becomes negative for COD values smaller than 1,
pointing to the fact that the spectrally degraded cloud cover index n becomes
larger than the SSCC degraded one. The reason for this is the fact that desert
reflects on average more energy in the longer wavelengths of the VIS spectrum
than vegetation (and certainly ocean). This, combined with the low slope, leads
to a strong decrease in ∆(log(COD)) for low COD values.

Similarly as for the COD retrieval from the radiance values, here too the rel-
ative difference introduced by the spectral ageing model in the retrieval of COD
is highest for low COD values over vegetation. The difference, however, is much
smaller (about 1.5%) due to the fact that the effect of the surface reflectance is re-
duced through the definition of cloud cover index. Overall, it can be concluded
that, for the retrieval of COD, the use of cloud cover index decreases the sensitiv-
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ity of the actual shape with respect to the shape of the SR curve.

4.4.5 INCOMING SURFACE FLUX

The incoming surface flux (or irradiance) is another important factor in the en-
ergy regulation of the Earth. It would most easily be measured from ground
stations if their numbers would be sufficient. As the global network has a se-
rious lack of ground measurements over the ocean and in some other parts of
the world, satellite measurements are more useful. When measuring the global
incoming solar flux at the surface from space, one needs to know the amount of
clouds in the atmosphere to derive how much radiation reaches the surface as
direct solar irradiance, and how much of the attenuated radiation is scattered in
the atmosphere and reaches the surface as diffuse solar irradiance. The method
discussed here is a statistical method called Heliosat (Cano et al. 1986), which re-
lies on the same cloud cover index n as in Section 4.4.4. The Heliosat method
uses linear regressions between the satellite cloud cover index n and ground
measured values for incoming solar irradiance. Based on these regressions, the
global incoming surface flux can be derived from satellite observations.

In this study, libRadtran is used to simulate outgoing TOA radiances (to cal-
culate the cloud cover index n), and their equivalent incoming surface fluxes.
This is done for different surface types (ocean, vegetation and desert) and differ-
ent amounts of clouds (COD). In Figure 4.17(a), the relation between the cloud
cover index n and the incoming solar flux over ocean is shown. There are four
curves in this figure, two for the direct and two for the diffuse incoming irra-
diance, where the two curves derived from the differently degraded SR curves
but the same type of incoming radiation are almost right on top of each other
in the figure due to the very small bias in n. The red and blue curves show how
the incoming direct solar flux changes with cloud index n. As libRadtran is a
plane parallel RTM, for values of n larger than 0.4 the cloud layer is too opaque
to let direct solar radiation go through. The yellow and green curves show the
amount of diffuse incoming solar flux for a certain degree of clouds. For a cloud
index n equal to 0, there is less diffuse light coming in than direct light, as there
are no clouds in the sky to scatter the solar radiation, only the molecular gasses
and aerosols. With increasing n, the amount of diffuse incoming solar radia-
tion increases while the direct incoming radiation decreases. Around n = 0.2,
the amount of diffuse incoming solar radiation starts to decrease with increasing
cloud cover index n, because the clouds start to reflect more and more radiation
directly back into space. As was also the case before when the relation between
n and COD was investigated, the cloud index bias ∆n is negligibly small due to
the definition of n (≈0.2% relative cloud cover index bias). Unlike the COD case,
it is not possible to derive the incoming flux bias here. The reason for this is that
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Figure 4.17: Simulations for cloudy conditions, made using libRadtran, for both
direct and diffuse incoming radiation, over (a) ocean, (b) deciduous vegetation
and (c) sandstone desert.
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no reliable fits can be made through the curves of Figure 4.17(a), and so it is not
possible to calculate the slope in Eq. (4.5) for each simulation. However, as the
cloud cover index bias ∆n is so small, the same conclusions can be made here as
for the n(log(COD)) case, i.e. that due to the definition of cloud index, only minor
differences are introduced by changing the shape of the SR curve. Figures 4.17(b)
and 4.17(c) show the simulations made above vegetation and desert respectively.
Similar trends are visible here.

4.4.6 TOA OUTGOING VISIBLE BROADBAND RADIANCE

Satellite instruments measure the incident radiation through channels with a
specific SR. For broadband instruments like the Geostationary Earth Radiation
Budget (GERB) or CERES, the channels allow to measure the full outgoing com-
ponents of the ERB. In the case of GERB, the Royal Meteorological Institute of
Belgium (RMIB) has developed a technique to fill in the gaps when no GERB
measurements are available for the solar reflected radiance. When this is the
case, the data of the narrow 0.6 and 0.8µm VIS channels of the SEVIRI instrument
onboard the same satellite are used to create so-called GERB-like data through a
narrowband–to–broadband (NB–to–BB) conversion. In future studies, attempts
will be made to use the same technique to convert the VIS data of MVIRI into
GERB-like data (see Chapter 7), using the overlap period between Meteosat-7
and Meteosat-8. Together with the current shortwave (SW) GERB database, ex-
tending the GERB-like dataset in the past would help in delivering a long-term
climate data record of broadband solar reflected radiances. In this section, the
SBDART simulations are used to show the dependence of the broadband radi-
ance LBB to the two degraded SR curves. The curve used to generate the broad-
band radiances, is the perfect SR (1 over the full wavelength region) that was used
for the unfiltering in Chapter 2.

The NB–to–BB relation is shown in Figure 4.18 for all surface types together
and clear-sky conditions. From this figure, one can see that, for a fixed broad-
band radiance LBB, the spectrally degraded radiances are in general higher than
the SSCC degraded ones. This overall effect is explained again by the difference
in integrated surface below both degraded SR curves. In Figure 4.19(a) only the
clear-sky radiances over ocean are shown. The low radiance values come from
the fact that ocean only reflects little solar radiation. The radiance bias ∆L can
again be converted into the broadband radiance bias ∆LBB through Eq. (4.5). To
do this, the relation in Figure 4.19(a) is approximated by a linear function so that
the slope in the denominator is again constant over the full LBB range. Table 4.8
gives the values of the slopes of the linear fits through the simulations. As these
values are again the same (within error margins) for both degraded SR curves,
the mean value of the slopes is used to calculate ∆LBB through Eq. (4.5). Fig-
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Figure 4.18: Simulated radiances as a function of broadband radiance for clear-
sky conditions, made using the SBDART code.

Table 4.8: The slopes and their standard deviations of the linear fits made
through the clear-sky L(LBB) data for both degraded SR curves and four differ-
ent scene types. The standard deviation on the fits are also given.

Scene type SR slope standard deviation
(W m−2sr−1)

Ocean SSCC 0.513 ± 0.004 0.276
Spectral 0.509 ± 0.005 0.298

Vegetation SSCC 0.522 ± 0.008 1.654
Spectral 0.525 ± 0.008 1.570

Soil SSCC 0.486 ± 0.012 1.706
Spectral 0.500 ± 0.012 1.681

Rock SSCC 0.501 ± 0.006 2.348
Spectral 0.508 ± 0.005 2.149

ure 4.19(b) shows this bias as a function of broadband radiance. ∆LBB is positive
due to the fact that the SSCC degraded radiances become larger than the spec-
trally degraded ones, as ocean peaks in the short VIS wavelengths, and the slope
in Eq. (4.5) is positive. This difference becomes larger for higher broadband ra-
diances as the effect of the difference in the two degraded SR functions is more
pronounced. Figures 4.19(c), (e), and (g) show the clear-sky simulations over
vegetation, soil, and rock respectively. In all three cases the spectrally degraded
simulations lead to higher radiances than the SSCC corrected ones. The broad-
band bias ∆LBB is shown as a function of broadband radiance in Figures 4.19(d),
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Figure 4.19: Simulations for clear-sky conditions, made using SBDART, over (a)–
(b) ocean, (c)–(d) vegetation, (e)–(f) soil, and (g)–(h) rock. The left sided images
show the relation between the simulated radiances L and LBB, while the right
side shows the relation between the LBB bias and LBB.
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(f), and (h). As these scene types reflect more radiation in the longer wavelengths
of the visible region than ocean, the bias is negative, and becomes stronger with
increasing broadband radiance.

The same work is now done using the cloudy SBDART simulations, as shown
in Figure 4.20 for all surface types together (ocean, vegetation, soil and rock).
For the same reason as before, the majority of the simulations has a higher spec-
trally degraded than SSCC degraded radiance. Figure 4.21(a) shows the selection
of cloudy simulations above ocean. By comparing with Figure 4.19(a) it is clear
that an extended set of COD values were used, where the lower left side shows
the clear-sky values, and the upper right side the fully overcast ones. For each
simulation, the radiance bias ∆L is converted into broadband bias ∆LBB. To do
this, the NB–to–BB relation is fitted with a linear first order function for both de-
graded radiance values. The slopes of these fits are given in Table 4.9. Here too,
the slope used in Eq. (4.5) is taken as the mean value of the slopes of these two
fits, as they are again almost the same, within error margins. The broadband bias
∆LBB is shown in Figure 4.21(b) as a function of broadband radiance. The bias
decreases with increasing LBB due to the fact that the cloud reflectance spectra
are broad and the integrated spectrally degraded SR curve is larger than the inte-
grated SSCC degraded one. The upper left part of the figure shows positive bias
values as here the underlying ocean surface is visible. Figures 4.21(c), (e), and
(g) show the cloudy simulations above vegetation, soil, and rock surfaces respec-
tively. Again, the simulations for low COD values are situated at the left bottom
(comparable to Figure 4.19), while the high COD simulations lead to the highest
radiance values. The linear relations between the degraded radiances and the
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Figure 4.20: Cloudy radiance simulations, made using SBDART as a function of
broadband radiance.
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Figure 4.21: Simulations for cloudy conditions, made using SBDART, over (a)–
(b) ocean, (c)–(d) vegetation, (e)–(f) soil, and (g)–(h) rock. The left sided images
show the relation between the simulated radiances L and LBB, while the right
side shows the relation between the LBB bias and LBB.
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Table 4.9: The slopes and their standard deviations of the linear fits made
through the cloudy L(LBB) data for both degraded SR curves and four different
scene types. The standard deviation on the fits are also given.

Scene type SR slope standard deviation
(W m−2sr−1)

Ocean SSCC 0.517 ± 0.003 3.769
Spectral 0.523 ± 0.003 3.738

Vegetation SSCC 0.527 ± 0.006 4.076
Spectral 0.528 ± 0.006 4.002

Soil SSCC 0.530 ± 0.006 4.168
Spectral 0.533 ± 0.006 4.126

Rock SSCC 0.532 ± 0.008 4.956
Spectral 0.536 ± 0.008 4.905

broadband radiances are fitted and used to convert the bias ∆L into the broad-
band bias ∆LBB. The slopes through the fits are shown in Table 4.9, where the
mean value is used in the conversion of Eq. (4.5). Figures 4.21(d), (f), and (h)
show the same decreasing relation between the broadband bias and broadband
radiance for the three land surface types as for the clear-sky.

In conclusion, it seems that the effect of accounting for spectral ageing as op-
posed to the SSCC method, is to change the broadband radiances over all clear
scene types with about 2–5%, over cloudy scenes with about 1–2%. There are 3
sources for the observed differences: first of all the effect of the spectral ageing
model over clear ocean, leading to a positive bias, secondly the overall difference,
independent of the scene type, due to the difference in integrated surface below
the two degraded SR curves, and thirdly, the uncertainty on the model parame-
ters which becomes larger after 8 years.

4.4.7 CONCLUSION

Overall, the main effect of using the spectral ageing model instead of the official
EUMETSAT SSCC calibration is largest for the retrieval of background aerosols
over ocean, land surface albedo for low albedo values and broadband radiances
for low LBB values. These differences range from 2–5%, and are important to
take into account when ECVs are retrieved using long data periods of one satel-
lite. This is also clear from Table 4.10 which shows the GCOS requirements for
each of the 4 ECVs for the spatial resolution, temporal resolution, accuracy and
stability of its time series. The spatial and temporal resolutions are met, except
for the spatial resolution of the land surface albedo. When comparing the ∆ECV
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Table 4.10: For each of the ECVs, the GCOS requirements for the spatial resolu-
tion, temporal resolution, accuracy and stability of the long-term data records
are given.

ECV Spatial Temporal Accuracy Stability
resolution resolution

Aerosol optical depth 5–10km 4h max(10%;0.03) 0.01
Land surface albedo 1km daily to weekly max(5%;0.0025) max(1%;0.0001)
Cloud optical depth 50km 3h 10% 2%
TOA ERB shortwave 100km monthly 1W m−2 0.3W m−2

values with the accuracy and stability requirements, it is clear that the use of the
spectral ageing model cannot be ignored. There are three important notes to be
made here. First of all, the effect over clear ocean is often opposite to the ef-
fect over clear land scenes. The reason for this is intrinsic to the spectral ageing
model, as after 8 years the SR has become less sensitive than the SSCC degraded
one in the short VIS wavelengths than in the longer wavelengths. Apart from that,
due to the difference in degradation rate for both methods (exponential instead
of linear decrease in time), the integrated surface below both degraded SR curves
is different. This has an effect on most of the ECVs discussed here, resulting in
significant biases. Finally, it is important to realise how the use of normalised
variables (like the cloud cover index, or more generally, the difference between
observed radiance and its clear-sky counterpart) reduces the sensitivity with re-
spect to the choice of degraded SR curve.

97





Chapter Five

Model applied to full MFG

Until now, all results shown and data used, were related to Meteosat-7 alone. The
model proves to work fine for this instrument, so it is worth to see what happens
to the visible (VIS) data of the other 5 geostationary Meteosat Visible and Infrared
Imagers (MVIRIs) when the spectral ageing model is applied. The methodology
is very similar to what was used in the previous chapters, with some adjustments
which are clearly noted and explained in the first section. The time series of each
of the 6 Meteosat satellites are discussed individually, before and after ageing
correction, where the Atlantic Ocean data coverage (ADC) and Extended ADC
(X-ADC) time series are added for Meteosat-3, and the Indian Ocean data cover-
age (IODC) time series for Meteosat-5 and -7. At the end of this chapter, the time
series are all shown and discussed together as the full Meteosat First Generation
(MFG) database at 0◦ longitude, normalised to Meteosat-7. The results shown
in this chapter have recently been submitted to the special edition on "Calibra-
tion and Verification of Remote Sensing Instruments and Observations" of the
Remote Sensing journal.

5.1 INTRODUCTION

5.1.1 ORIGINAL DEGRADING TIME SERIES

The same 298 clear-sky sites from Chapter 4 are averaged out according to scene
type to create for each of the MFG satellites 5 clear-sky reflectance ratio time se-
ries (ocean, dark vegetation, bright vegetation, dark desert, and bright desert).
The position of the selected sites were shown in Figure 4.1. Stable sites have also
been computed using the data of the other satellites, in the same manner as ex-
plained in Section 2.5, but they did not prove to be more stable for the full MFG
dataset than the sites from Meteosat-7. Together with the convective clouds, this
leads to 6 spectrally different time series. The launch date and the exact data
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Figure 5.1: The original 6 seasonal corrected time series for all MFG satellites
from February 1982 until June 2006. The vertical lines show the switches of op-
erational satellite at the nominal position.

periods at 0◦ longitude used in this work for each satellite were given before in
Table 2.1, together with the gain settings, calibration coefficient, offset, and solar
irradiance used in the conversion from digital count (DC) to reflectance ratio r .
The original seasonal corrected time series are shown in Figure 5.1 for all 6 satel-
lites together. The label in the figure indicates for which satellite the data are
shown. The time series of all 6 satellites are clearly degrading. The spectral char-
acter is the clearest in the ocean time series of Meteosat-5 and -7 by comparing
them with the other time series. For the other satellites, the spectral degradation
is not so clear from the figure. The time periods of observation of Meteosat-3
and -6 at 0◦ longitude were very short, making it difficult to do the seasonal cor-
rection. As said, at least two years of data are necessary, which was not the case
for Meteosat-6 (explaining the high noise level in its time series), and was barely
the case for Meteosat-3, which was split up in two periods of about one year
with a break of several months in between (see Table 2.1). The ocean time se-
ries of Meteosat-2 and -4 were influenced by the eruptions of two volcanoes: El
Chichón in Mexico (28 March – 4 April 1982) and Mount Pinatubo in the Philip-
pines (June 1991), which is confirmed from the solar radiation transmission ob-
servations from the Mauna Loa Observatory in Hawaii as shown by Figure 5.2.

In the following, all the relevant issues which involve several satellites, are
discussed and addressed. This is, first of all, the correction done on the ocean
time series to eliminate the majority of the effect of the volcanic eruptions. A
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5.1. Introduction

Figure 5.2: Atmospheric solar radiation transmission for the time pe-
riod 1958–2008, measured by the Mauna Loa Observatory (source:
http://www.cmdl.noaa.gov/albums/cmdl_overview/Slide18.sized.png).

second problem is caused by the 6-bit digitisation that was used for Meteosat-
2 and -3, and a last problem is the saturation that occurs for these same two
instruments.

5.1.2 AEROSOL CORRECTION

Figure 5.3 shows the aerosol optical depth (AOD) over ocean, taken from the
Global Aerosol Climatology Project (GACP) (Geogdzhayev et al. (2002) and
Mishchenko et al. (1999)) of the National Aeronautics and Space Administra-
tion (NASA) Goddard Institute of Space Studies (GISS) for the time period of
August 1981 until June 2006, averaged out over the 55 clear-sky ocean targets.
This AOD dataset was created using channel-1 and -2 observations of the Ad-
vanced Very High Resolution Radiometer (AVHRR), supplemented by data from
other satellites, field observations, and chemical-transport modelling. Both Fig-
ures 5.2 and 5.3 clearly show the effect of El Chichón and Pinatubo, though in
different amounts. The thickest part of the volcanic plume of El Chichón already
passed the Mauno Loa Observatory on April 9 1982 on its way westward, while
the Pinatubo cloud was only observed in Hawaii one month after the eruptions,
when it already had time to spread out, both horizontally and vertically. This ex-
plains why the decrease in solar transmission was stronger for El Chichón than
for Pinatubo in Figure 5.2, even though Pinatubo had a more powerful impact
on the climate. Compared to El Chichón, in 2 months time, about double the
amount of Earth surface was covered by the Pinatubo cloud (40%), more than
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Figure 5.3: GACP AOD measurements for the time period 1981 – 2006, averaged
out over the 55 clear-sky ocean targets.

double the amount of aerosols were observed in the first 3 months after the erup-
tion (20 – 30×109 kg), and over a period of 10 months, the mean AOD was 1.7
times larger (Kondratyev & Galindo 1997).

As the natural visible signal over ocean is low, the presence of these vol-
canic aerosols in the region between the upper troposphere and the lower strato-
sphere, is clearly visible as an increase in reflectance ratio r in Figure 5.1. The
effect is also present in the land time series, though differently for Pinatubo than
for El Chichón. Vulcanic aerosols can both absorb and reflect solar radiation,
where the ratio of absorbing to reflecting properties depend on the type and size
of the aerosols. In the case of El Chichón, all five clear-sky time series show an
increase between the moment of eruption in April 1982 and the middle of 1984.
This indicates that the absorption component of the volcanic particles must have
been low enough so that the aerosol layer still increased the solar reflected radi-
ation in that time period. For Pinatubo, however, the desert time series show
a decrease in reflectance ratio at the same time as the ocean time series start
to increase. In the Pinatubo cloud, the aerosols must have been stronger ab-
sorbers than for El Chichón, so that over dark surfaces, the aerosols added to the
reflected radiation of the underlying surface, but over brighter surfaces, the ab-
sorbing properties reduced the amount of observed radiation. This is confirmed
by Kondratyev & Galindo (1997). No effect of the eruptions is visible in the con-
vective cloud time series, as the reflecting tops have such high albedos that nei-
ther reflecting nor absorbing effects of the aerosols are visible. From Figure 5.1
it can also be seen that the spread of the aerosols over the Earth went extremely
fast (it has been measured to take about a month), but that it took several years
before all the ashes had left the stratosphere. This effect is also clear from Fig-
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5.1. Introduction

ures 5.2 and 5.3.
The time period of the GACP AOD dataset covers the full MFG operational

period at 0◦ longitude (1982 – 2006), and as the measurements were made glob-
ally over ocean, they include the effect of the El Chichón and Pinatubo eruptions.
These 1◦×1◦ monthly mean AOD values are used to correct the MFG ocean data
in the following way1. First of all, to fill the holes where there is, for a certain
site and month, no AOD data, the average is taken for that site over the 3 clos-
est non-zero values in time before that month and 3 non-zero values after. Next,
the AOD dataset is smoothened out in time to eliminate extreme noise in the
original data. This is done by replacing every AOD value with the median of 3
values: the data point itself, the value of the same site the month before and the
value of the month after. This monthly mean AOD dataset is then coupled to the
monthly mean reflectance ratio time series for each of the clear-sky ocean tar-
gets, and for each of the 6 MVIRI instruments. As for AOD values smaller than 1
the reflectance over ocean increases (approximately) linearly with the presence
of aerosols (Loeb & Kato 2002), the same relation is valid between AOD and re-
flectance ratio. Following this, the intercept at AOD = 0 of the linear regression
between reflectance ratio and AOD for a certain ocean site should then represent
the reflectance ratio that target would have when no aerosols were present. To
find this linear relation for each ocean target, the data of all satellites are com-
bined. This way, the range in AOD values is increased, as only for Meteosat-2
and -4 high volcanic AOD values were measured and for the other satellites the
amount of aerosols in the atmosphere was low. The linear relation between r
and AOD is calculated through the least-squares fitting of

r = ai +bi t + ci t 2 +AOD
∂r

∂(AOD)
. (5.1)

In this equation, there are ten parameters that need to be fitted: the satellite
dependent coefficients ai , bi and ci of the second degree polynomial used to ap-
proximate the degradation for each satellite, and the satellite independent slope
of the linear relation between r and AOD, expressed by ∂r /∂(AOD). The most
important parameter here is the slope ∂r /∂(AOD). This parameter is found by
fitting Eq. (5.1) on the observed reflectance ratio r and AOD values for each site,
but using the data of all six satellites together. On average, over the different sites,
it is equal to 0.61 ± 0.19. Knowing the value of this parameter for each target, al-
lows to subtract the product of ∂r /∂(AOD) and AOD from each reflectance ratio
ocean time series, which is equal to the intercept of the linear regression. This is
done for the full ocean time series of each of the 6 satellites.

1As no land AOD data were found for this full time period, the land time series are not corrected
in this work.
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5.1.3 6-BIT DIGITISATION

Meteosat-2 and -3 were part of the pre-operational phase. The discretisation that
was used for these satellites, when translating the electrical current into DC, was
different for the VIS and water vapour (WV) channels than for the infrared (IR)
channel: the output of the VIS and WV channels was converted using 6 bits (val-
ues 0 – 63), while for the IR channel, 8 bits were used (values 0 – 255). To make
the data of the three channels more comparable, they were converted into 8 bits.
For the VIS data, this was done by multiplying each value (in DC) by 4 (Koepke
1982b). This leads to the same range of values as for the other two channels, but
each time with steps of 4 DC. This is clear from Figure 5.4, which is made using
the 55 ocean targets for the Meteosat-2 and -3 time period. The grey crosses show
the daily minimum value of the targets (instead of the mean), while the black full
curve is the ocean reflectance ratio time series of Figure 5.1. The crosses nicely
show the discrete levels, with the majority being a multiple of 4, and some inter-
mediate values which were introduced in the rectification process when the raw
(Level 1.0) images were converted into the Level 1.5 images. As there is an offset
of about 4, the lowest original non-zero ocean values for Meteosat-2 are around
8, where the volcanic eruption is visible in the time span where the values jump
from 8 to 12. The gain change of level 0 to level 1 for Meteosat-2 is indicated by
the vertical line, separating Meteosat-2(a) from (b). It can be seen that a number
of pixels jumps up from value 8 to 12 after this gain change. For Meteosat-3, the
values start at 12 and 16 (Meteosat-3(a)), and fall back to 8 and 12 after the gain
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Figure 5.4: 55 ocean targets for Meteosat-2 and -3. The grey crosses are the daily
minimum values of the 55 targets (left y-axis). The black full line is the reflectance
ratio curve of Figure 5.1 (right y-axis).
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went from level 1 to level 0 (Meteosat-3(b)).
This digitisation problem is worst for ocean data as ocean reflects only little

light, and so almost all dark ocean values arrive at a digital count value of 8 or
12. For the other scene types, the relative difference is smaller as the signal is
higher. Converting the ocean data from digital count to reflectance ratio leads
to jumps in the reflectance ratio values. There is a very good correspondence
between the 8 to 12 jumps in DC during the volcanic eruption of El Chichón, and
the jumps in the reflectance ratio curve for that same time period. This leads to
more variation on the reflectance ratio time series and probably also to a bigger
effect of the El Chichón eruption in 1982 and the following years. The jumps in
DC during the gain changes are not visible in the reflectance ratio time series, as
this is corrected for by the different calibration coefficients used.

There is no way to solve this discretisation problem yet at this point. One
way to have an idea on the true value of a certain ocean pixel, can be to look at its
diurnal cycle, and see how, and if, the values change. There is also some doubt
about the offset value, which might be too high due to the conversion of 6 to 8
bits. This issue will return later in Section 5.8, when the results are discussed.

5.1.4 SATURATION

A third issue that is discussed here, is the saturation that took place after the gain
level change of 0 to 1 for Meteosat-2, and before the gain level change of 1 back
to 0 for Meteosat-3 (see Table 2.1 for the exact dates). Figure 5.5 shows the 60
convective cloudy targets at the top of the image and the 37 bright desert targets
at the bottom, expressed in digital counts and for both Meteosat-2 and -3. The
upper part of the figure shows in black all 6 values that were selected per day as a
convective cloudy site, while in grey the daily mean of these 6 values is given on
top of it. The bright desert time series in the figure is made up of the daily mean
values of all 37 targets, with a temporal frequency of 10 days. The jumps (at the
vertical lines) show the point in time when the gain level was changed. Nor-
mally these jumps disappear when converting the DC into radiance as different
calibration and offset values need to be used before and after the gain change.
Due to the saturation, however, the calibration might not correct the convective
clouds good enough as the relative jump is smaller for the saturated pixels than
for the non-saturated ones.

This relative jump was calculated for both Meteosat-2 and -3, using the bright
desert time series in Figure 5.5 as a reference for the saturated convective cloudy
time series, because the SEVIRI Solar Channel Calibration (SSCC), that is used in
this work for the values of the calibration coefficient and offset at launch, was
also based on bright desert scenes which were stable in time (Govaerts et al.
2001). To measure the jump in Figure 5.5 for the convective clouds, linear fits
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Figure 5.5: The Meteosat-2 and -3 convective cloudy and bright desert time series
expressed in DC. At the top in black, all 6 convective cloudy values are shown per
day, in grey, the mean of these 6 values is given, and in black at the bottom, the
mean values of the 37 bright desert targets are shown.

were made through the daily averaged time series, while for the desert time se-
ries, only the tops of the time series were used because the seasonal cycle is very
clear and stable for these targets. The relative differences for Meteosat-2 between
the time series before and after the gain change are equal to

Clouds :
230−200

200
= 0.150 (5.2)

Desert :
86.7−73.5

73.5
= 0.180, (5.3)

while for Meteosat-3,

Clouds :
205−240

240
=−0.146 (5.4)

Desert :
79−95.6

79
=−0.174, (5.5)

resulting in a difference between both jumps of 0.03 for both satellites, indicating
a 3% loss of signal due to saturation. Due to the fact that the convective cloudy
targets are averaged out every 10 days, these effects might be less visible in the
reflectance ratio time series. So far, nothing is done for this problem either, ex-
cept knowing that the convective cloudy time series of Meteosat-2 and -3 might
not be at the right reflectance ratio values.
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5.1.5 AEROSOL CORRECTED TIME SERIES

The original time series, where the ocean is now corrected using the GACP AOD
dataset, are shown in Figure 5.6. The reason why the peaks in the ocean time se-
ries of Meteosat-2 and -4 have not disappeared, is because it is extremely difficult
to find the right value for the reflectance ratio to AOD slope ∂r /∂(AOD) as there
is a lot of variance in the GACP data, especially for the lowest AOD values. Small
changes to the ∂r /∂(AOD) value result in big differences in the aerosol corrected
ocean time series. Apart from that, the reason why the peaks for Meteosat-2 are
still higher than for Meteosat-4, is most likely because the Meteosat-2 data were
digitised using 6 bits while 8 bits were used for Meteosat-4. Overall it can be
seen that the ocean time series of all 6 satellites are lower when comparing to
Figure 5.1, without large temporal changes. To have an idea on the amount of
degradation per year for each satellite, linear fits are made through the time se-
ries. The ratio of slope (yr−1) to intercept then gives the percentage of decrease
per year. These values are shown in Table 5.5 in Section 5.8 for each satellite,
where the explanation of how the standard deviations are computed is given in
the Appendix.

In the following sections the time series are corrected per satellite. The re-
sults are shown and compared before and after ageing correction, and the model
parameters, leading to this correction, are given.
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Figure 5.6: The original seasonal corrected time series for all 6 satellites, where
the ocean time series is corrected for aerosols using the GACP AOD dataset.
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5.2 METEOSAT-2

In June 1981, Meteosat-2 was launched as the second satellite in the Meteosat
pre-operational phase. The dataset used at 0◦ longitude, runs from February
1982 to August 1988. As explained previously, a gain level change was made, re-
sulting in different calibration coefficients before and after2. Even though the
VIS channel makes use of 2 detectors, for the satellites in the pre-operational
phase, one of the two detectors was turned off every second image (the one at
**00 Universal Time Convention (UTC)) because of transmission bandwidth lim-
itations (Govaerts & Lattanzio 2007). The 6 original reflectance ratio time series
for Meteosat-2 are shown in Figure 5.7(a) before the seasonal correction, (b) af-
ter the seasonal correction, and (c) after the ocean time series are corrected for
aerosols. The El Chichón eruption can be seen in all three panels during the pe-
riod of April 1982 to October 1984, as an increase for all clear-sky time series.
There seems to be some yearly increased noise in the second half of the year in
the clear-sky time series of the (b) and (c) panels of the figure. Comparing with
Figure 5.7(a), this falls together with the strong dips of the residual seasonal cycle.
The reason for this added variation comes from the fact that the seasonal correc-
tion is computed monthly and, in this case, the variation during each month is
large and does not correct all 3–4 images per month.

The 6 time series are now corrected for ageing. When minimising the cost
function of Eq. (3.5), the parts of the time series which are most affected by the
volcanic eruption are not used as these would lead to overcorrections. As the
effect of El Chichón is most clearly visible in the time period of April 19823 to Oc-
tober 1984, this part is removed for the 5 clear-sky time series. This is a balance
between taking away the necessary data during the eruption and still retaining
enough for a stable parameter fitting. The same omitted periods are avoided
when doing the seasonal correction. Due to the high variation in the ocean time
series, it is not possible to find a positive γ parameter using this minimisation
technique. Figure 5.7(d) shows the 6 ageing corrected time series, where the
model parameters used are

slope =−0.017±0.008yr−1

α= 0.00044±0.00034day−1

β= 0.90±0.26

γ= 0.00±0.00µm−1day−1.

2Another gain change was performed earlier on 20 October 1981 going from level 1 to level 0.
3This is a few months after the eruption took place, because this seems to be the moment around

which the aerosols were spread far enough around the globe to start affecting all ocean data in the
clear-sky images.
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Figure 5.7: Meteosat-2 time series (a) before seasonal correction, (b) after sea-
sonal correction, (c) after aerosol correction, and (d) after ageing correction.
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The percentages of change per year of the linear fits through the ageing corrected
time series are added in Table 5.5 in Section 5.8, together with the standard de-
viations. For the calculation of these slopes, the same time periods where the
effect of El Chichón is the largest, are not used.

5.3 METEOSAT-3

The third Meteosat satellite - and at the same time the last of the pre-operational
programme - was launched in June 1988. The satellite replaced Meteosat-2 as the
main operational satellite in August of the same year and stayed at 0◦ longitude
for about 10 months. After a period of 7 months, it started to collect data again for
a second period of a bit more than one year. For this second period, the gain level
was changed back from 1 to 0. Figure 5.8 shows the original time series before
seasonal correction in panel (a), after seasonal correction in panel (b), and after
aerosol correction for the ocean time series in panel (c). The variation seems
to be slightly higher in the time series of the second period than in the ones of
the first period. This could be due to the deseasonalisation, which is done using
both parts together but is still in total barely long enough to calculate the mean
annual cycle. Apart from that, there is also the 6-bit digitisation problem which
introduces jumps in the ocean reflectance ratio time series (as can also be seen
from Figure 5.4).

The ageing model is applied to the time series and the result is shown in Fig-
ure 5.8(d). The parameters used are

slope =−0.009±0.027yr−1

α= 0.00010±0.00029day−1

β= 0.75 (fixed)

γ= 0.0000±0.0004µm−1day−1.

It was not possible to find significant γ and β values, so the value for γ becomes
equal to the smallest possible value, i.e. zero, and, since the time period is really
short, the β parameter is fixed at 0.75, about the value found in Section 4.2 for
Meteosat-7. The residual slopes of the 6 ageing corrected time series, expressed
in percentage per year, are added to Table 5.5 of Section 5.8.
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Figure 5.8: Meteosat-3 time series (a) before seasonal correction, (b) after sea-
sonal correction, (c) after aerosol correction, and (d) after ageing correction.
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(a) (b)

Figure 5.9: The selected clear-sky stable sites for the 134 overlapping sites for (a)
the ADC at 50◦ W and (b) the X-ADC at 75◦ W.

5.3.1 ATLANTIC OCEAN DATA COVERAGE (ADC / XADC)

In August 1991, Meteosat-3 was moved over the Atlantic Ocean for the ADC at
50◦ W, in loan to the National Oceanic and Atmospheric Administration (NOAA)
to take over the operations from the sixth Geostationary Operational Environ-
mental Satellites (GOES) which had failed in 1989. After one year and a half,
Meteosat-3 was relocated to the GOES-East nominal position of 75◦ W, to run
the X-ADC from February 1993 until November 1995. The field–of–views (FOVs)
of the ADC and X-ADC are shown in Figures 5.9(a) and (b) respectively. The same
procedures are followed for the ADC and X-ADC datasets as was done for the data
at the nominal position, in an attempt to improve the model parameters by in-
creasing the length of the Meteosat-3 time series. As there is not much overlap
between the FOV above the Atlantic Ocean and the FOV at the nominal position
of 0◦ longitude, new sites are selected. This is done in the same way as explained
in Chapter 2, but now looking for overlapping clear-sky sites which are present
in both Atlantic FOVs. The selected 134 sites are indicated by the white boxes in
Figures 5.9(a) and (b). Figure 5.10 shows the resulting time series after aerosol
correction for the nominal position, ADC and X-ADC data. The time period for
the ADC is too short to perform the seasonal correction. Instead, the seasonal
correction factors of the X-ADC period are used, which are unfortunately not
able to correct the ADC data. On top of that, the time period of the ADC was also
right in the aftermath of the Pinatubo eruption of June 1991. It is not possible to
remove the effects of Pinatubo from the data due to a combination of the fact that
the seasonal correction is not good enough, the Meteosat-3 data are processed
using 6 bits, and the fit of reflectance ratio r with respect to AOD is too unsta-
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Figure 5.10: Original Meteosat-3 time series for the data coverage at 0◦ longitude
(August 1988 – December 1990), the ADC at 50◦ W (August 1991 – January 1993),
and the X-ADC at 75◦ W (February 1993 – May 1995), using the overlapping sites.

ble4. The latter is also visible in the X-ADC period, where the AOD correction
introduces extra variability in the ocean time series. The fact that the convec-
tive cloudy time series do not connect over the three time periods of Meteosat-3
data, hints to a possible other gain change when Meteosat-3 was moved over the
Atlantic Ocean. An attempt was made to correct these time series for spectral
ageing, but due to the fact that both the 6 ADC time series and the X-ADC ocean
time series are not useful, this does not lead to an improvement of the Meteosat-
3 model parameters.

5.4 METEOSAT-4

The Meteosat Operational Programme (MOP) started with the launch of
Meteosat-4 in March 1989. The operational period used here runs from June
1989 until February 1994. For Meteosat-4 and the rest of the MFG satellites, no
more gain changes were performed while the satellites were operational. The
original reflectance ratio time series are shown in Figure 5.11(a) before and (b)
after seasonal correction, and in panel (c) after the aerosol correction was per-
formed for the ocean time series. The effect of Pinatubo is visible as an increase
in the ocean time series of panel (c) from June 1991 until July 1993, and a decrease

4At the nominal position, it was possible to use all 6 satellites to do this fit, and even then the
method was very sensitive to small AOD changes. In this case, only 4 years of data are available to fit
the r to AOD relation on.
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Figure 5.11: Meteosat-4 time series (a) before seasonal correction, (b) after sea-
sonal correction, (c) after aerosol correction, and (d) after ageing correction.
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in the desert time series until December 1991. The increased variance that was
visible in the time series of Meteosat-2 due to the deseasonalisation, can be seen
here too. When comparing with Figure 5.11(a), it is clear that it coincides with
the steep slopes in the seasonal cycles.

In Figure 5.11(d), the time series have been corrected for spectral ageing.
Similarly as for El Chichón in the Meteosat-2 data, the period where the effect
of Pinatubo is the largest, is not used in the seasonal, nor the ageing correction
of the Meteosat-4 time series. The ocean data are not considered between June
1991 and July 1993, while the land time series are not used between June 1991
and December 1991. This leads to the following model parameters:

slope =−0.026±0.002yr−1

α= 0.000276±0.000075day−1

β= 0.743±0.145

γ= 0.000049±0.000037µm−1day−1.

Table 5.5 of Section 5.8 shows how the fits through the ageing corrected
Meteosat-4 time series evolve in time. These values were calculated avoiding
the same time periods for the ocean and land time series where the eruption of
Pinatubo most affects the data.

5.5 METEOSAT-5

As the second MOP satellite, the European Organization for the Exploitation
of Meteorological Satellites (EUMETSAT) launched Meteosat-5 in March 1991.
The satellite became officially operational in May 1991, but until January 1994
Meteosat-4 and -5 alternated at the nominal position as operational satellite.
There is not enough Meteosat-5 data available to use in this period to create
the clear-sky images, so the dataset used here runs only from January 1994
until February 1997. Following the suggestion of Govaerts (1999), the spec-
tral response (SR) curve of Meteosat-7 is used in the unfiltering process of the
Meteosat-5 data, for which the calibration coefficient and offset value are given
on the EUMETSAT webpage and are used here in this work (see Table 2.1). In
Figure 5.12(a) and (b), the 6 original time series are shown for Meteosat-5, before
and after seasonal correction respectively. There seems to be again some yearly
increased noise from September to October in the time series of the (b) panel
of the figure. Comparing with Figure 5.12(a), this falls together again with the
deeper dips of the seasonal effects. Figure 5.12(c) shows the ocean time series
which have been corrected for aerosols.
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Figure 5.12: Meteosat-5 time series (a) before seasonal correction, (b) after sea-
sonal correction, (c) after aerosol correction, and (d) after ageing correction.
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After correcting the time series with the spectral ageing model, the minimi-
sation process leads to the parameters

slope =−0.0060±0.0073yr−1

α= 0.000066±0.000081day−1

β= 0.75 (fixed)

γ= 0.00015±0.00011µm−1day−1

for which the corrected time series are shown in Figure 5.12(d). The β value was
kept fixed again, as the Powell method did not lead to a plausible value.

5.5.1 INDIAN OCEAN DATA COVERAGE (IODC)

Meteosat-5, -6 and -7 were all three relocated over the Indian Ocean after their
operational period at 0◦ longitude, to support the Indian Ocean Experiment (IN-
DOEX). Meteosat-5 was moved to 63◦ E, and was the operational satellite for the
IODC from June 1998 until December 2006. The data over the Indian Ocean are
treated in the same way as the data at the nominal position, in order to increase
the time period and improve the model parameters. Different targets need to be
found for the IODC dataset, as the IODC FOV barely overlaps with the FOV at 0◦
longitude. Figure 5.13 shows the Meteosat FOV over the Indian Ocean at 63◦ E
with the selected set of 338 clear-sky targets. The time series for the six differ-
ent scene types are shown in Figure 5.14(a) before seasonal correction, (b) after

Figure 5.13: The selected clear-sky stable sites on top of the Meteosat FOV above
the Indian Ocean for the IODC of Meteosat-5 at 63◦ E.

117



5. MODEL APPLIED TO FULL MFG

(a)  0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

R
e

fle
ct

a
n

ce
 r

a
tio

 r

Meteosat-5 (original)

Nominal position IODC

(b)  0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

R
e

fle
ct

a
n

ce
 r

a
tio

 r

Meteosat-5 (with seasonal correction)

Nominal position IODC

(c)  0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

R
e

fle
ct

a
n

ce
 r

a
tio

 r

Meteosat-5 (with seasonal correction and 
aerosol correction over ocean)

Nominal position IODC

(d)

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

1995/01 1999/01 2003/01

R
e

fl
e

c
ta

n
c
e

 r
a

ti
o

 r

Time

Meteosat-5 (α=0.000121, β=0.750000, γ=0.000055)

Nominal position IODC

Clouds
Ocean

Dark Vegetation

Bright Vegetation
Dark Desert

Bright Desert

Figure 5.14: Meteosat-5 time series for the data coverage at 0◦ longitude, and the
IODC at 63◦ E (a) before seasonal correction, (b) after seasonal correction, (c)
after aerosol correction and (d) after ageing correction.
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Table 5.1: The yearly percentage of decrease of the Meteosat-5 IODC time se-
ries, before and after ageing correction. The explanation of how these values are
computed, is given in the Appendix.

Surface before ageing after ageing
type correction correction

convective clouds -0.9833 ± 0.0267 -0.2384 ± 0.0279
ocean -0.5651 ± 0.0453 0.2848 ± 0.0451

dark vegetation -0.6889 ± 0.0257 -0.1921 ± 0.0268
bright vegetation -0.6563 ± 0.0226 -0.1042 ± 0.0236

dark desert -0.7204 ± 0.0240 -0.0856 ± 0.0255
bright desert -0.9257 ± 0.0193 -0.2355 ± 0.0206

seasonal correction, and (c) after the ocean time series have been corrected for
aerosols. These figures show both the data at the nominal position and the IODC.
The time series for the IODC data period do not connect with the first set of time
series because different sites are used. Either way, it is clear that the IODC time
series keep degrading in a similar way as the time series at the nominal position.
The end of the IODC time series seem to show some extra variation, which might
be due to an increased inclination angle of the orbit at the end of the satellite’s
lifetime when fuel became scarce.

The full set of time series (0◦ + 63◦) are now corrected for ageing, where this
time the cost function that is being minimised contains 2×6 time series so that
the variance of both data coverages is as low as possible. Figure 5.14(d) shows
the ageing corrected time series, using the parameters

slope =−0.0110±0.0007yr−1

α= 0.000121±0.000009day−1

β= 0.75 (fixed)

γ= 0.000055±0.000020µm−1day−1.

These parameters are really close to the ones found using only the observations
at the nominal position. Due to the fact that the dataset used here is longer,
and that the standard deviations of the parameters are smaller than the ones
derived from the data at the nominal position alone, they are taken as the best
set of model parameters to correct the Meteosat-5 data. The percentages per
year of the slopes of the linear fits through the ageing corrected time series at 0◦
longitude are added to Table 5.5, while the IODC slopes are shown in Table 5.1,
both before and after ageing correction.
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5.6 METEOSAT-6

Meteosat-6 was launched in November 1993 as the third and last satellite in the
MOP. It remained the back-up satellite for Meteosat-5 until January 1997, and
this due to a high noise level in the WV channel, which was observed soon after
launch. Only one year and a half of data are available to work with (January 1997
– June 1998). For Meteosat-6 too, the suggestion of Govaerts (1999) is followed
to replace the SR curve at launch by the one of Meteosat-7, and use the adjusted
calibration coefficient and offset values given on the EUMETSAT website (see Ta-
ble 2.1 for the exact values). Figure 5.15(a) shows the original time series before
seasonal correction, (b) after seasonal correction, and (c) after aerosol correc-
tion. As there are not enough data available to calculate the mean annual cycle,
the seasonal correction factors of Meteosat-7 are used, but by comparing figures
(a) and (b), it is clear that this does not remove the Meteosat-6 seasonal effects.

The minimisation technique proves not to be able to find any significant pa-
rameters for this dataset. Even when β is kept fixed at 0.75, the Powell method
returns zero values for the three other parameters. As long as the seasonal cor-
rection cannot be performed, it is not possible to find good parameters this way.
As mentioned earlier, Meteosat-6 was also operational over the Indian Ocean,
but unfortunately this was only as back-up, and not enough data are available
to do the clear-sky process and extend the time series. In the discussion at the
end of the chapter, it is explained how Meteosat-6 can still be manually corrected
making use of the ageing corrected time series of Meteosat-5 and -7.

5.7 METEOSAT-7

The last of the MFG satellites was launched in September 1997 and was part of
the Meteosat Transition Programme (MTP) between the first and second genera-
tion of Meteosat satellites. Meteosat-7 was operational at 0◦ longitude from June
1998 until July 2006. The 6 original time series are shown in Figure 5.16(a) before
seasonal correction, in panel (b) after seasonal correction and (c) after aerosol
correction. The same periodic variability that was seen for Meteosat-2, -4 and
-5, is visible in figures (b) and (c) resulting from the way the deseasonalisation is
done.

After correcting the time series with the spectral ageing model from Eq. (3.2),
they become the ones shown in Figure 5.16(d). The model parameters that come
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Figure 5.15: Meteosat-6 time series (a) before seasonal correction, (b) after sea-
sonal correction, (c) after aerosol correction, and (d) after ageing correction.
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Figure 5.16: Meteosat-7 time series (a) before seasonal correction, (b) after sea-
sonal correction, (c) after aerosol correction, and (d) after ageing correction.
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out of minimising the cost function are

slope =−0.0295±0.059yr−1

α= 0.000327±0.000009day−1

β= 0.7529±0.0053

γ= 0.000125±0.000014µm−1day−1

which differ from the ones given in Chapter 4 due to the AOD correction done
here.

5.7.1 INDIAN OCEAN DATA COVERAGE (IODC)

In December 2006, Meteosat-7 took over the operations of Meteosat-5 in the
IODC at 57◦ E, and is expected to continue to do this at least until 2016. By ex-
tending the time series at the nominal position with the IODC time series, the
model parameters can be improved, having now, like Meteosat-5, about 13 years
of data of the same satellite. New sites are selected over the Indian Ocean due
to the lack of overlap with the 0◦ longitude FOV. The 314 clear-sky targets are
shown in Figure 5.17. Figure 5.18 shows the original time series for the targets at
the nominal position and the IODC targets (a) before, and (b) after the seasonal
correction. The full dataset nicely shows the exponential behavior, where the
degradation saturates in the IODC part of the time series. No aerosol correction

Figure 5.17: The 314 selected clear-sky stable sites on top of the Meteosat FOV
above the Indian Ocean for the IODC of Meteosat-7 at 57◦ E.
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Figure 5.18: Meteosat-7 IODC time series for the data coverage at 0◦ longitude,
and the IODC at 57◦ E (a) before seasonal correction, (b) after seasonal correc-
tion, and (c) after ageing correction.

is done because the GACP dataset only runs until 2006, but as there are no clear
effects of volcanic eruptions in the data, this should not be a problem to apply
the model.

The time series are corrected for ageing, where again 2×6 time series are used
in the minimisation process. The model parameters that come out of the Powell
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Table 5.2: The yearly percentage of decrease of the Meteosat-7 IODC time series,
before and after ageing correction.

Surface before ageing after ageing
type correction correction

convective clouds -0.917 ± 0.047 -0.087 ± 0.0476
ocean -0.612 ± 0.051 0.263 ± 0.053

dark vegetation -0.340 ± 0.050 0.205 ± 0.052
bright vegetation -0.481 ± 0.041 0.102 ± 0.042

dark desert -0.546 ± 0.046 0.148 ± 0.049
bright desert -0.698 ± 0.029 0.069 ± 0.031

minimisation method are

slope =−0.0319±0.0021yr−1

α= 0.000374±0.00006day−1

β= 0.7662±0.0193

γ= 0.000074±0.000011µm−1day−1.

These parameters are comparable to the ones found for the 0◦ time series of
Meteosat-7, and are, here too, used to correct the full Meteosat-7 dataset. Fig-
ure 5.18(c) shows the ageing corrected time series. The values of the slopes in
percentage per year of the aerosol corrected time series at the nominal position
are given in Table 5.5 of Section 5.8, while the ones for the IODC (not corrected
for aerosols) are given in the Table 5.2.

5.8 DISCUSSION

Figure 5.19(a) shows the ageing corrected time series for all 6 MFG satellites. As
no degradation correction was done for Meteosat-6, while the used calibration is
the one extrapolated at launch, it has consistently lower values than Meteosat-4,
-5 and -7. Furthermore, spectral degradation is clearly present for the Meteosat-
6 data, affecting the clear ocean and cloudy time series more than the ones over
land. Even though it is not possible to model the ageing based on the 1.5 years
of data, the ageing parameters can be derived in such a way that the Meteosat-6
time series agree as closely as possible with the previous (i.e. Meteosat-5) and
following (i.e. Meteosat-7) ones. The best consistency is obtained for Meteosat-6
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Figure 5.19: The ageing corrected time series with (a) the time series corrected
using the minimisation technique for each satellite individually, (b) the same
time series, where the parameters of Meteosat-6 have been manually corrected,
(c) the normalised time series and (d) the time series corrected using the SSCC
method.
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5.8. Discussion

Table 5.3: The normalisation coefficients for each satellite with respect to the
Meteosat-7 bright desert time series, together with the normalised calibration
coefficients.

Satellite Normalisation Normalised
coefficient calibration

Meteosat-2 0.9889 0.645 / 0.539
Meteosat-3 1.0096 0.634 / 0.764
Meteosat-4 1.0195 0.746
Meteosat-5 1.0303 0.839
Meteosat-6 0.9903 0.829
Meteosat-7 1.0000 0.918

using the following parameters:

slope =−0.023yr−1

α= 0.000250day−1

β= 0.750000

γ= 0.000100µm−1day−1.

Figure 5.19(b) shows these new ageing corrected time series, where, this time,
the Meteosat-6 data connect reasonably with the others.

Small shifts are still present in the bright desert time series (which were used
for the calibration) of the full MFG database. This is due to the fact that the cal-
ibration coefficients of the SSCC method were extrapolated to launch using a
linear drift, while the spectral ageing model assumes an exponential change in
time. These small shifts are corrected for by normalising the bright desert time
series (and so also the calibration coefficients), based on the one of Meteosat-7.
Figure 5.19(c) shows the normalised time series, where the normalisation coef-
ficients are given in Table 5.3. This normalisation coefficient lies on average be-
tween 1 and 3%, and, as expected, the highest correction is done for Meteosat-5,
for which the time between launch and operations was the longest. The nor-
malised calibration coefficients are also added to Table 5.3, which are the cali-
bration coefficients from the SSCC method at launch (see Table 2.1), multiplied
by the normalisation coefficients.

The final model parameters used for each of the satellites in Figures 5.19(b)
and (c) are shown in Table 5.4. Having a look at the first column, it appears that
the slopes are quite variable from one satellite to the other, ranging from about -
0.9% up to -3.2% yr−1, where the two oldest instruments seem to have somewhat
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Table 5.4: For each satellite, the optimal values for the 4 model parameters, and
the square root of the minimised cost function (stddev).

Satellite slope (yr−1) α (day−110−3) β γ (µm−1day−1 stddev
10−3)

Meteosat-2 -0.017 ± 0.008 0.44 ± 0.34 0.90± 0.26 0.000 ± 0.000 0.023 ± 0.012
Meteosat-3 -0.009 ± 0.027 0.10 ± 0.29 0.75 (fixed) 0.000 ± 0.396 0.024 ± 0.047
Meteosat-4 -0.026 ± 0.002 0.28 ± 0.08 0.74 ± 0.15 0.049 ± 0.037 0.020 ± 0.014
Meteosat-5 -0.011 ± 0.001 0.12 ± 0.01 0.75 (fixed) 0.055 ± 0.020 0.017 ± 0.003
Meteosat-6 -0.023 ± 0.018 0.25 ± 0.05 0.75 (fixed) 0.100 ± 0.025 0.030 ± 0.001
Meteosat-7 -0.032 ± 0.002 0.37 ± 0.06 0.77 ± 0.02 0.074 ± 0.011 0.017 ± 0.011

smaller slopes than the two newest ones. When it was possible to derive them,
β values of about 0.75 were obtained, which represent the asymptotic sensitivity
in the ageing model. The higher value for Meteosat-2 (0.90) is characterised by
much more uncertainty, which is probably due to the 6-bit digitisation. For the
spectral ageing (column 5), relatively similar values are derived for Meteosat-4,
-5 and -7, where γ ranges between 0.000049 and 0.000074 µm day−1. In terms
of residual standard deviation, the most stable satellite data records after ageing
correction are the ones of Meteosat-5 and -7 (about 1.7% at 1σ). Due to the lack
of good deseasonalisation, a higher variance is observed for Meteosat-6 (3%). As
expected, higher standard deviations are observed for Meteosat-2 and -3 due to
the 6-bit digitisation.

From Figure 5.19(c), it is clear that the major trends in the time series have
been reduced through the ageing correction. This is confirmed by comparing
the values of the slopes before and after the correction in Table 5.5, where the
spectral ageing effect has been removed. Apart from Meteosat-2 and -3, all 6 time
series are now also at about the same level in Figure 5.19(c). For Meteosat-3 there
seems to be a difference in level for the convective clouds and the ocean when
comparing with the more recent satellites, while for Meteosat-2 this is mainly
the case for the vegetation and the ocean data. Part of this is due to the 6 to 8-bit
conversion of these two satellites. Even the lowest electrical currents, observed
by these two instruments, arrive at a digital count value of 1 (nothing smaller is
possible). On average, these values are more likely equal to about 0.5. In the 6
to 8-bit conversion, all values are multiplied by 4, so that in the 8-bit version, the
offset is equal to 4, but might be closer to 2 in reality (Y. Govaerts, pers. comm.,
September 2013). This effect is largest for the darkest surface types which reflect
the least visible radiation, like ocean and vegetation. By decreasing the offset,
the darkest time series shift upwards. This has been tested, and indeed, a bet-
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5.8. Discussion

Table 5.5: Table giving the amount in % per year that the slopes of fits through the
time series change for each MFG satellite before and after ageing correction, to-
gether with the standard deviation on these values. The explanation of how these
percentages and standard deviations are computed, is given in the Appendix.

Surface Meteosat-2 Meteosat-3
type Before After Before After

convective clouds -0.9411 ± 0.0489 -0.0678 ± 0.0477 -0.8336 ± 0.3232 0.0075 ± 0.3264
ocean -0.3510 ± 0.1219 0.1316 ± 0.1222 -0.7546 ± 0.3728 -0.1708 ± 0.3769

dark vegetation -0.7939 ± 0.0659 -0.0262 ± 0.0509 -2.1408 ± 0.2955 -1.4830 ± 0.2999
bright vegetation -0.5011 ± 0.0426 0.2081 ± 0.0436 -1.7529 ± 0.2232 -1.1043 ± 0.2293

dark desert -0.3485 ± 0.0474 0.4394 ± 0.0520 -1.6432 ± 0.2326 -0.9330 ± 0.2402
bright desert -0.5794 ± 0.0437 0.2440 ± 0.0464 -1.2364 ± 0.1558 -0.4679 ± 0.1625

Surface Meteosat-4 Meteosat-5
type Before After Before After

convective clouds -2.1375 ± 0.0652 -0.1832 ± 0.0649 -0.8667 ± 0.1033 0.1179 ± 0.1057
ocean -1.8306 ± 0.1168 0.0407 ± 0.1153 -1.4873 ± 0.1062 -0.6385 ± 0.1413

dark vegetation -1.1990 ± 0.0880 0.3420 ± 0.0958 -1.1213 ± 0.1158 -0.4815 ± 0.1169
bright vegetation -1.3130 ± 0.0733 0.2756 ± 0.0812 -1.0542 ± 0.0922 -0.3321 ± 0.0926

dark desert -1.5212 ± 0.0881 0.2430 ± 0.0939 -0.6019 ± 0.0894 0.2502 ± 0.0903
bright desert -1.7410 ± 0.0822 0.1453 ± 0.0868 -0.7289 ± 0.0708 0.2000 ± 0.0717

Surface Meteosat-6 Meteosat-7
type Before After Before After

convective clouds -0.9775 ± 0.6855 1.0503 ± 0.6779 -1.8838 ± 0.0293 -0.1016 ± 0.0261
ocean -2.2195 ± 0.7879 -0.3318 ± 0.7890 -2.0222 ± 0.0297 -0.3107 ± 0.0268

dark vegetation -1.5746 ± 0.6235 -0.3872 ± 0.6344 -1.4012 ± 0.0221 -0.1232 ± 0.0201
bright vegetation -1.5382 ± 0.4842 -0.1884 ± 0.5002 -1.4073 ± 0.0215 -0.0281 ± 0.0201

dark desert -1.3293 ± 0.5439 0.2368 ± 0.5553 -1.5427 ± 0.0226 0.01731 ± 0.0236
bright desert -1.0094 ± 0.2533 0.7208 ± 0.2620 -1.6924 ± 0.0195 -0.0026 ± 0.0209

ter agreement is observed, but it does not solve everything. Another important
issue is the pre-launch characterisation of the SR curves of these instruments.
If this characterisation was not done accurately enough, it could explain the
lower ocean and vegetation time series of Meteosat-2 and -3. However, the in-
vestigation is difficult due to the loss of information in the signal quantification
of 6 bits. In the next chapter, a study is performed on the Meteosat-7 VIS SR
curve at launch, where evidence is shown of a similar, though probably much
smaller, problem with the pre-launch characterisation. For the newer satellites
(Meteosat-4 till -7), only the dark desert time series of Meteosat-6 is still lower
than the others, which is due to the fact that it is difficult to find the right param-
eters for this satellite.

The overall standard deviation is computed for each scene type to check the
long-term stability of the time series. The values are shown in Table 5.6. In the
first column, only the data of Meteosat-4 up to 7 are used, as these have the least
differences from one satellite to another. The stability ranges here between about
0.9 and 1.6%. Adding Meteosat-2 and -3, leads to values between 0.9 and 6%, with
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Table 5.6: The standard deviation of the time series for the Meteosat-4 up to 7
satellites in the first column, and for the Meteosat-2 up to 7 satellites in the sec-
ond column.

Surface type Meteosat-4 – 7 Meteosat-2 – 7
(17 yrs) (24 yrs)

convective clouds 0.0123 0.0239
ocean 0.0167 0.0611

dark vegetation 0.0140 0.0437
bright vegetation 0.0120 0.0266

dark desert 0.0142 0.0230
bright desert 0.0098 0.0099

the largest ones for the dark scenes (ocean and dark vegetation), for all the rea-
sons explained before. Again, the time periods where the eruptions of El Chichón
and Pinatubo affect the data most, have not been used in these computations.

As a final step here, the SSCC method is applied to the same targets, in the
same way as was done before in Section 4.3.3, where the ocean data are corrected
for aerosols. Figure 5.19(d) shows the SSCC corrected time series. The difference
for the Meteosat-7 time series is most clearly visible, as explained before: there
is a slight bending in the time series corrected using the SSCC model, which is
removed by the exponential decay of the spectral ageing model, and the ocean
time series decrease more strongly in the SSCC corrected version. The latter is
most clearly the case for both Meteosat-6 and -7. Overall, the ocean time se-
ries of the Meteosat-4 to -7 satellites are also more connected at about the same
reflectance ratio value in Figure 5.19(c), which supports the need of a spectral
ageing model.
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Chapter Six

Pre-launch characterisation problem
of the Meteosat-7 visible spectral

response curve

The previous chapters have demonstrated a method to correct the Meteosat First
Generation (MFG) visible (VIS) data for spectral degradation by modelling the
decrease in time of the pre-launch spectral response (SR) curve in a non-uniform
way. As the spectral ageing model is based on this pre-launch SR curve, it is as-
sumed that the characterisation has been done accurately, and is thus trustwor-
thy enough to build a model on. However, the first MFG satellites have been
designed already in the seventies, using the at-that-time-available techniques to
measure the SRs of the three channels of the Meteosat Visible and Infrared Im-
agers (MVIRIs). Over the past years, doubts have arisen on the precision of these
measurements, leading to the need for further investigations. In this chapter,
a first step is taken by comparing the VIS Meteosat-7 data to the more recently
and accurately characterised high resolution visible (HRV) Meteosat-8 data. The
results shown in this chapter have been published in Decoster et al. (2013b).

6.1 INTRODUCING THE IDEA

As explained in Chapter 1, one way to do vicarious calibration of the VIS channel
of a space-born instrument that has no on-board calibration system, is to com-
pare the observed digital count (DC) of a site with a simulation of the radiance
that instrument would measure of that same site through that same VIS channel
(Koepke 1982b, Moulin et al. 1996, Govaerts et al. 2001). To simulate the radi-
ance of an instrument in a specific spectral channel, the SR curve of that instru-
ment’s channel needs be taken into account as shown in Eq. (2.5). The precision
of the calibration coefficient that is calculated this way, is thus dependent on the
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Figure 6.1: The SR curves of the Meteosat-8 HRV channel and the Meteosat-7 VIS
channel.

precision of the SR measurement. Govaerts (1999) showed that the pre-launch
characterisation of the SR of the Meteosat-5 and -6 VIS bands leads to different
calibration coefficients for targets reflecting different amounts of solar radiation.
As the Meteosat radiometer responds linearly to the incoming radiance inten-
sity, at time t = 0, there should not be such a calibration difference. Since the
Meteosat-5 to -7 instruments have similar telescope optics, their silicon detec-
tors were produced in the same batch, and improved techniques were used to
measure the Meteosat-7 SR, Govaerts (1999) suggested to use the Meteosat-7 SR
curve for the characterisation of the VIS bands of Meteosat-5 and -6 also, as done
in the previous chapter. There is even more doubt about the correctness of the
pre-launch characterisations of the SRs of the Meteosat-2 to -4 imagers as they
were built even earlier than Meteosat-5 and -6.

In the second half of the nineties, the Meteosat Second Generation (MSG)
instruments were assembled. The Spinning Enhanced Visible and Infrared Im-
ager (SEVIRI) was built with 4 visible channels, of which 3 are very narrow and
1 is broader. The latter is called the HRV channel and was designed as the suc-
cessor of the MFG VIS channel. Even though similar telescope optics and sil-
icon detectors were used, the measured SR curves of the Meteosat-8 HRV and
the Meteosat-7 VIS channels still look different, especially in the blue part of
the spectrum (see Figure 6.1). In Section 1.2.2, it was already mentioned that
only part of the MFG VIS channels were characterised by the manufacturers be-
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Figure 6.2: The original pre-launch characterised SR curves of the Meteosat-8
HRV channel and the extrapolated version.

fore launch, while the rest was empirically extrapolated. The same is true for
the HRV channel of Meteosat-8 and -9, where the measured interval only goes
from 0.45 µm to 1.05 µm. Luckily, this was discovered before Meteosat-10 was
launched and it was still possible to characterise the SR for the full spectral re-
gion (0.378 µm – 1.302 µm). As all MSG detectors were made in the same batch,
it was possible to use the HRV SR curve of Meteosat-10 to extrapolate the ones of
Meteosat-8 and -9. Figure 6.2 shows the difference between the original and the
extrapolated SR curves for the Meteosat-8 HRV channel.

In this chapter, the HRV channel of the first of the MSG series, Meteosat-8,
is used as reference to validate the SR curve of the VIS channel of the last of the
MFG series, Meteosat-7. There are several reasons why the HRV curve is used to
compare with. First of all, as already said before, the MSG HRV channel is the
follow-up of the MFG VIS channel, with similar optics and detectors. According
to Govaerts et al. (2001), the MSG visible channels have also been significantly
better characterised (mean relative uncertainty of about 1%) than the VIS band
of the MFG radiometers. On top of that, as Meteosat-7 was part of the transi-
tion program between the first and second generation of Meteosat instruments,
an overlap was established between Meteosat-7 and -8, leading to 2 years of si-
multaneous observations when Meteosat-7 was operational at 0◦ longitude and
Meteosat-8 at 3.4◦ W. Finally, requirements were put on the MSG instrument sta-
bility, where the long-term drift of the VIS channels should not exceed 2 % of the
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maximum dynamic range (Govaerts & Clerici 2003). The limited ageing that is
present for Meteosat-8 is expected to still be linear during the first 2 years of op-
erations, and is accounted for as explained hereafter.

6.2 HRV DATA SELECTION

To validate the Meteosat-7 VIS SR curve with the one of the HRV channel of
Meteosat-8, the time series of both instruments are compared over the same
targets. The Meteosat-7 and -8 observations used, are the 1200 Universal Time
Convention (UTC) images for the overlap period when both instruments were
operational (February 2004 – July 2006). The Meteosat-7 data are treated in the
same way as before (Chapter 4), and similar steps are taken for the Meteosat-8
HRV dataset. This conversion from original DC images to reflectance ratio time
series is briefly repeated here for the latter.

In Section 2.2, it was explained how the MFG VIS images were reduced from
the original size of 5000×5000 pixels to 2500×2500 by taking the mean value in
boxes of 2×2 pixels. This means that the sampling distance at nadir was rescaled
from 2.5 km to 5 km. The original HRV images, with a size of 11136×5568 pixels,
were reduced to 2500×1250 pixels1 by averageing out the HRV pixels spatially to
the closest VIS pixel. These rescaled HRV images are first converted from DC to
radiance L. For Meteosat-8, the calibration coefficient and offset value of each
image can be found in its header. These values were changed over time by the
European Organization for the Exploitation of Meteorological Satellites (EUMET-
SAT) to adjust the data for ageing effects. In this study, the calibration coefficient
and offset values are kept constant, equal to the ones at launch. Next, the radi-
ance images are converted into reflectance ρ. The filtered solar irradiance (FSI)
used in this conversion is calculated in the same way as in Section 2.3, by inte-
grating the product of the solar spectral irradiance S(λ) and the HRV SR curve
φ(λ):

FSI =
∫

HRV
S(λ)φ(λ)dλ, (6.1)

where the integration is done over the full spectral range of the HRV channel.
Based on the Meteosat-8 reflectance images, cloudy and clear-sky targets are

selected for both Meteosat-7 and -8. As the HRV images only contain half of the
normal Meteosat FOV (see Figure 6.3), only half of the usual pixels is available
now. Using the 2 years of HRV images, 219 clear-sky sites are found, which are
also shown in Figure 6.3. This means that, for the 2 years of data available for

1The HRV field–of–view (FOV) is only half as wide as the normal Meteosat FOV, as shown in
Figure 6.3.
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Figure 6.3: The position of the 219 clear-sky targets in the 1200 UTC HRV FOV.

both Meteosat-7 and -8, 220 reflectance time series are created (219 clear-sky +
1 deep convective cloudy). The Meteosat-7 time series are converted from re-
flectance ρ to reflectance ratio r as shown in Section 2.6, correcting them for
ageing using the spectral ageing model and the model parameters from Table 4.2.
The Meteosat-8 time series are also converted into reflectance ratio using the ex-
act same simulations in the unfiltering, but without applying the spectral ageing
model, i.e. the SR curve is kept fixed at the pre-launch characterised one. By
comparing the unfiltered versions of the time series instead of the filtered ones,
it is possible to compare time series which are independent of their SR filters.
The step from unfiltered reflectance ρu to reflectance ratio r for Meteosat-8 is
the same as for Meteosat-7 (see Eq. (2.7)), using the same angular distribution
models (ADMs) to divide ρu with.

6.3 COMPARISON BETWEEN METEOSAT-7 AND -8

Figure 6.4(a) shows the 6 VIS reflectance ratio time series of Meteosat-7, while
Figure 6.4(b) shows the HRV time series of Meteosat-8. In the latter some ageing
is visible, mainly in the two desert time series. Assuming this ageing is approxi-
mately linear over the first few years of operation, to correct for this, a linear first
order fit is made through each of the 6 time series. The intercept of this fit at the
beginning of operation (February 2004) is the mean value the time series would
have if there would be no ageing present. The value of the intercept of each time
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Figure 6.4: Reflectance ratio time series for the 2 years of overlap for (a) Meteosat-
7 after ageing correction, and for (b) the original Meteosat-8 time series.

series is indicated in Figure 6.4(b) through horizontal lines2, each in the colour
of the corresponding scene type. It is the value of each of these intercepts that is
used as a reference for the Meteosat-7 time series in this chapter. By allowing dif-
ferent slopes for each scene type, the possibility of spectral ageing effects in the
HRV channel of Meteosat-8 is taken into account. The Meteosat-8 intercepts are
referred to as r̃M8 in the rest of this chapter. Similar linear first order fits are made
through the Meteosat-7 time series, where the intercepts of the fits are written as
r̃M7 and the slopes are very close to zero as the time series are already corrected
for ageing. The standard deviation s(r̃ ) on each intercept is calculated through
Eq. (A-1) in the Appendix.

As these intercepts represent the mean value of the non-degrading time se-
ries, the comparison study of the Meteosat-7 VIS and Meteosat-8 HRV SR curves,
is based on the intercepts of the corresponding time series of both instruments
as explained in the following.

6.3.1 RELATIVE INTERCEPT DIFFERENCES

For each different scene type, the relative intercept difference ∆r̃ /r̃ and its stan-
dard deviation, are calculated as

∆r̃

r̃
± s

(
∆r̃

r̃

)
= r̃M7 − r̃M8

r̃M8
± r̃M7 − r̃M8

r̃M8

√(
s(r̃M7)

r̃M7

)2

+
(

s(r̃M8)

r̃M8

)2

(6.2)

2Be careful, these are not fits, they just indicate the mean value the time series would have with-
out ageing.
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Figure 6.5: The Meteosat-7 time series expressed in reflectance ratio. The hori-
zontal lines show the value of the intercept of the Meteosat-8 time series, used
as reference. (a) Meteosat-7 SR curve with spectral ageing. (b) Meteosat-7 SR
curve with SSCC correction. (c) Meteosat-8 SR curve with spectral ageing. (d)
Meteosat-8 SR curve with SSCC correction.

where s(r̃M7) and s(r̃M8) are the standard deviations on the intercepts of the lin-
ear fits through respectively the Meteosat-7 and -8 time series of that scene type,
again calculated using Eq. (A-1).

In Figure 6.5(a), the same Meteosat-7 reflectance ratio time series are shown
as in Figure 6.4(a), but this time together with the horizontal lines from Fig-
ure 6.4(b), indicating the reference intercept values of Meteosat-8. From Fig-
ure 6.5(a), the intercept differences are clearly visible for each different scene
type. The ∆r̃ /r̃ values are given in the second column of Table 6.1 for all 6 scene
types, together with their standard deviations. It can be seen that the discrep-
ancies between Meteosat-7 and -8 lie between +5.3% (for the deep convective
clouds) and -8.7% (for clear ocean). For land surface, the difference in reflectance
ratio remains lower than 3%. In Table 6.1, also the mean bias 1/n

∑n
i=1∆r̃i /r̃i ,

mean absolute bias 1/n
∑n

i=1 |∆r̃i /r̃i |, and root mean square (RMS) of the inter-

cept differences
√

1/n
∑n

i=1(∆r̃i /r̃i −mean bias)2 are given, with n the number
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of time series. While the mean bias is almost equal to zero, the mean absolute
bias is equal to 3.5% and the root mean square to 4.5%.

In a second step, as a validation of the spectral ageing model, the Meteosat-
7 data are now corrected for ageing using the SSCC method of Govaerts et al.
(2004) instead of the spectral ageing model. This is done in the same way as was
explained in Section 4.3.3. The resulting Meteosat-7 time series are shown in Fig-
ure 6.5 (b), again with the Meteosat-8 intercepts as reference on top of it. In Sec-
tion 4.3.3 it was already shown that the ocean time series are not corrected well
enough using the SSCC correction. This is clear here too, as the difference be-
tween the Meteosat-7 ocean time series and the Meteosat-8 reference is even big-
ger when corrected with the SSCC method instead of the spectral ageing model.
In the third column of Table 6.1, the values for these intercept differences for
the SSCC corrected time series are shown, together with their standard devia-
tions. Comparing the bias and RMS values from the first and second columns
shows that the use of the spectral ageing model leads to a better agreement be-
tween Meteosat-7 and Meteosat-8. The higher values using the SSCC method
are explained both by the fact that a linear decrease in signal is assumed instead
of an exponential one, and by the non-correction of the spectral component of
the ageing. Whichever ageing correction method is used, however, the ocean
and the cloud signal are clearly lower and higher, respectively, than the corre-
sponding Meteosat-8 values. This could be an indication of an overestimation
of the instrument’s sensitivity in the shortest wavelengths (explaining the neg-
ative ocean difference) and an underestimation in the middle of the VIS band
(explaining the positive cloud difference). As the Meteosat-7 SR curve has only
been characterised in the 0.5 – 0.9µm interval, and the rest has been extrapo-
lated, it is not surprising that this extrapolation might not be correct and could
be the cause of the strong differences between Meteosat-7 and -8 in the blue part
of the spectrum.

The Meteosat-7 VIS channel and Meteosat-8 HRV channel were built very
similarly. For that reason, the Meteosat-7 VIS SR curve is now replaced by the
Meteosat-8 HRV curve to see if this improves the results. As the Meteosat-8 SR
curve is narrower than the one of Meteosat-7, the calibration coefficient is mul-
tiplied by the ratio of the band integrated solar irradiation for both filters (0.85).
This means that the FSI using the Meteosat-8 HRV SR curve is divided by the FSI
using the Meteosat-7 VIS SR curve at launch. The resulting time series are shown
in Figure 6.5(c) and 6.5(d), where the Meteosat-7 data have been corrected for
ageing using the spectral ageing model and the SSCC correction method, re-
spectively. The intercept differences and their standard deviations are given in
the fourth and fifth column of Table 6.1. Replacing the Meteosat-7 SR curve with
the one of Meteosat-8, clearly improves the consistency between the two instru-
ments. For the spectral ageing model, the replacement decreases the RMS from
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4.5% to 2.1%. A similar improvement is observed for the mean absolute bias.
Over the 6 scene types, the discrepancy between Meteosat-7 and 8 is now in the
range of +3.1% to -3.7%. Using the SSCC method, replacing the Meteosat-7 SR
curve with the Meteosat-8 curve leads to the same improvement, though slightly
less. Interestingly, it can be seen from Figure 6.2 that the pre-launch SR curve of
the Meteosat-7 VIS channel presents a higher sensitivity in the blue (around 0.4
µm) and a lower sensitivity in the center of the channel (0.6 – 0.8µm) when com-
pared to the curve of the Meteosat-8 HRV channel, which confirms the idea of a
possible overestimation of the pre-launch Meteosat-7 SR curve at the shortest
wavelengths and an underestimation in the middle of the curve.

6.3.2 CALCULATION OF METHOD UNCERTAINTY

The four major sources contributing to the uncertainty on ∆r̃ /r̃ are: i) an un-
certainty εu introduced by the unfiltering, ii) the relative standard deviation on
the relative intercept differences, εr, iii) the uncertainty on the Meteosat-8 HRV
SR curve, εs, and finally, iv) the uncertainty εa due to the ageing method used to
correct the Meteosat-7 data.

First of all, the relative uncertainty εu, introduced by the conversion from
filtered to unfiltered radiances (Eq. (2.4)), is calculated. The conversion itself in-
troduces uncertainties of about 4% for both Meteosat-7 and -8. This is calculated
as follows. To be able to find the unfiltering coefficients a and b in Eq. (2.4), fil-
tered and unfiltered radiances are computed from simulations (Eqs. (2.5) and
(2.6)), where the filtered radiances take into account the SR curve of both instru-
ments. These simulated radiances are converted into reflectances, and then for
both Meteosat-7 and -8, the regressions are fitted to get the (a7,b7) and (a8,b8)
coefficients respectively. The uncertainty on the conversion is then the differ-
ence between the simulated unfiltered radiances (ρu) used to do the fitting, and
the calculated unfiltered radiances for both Meteosat-7 and -8 (ρu,7 and ρu,8),
computed from the observations using the fitted (a7,b7) and (a8,b8) coefficients.
This results in:

σ7 =
√

1

m

m∑
i=1

(ρi (u,7) −ρi (u))2 (6.3)

σ8 =
√

1

m

m∑
i=1

(ρi (u,8) −ρi (u))2 (6.4)

where σ7 is the standard deviation calculated for the Meteosat-7 VIS data, σ8

is the standard deviation calculated for the Meteosat-8 HRV data, and m is the
number of data points used, which is the same for both time series. The values
of the relative uncertainties εu7 and εu8 (divided by the mean of the calculated
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Scene type εu7 εu8 εu εs

Clouds 3.66 3.78 0.17 0.35
Ocean 2.71 3.46 0.87 0.94

Dark vegetation 3.46 3.46 0.75 0.45
Bright vegetation 4.27 4.18 1.26 0.24

Dark desert 4.59 4.67 0.74 0.20
Bright desert 4.15 4.18 0.53 0.27

Mean 3.81 3.95 0.72 0.42

Table 6.2: The relative standard deviations on the different sources of uncertainty
in this method, expressed in percentage.

Meteosat-7 unfiltered reflectances) are given in columns 2 and 3 of Table 6.2 for
the different scene types. In this chapter, however, it is not the reflectance it-
self that is being used, but the difference between the Meteosat-7 and -8 values.
As the uncertainties of both instruments are highly correlated because their SR
curves are so alike, only about 0.7% of standard deviation remains in the differ-
ence in reflectance ratio ∆r̃ /r̃ , calculated as

σ78 =
√

1

m

m∑
i=1

(ρi (u,7) −ρi (u,8))2 (6.5)

where σ78 is the standard deviation on the difference of the Meteosat-7 and -8
reflectance values. The relative standard deviation εu (σ78 / 〈ρi (u,7)〉) is given in
the fourth column of Table 6.2 for the 6 different time series.

The relative standard deviations on the intercepts of Meteosat-7 and -8 were
already computed before and shown in Table 6.1. These values were computed
with Eq. (A-1), leading to the values s(r̃M7) and s(r̃M8) for Meteosat-7 and -8 re-
spectively. Using Eq. (6.2), these standard deviations are converted into the rel-
ative standard deviation εr on the relative intercept difference. As these uncer-
tainties are small compared to the other contributions, the maximum value is
used in this uncertainty budget, εr = 0.04%.

An extra uncertainty εs is introduced by the Meteosat-8 HRV SR characteri-
sation. Govaerts et al. (2001) gives the uncertainty on the 4 SEVIRI VIS channels,
including the HRV. This shows that there is a maximum uncertainty of 2% on the
HRV SR curve. The effect on ∆r̃ /r̃ is calculated by adding this uncertainty to the
HRV SR curve and comparing the results with the original one. The uncertainty
is added to the SR curve by multiplying the left half of the curve with 1.02 and
the right half with 0.98. This way, for bright desert (the target used for the cal-
ibration), the same amount of energy is observed, but the calibration does not
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annihilate the effect of adding the uncertainty. To find the uncertainty this in-
troduces for the relative intercept difference, the filtered radiances are simulated
for both the original HRV SR curve (Lf) and the one with the added uncertainty
of 2% (Lf+unc). The unfiltering then leads to different a and b coefficients for
both versions of the SR curves, and thus the observed filtered reflectances will be
converted into different unfiltered reflectances: ρu for the original SR curve and
ρu+unc for the one with the added uncertainty. This difference then results in the
standard deviation σ

σ=
√

1

m

m∑
i=1

(ρi (u) −ρi (u+unc))2 (6.6)

where m is the number of data points. The relative uncertainty values εs are given
in the fourth column in Table 6.2 for each different time series.

Finally, from the fifth and sixth columns of Table 4.1, it can be seen that the
residual drift of the Meteosat-7 time series is evaluated as better than 0.17% yr−1

for the spectral ageing model, and 0.62% yr−1 for the SSCC correction. This
means that the maximum uncertainty εa due to the spectral ageing model is
about 1% after 6 years and for the SSCC correction about 3.7%.

The four uncertainty sources are combined using the root square (ε =√
ε2

u +ε2
r +ε2

s +ε2
a), and are shown in Table 6.3. The combined uncertainty, ap-

proximately 1.4% using the spectral ageing model, and 3.8% using the SSCC cor-
rection, represents the total uncertainty on the methodology used in this chap-
ter. When using the spectral ageing model in the comparison, the RMS of the
relative intercept differences are still higher than the total uncertainty of 1.4%, so
that the observed differences between the Meteosat-7 and -8 time series must be
attributed to the pre-launch Meteosat-7 SR characterisation φ(λ,0). The same is
valid using the SSCC method.

6.3.3 SENSITIVITY TO SCENE TYPE DEFINITION

As an additional verification, the 219 clear-sky targets are regrouped into 10
time series, representing 10 of the 17 surface types from the International Geo-
sphere / Biosphere Programme (IGBP). The relative intercept differences be-
tween Meteosat-7 and 8 for these 10 clear-sky + 1 cloudy time series are pro-
vided in Table 6.4, where the exact same process was done as before, switch-
ing between the spectral ageing model and the SSCC correction and using the
Meteosat-7 VIS SR curve and the Meteosat-8 HRV SR curve. The same cloudy
time series was used as before, and, as the clear-sky targets are still the same and
there is only one type of ocean in the IGBP system, the ocean time series also
has not changed. The RMS differences are all slightly smaller than they were us-
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6.3. Comparison between Meteosat-7 and -8

Scene type spectral ageing model SSCC method

Clouds 1.07 3.72
Ocean 1.63 3.91

Dark vegetation 1.33 3.80
Bright vegetation 1.63 3.92

Dark desert 1.26 3.78
Bright desert 1.16 3.75

Mean 1.35 3.81

Table 6.3: The total uncertainty on the method, expressed in percentage, for both
the spectral ageing model and the SSCC method.

ing the Clouds and Earth’s Radiant Energy System (CERES) subdivision, which
might point to the fact that 5 clear-sky surface types are not enough to represent
the Meteosat FOV.
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Chapter Seven

Conclusions and future prospects

7.1 CONCLUSIONS

Validation of the official SEVIRI Solar Channel Calibration (SSCC) of the visible
(VIS) channel of the Meteosat Visible and Infrared Imagers (MVIRIs) onboard
the Meteosat First Generation (MFG) satellites, has proven the need of a spec-
tral component for the in-flight degradation correction. This work presents a
spectral ageing model which simulates the degradation induced decrease of the
spectral response (SR) of these imagers. Based on 3 parameters, the model allows
the SR curve, as it was characterised before launch, to decrease exponentially in
time and linearly in wavelength, with a stronger component in the short wave-
lengths than the longer ones. The model parameters quantify for each satellite
how strong the degradation is. To find the values of these parameters, a large
amount of time series with different spectral characteristics are used. Each of
these time series is created for a target, selected in the Meteosat field–of–view
(FOV), with a low variability in time. The best set of model parameters then al-
lows the spectral ageing model to explain the degradation of the VIS MVIRI data.

A theoretical comparison study is done for Meteosat-7, based on simulations,
showing the difference between the spectral ageing model and the current offi-
cial SSCC method for five different essential climate variables (ECVs). The dif-
ference between both degradation correction methods is largest for the retrieval
of background aerosol optical depth (AOD) over ocean, land surface albedo over
vegetation and broadband radiances over clear-sky land and ocean surfaces. For
these ECVs, biases were estimated between 2 and 5% after 8 years of in-flight
degradation. The three main conclusions coming out of this study are the fol-
lowing. First of all, the effect of using one method instead of the other is opposite
over clear ocean than clear land due to the presence (or absence) of the spectral
component in the spectral ageing correction (or SSCC correction). A second ef-
fect is introduced by the difference in degradation rate for both methods, lead-
ing to an overall bias for scene types reflecting over the full VIS wavelength range
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(clouds and clear-sky land). Finally, the use of variables where the effect of clear-
sky radiances has been subtracted from, results in a decrease of bias (e.g. cloud
cover index).

Next, the model is applied to the full VIS MFG database (Meteosat-2 till 7).
Some additional problems were encountered during the process, e.g. the vol-
canic eruptions of El Chichón (Meteosat-2) and Pinatubo (Meteosat-4), and the
6-bit digitisation and saturation for Meteosat-2 and -3. The effect of volcanic
aerosols over ocean was partly compensated for using the AOD dataset from the
Global Aerosol Climatology Project (GACP). Except for Meteosat-6, the Powell
minimisation method was able to find model parameters for all MFG satellites,
even though for Meteosat-2 and -3 it was not possible to quantify the spectral
degradation. For Meteosat-6, parameters were found by comparing the time se-
ries to the ones of Meteosat-5 and -7 instead. The resulting long-term stability
in the corrected time series is equal to about 1–2% for Meteosat-4 up to -7, but
increases up to 6% when adding the Meteosat-2 and -3 time series. The reason
for this increase is a combination of the signal digitisation on only 6 bits, which
affected the offset and thus the time series of the darkest scene types, and a pre-
launch SR characterisation with a significantly larger uncertainty, affecting the
ocean and/or cloudy time series. As long as the 6-bit digitisation problem and
the saturation are not corrected, it is not recommended to use the Meteosat-2
and -3 time series in fundamental climate data records (FCDRs) and thematic
climate data records (TCDRs) for the VIS channel. Preliminary investigations
have been done for the digitisation problem by adjusting the offset of these two
satellites. This shows that it is possible to improve the results this way, but that it
is not sufficient, probably due to the lack of a good SR characterisation.

Finally, a side-track was taken to investigate a possible future study on the
accuracy of the pre-launch characterised SR curves of the VIS channel of the
MVIRI instruments. The simultaneous observation time series (2004–2006) of
the Meteosat-7 VIS and Meteosat-8 high resolution visible (HRV) channels have
been compared to validate the Meteosat-7 VIS SR curve. Although the overall
agreement is good, differences are observed when looking at individual scene
types. Using the official pre-launch characterised SR curve of Meteosat-7 and
the SSCC calibration, the root mean square (RMS) of the difference is 5.2% be-
tween the two satellites. Using the spectral ageing model instead, this RMS de-
creases to 4.5%. Given that the comparison methodology uncertainty is about
1.4% for the spectral ageing model, this indicates that there is a problem with the
pre-launch characterisation of the Meteosat-7 SR curve. Better agreements are
obtained when replacing the Meteosat-7 SR curve by the one of Meteosat-8. In
this case, the RMS is reduced to 2.1% with the spectral ageing model. This indi-
cates that the SR of the Meteosat-7 VIS band could be better represented by the
SR curve of the Meteosat-8 HRV channel.
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7.2 FUTURE PROSPECTS

7.2.1 GENERATE TCDRS AND FCDR

The spectral ageing model can be used to derive FCDRs and TCDRs from the Me-
teosat data in different ways. In this work, the unfiltering has been done using a
SR curve equal to 1 over the full wavelength region. This is useful for the top of
the atmosphere (TOA) radiation TCDR of the full MVIRI VIS dataset. Instead of
doing a theoretical unfiltering using simulations, it is also possible to empirically
derive the unfiltering relation from the unfiltered Geostationary Earth Radiation
Budget (GERB) shortwave (SW) data and the (filtered) Meteosat-7 VIS data for
the overlap period from 2004 until 2006. This empirical unfiltering will be used
in the near future to create the MVIRI TCDR for the Climate Monitoring Satel-
lite Application Facility (CM SAF). Another way to use the model could be to do
the unfiltering using a reference SR curve like, for example, the Meteosat-7 pre-
launch characterised SR, or the Meteosat-8 HRV SR curve. This will create a sta-
ble record of Meteosat images. As, with respect to the original level 1.5 images,
the ageing corrections will be small, in this case it might be better to express the
TCDRs of TOA radiation in reflectance ρ instead of digital count (DC). This way,
the discretisation effect will disappear, and the ageing correction will be done in
floating point. Finally, the spectral ageing model can also be provided in its raw
format, with the right model parameters for each satellite. Even though this is
more complicated for the user, the model can be applied to create look-up ta-
bles (LUTs) that vary in time for ECV retrieval of, for example, aerosol properties,
or cloud properties where the full corrected images are not necessary (see Sec-
tion 4.4).

7.2.2 IMPROVE THE METEOSAT-2 AND -3 RESULTS

From the conclusions it was clear that several problems hamper the use of the
original version of the VIS Meteosat-2 and -3 dataset (digitisation, saturation, SR
characterisation). The digitisation problem is worst for the darkest scenes (i.e.
ocean and dark vegetation), which makes it difficult to derive, for example, AOD
over ocean. The TOA radiation product of CM SAF is less sensitive to this dark
signal, so in an iterative process the offset will be tuned to get the best overall
agreement and the most stable dataset. As this product will be delivered as daily
and monthly means, the effect of the digitisation will probably be significantly
reduced. The saturation problem could be dealt with by correcting the saturated
pixel values for the calibration difference (see Section 5.1.4).
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7.2.3 IMPROVE PRE-LAUNCH SR CURVE CHARACTERISATION

When creating climate data records, for now, it is suggested for Meteosat-7 to re-
place the pre-launch SR curve with the one of the Meteosat-8 HRV channel to
have a better interpretation of the Meteosat-7 data record and to improve the
consistency with Meteosat-8. It would, however, be better to actually correct the
pre-launch SR curve of Meteosat-7. For this, the SCanning Imaging Absorption
spectrometer for Atmospheric CHartographY (Sciamachy) could be used as a ref-
erence source. This spectroradiometer takes spectra of the Earth in a polar orbit
through 8 channels. Sciamachy was operational between 2002 and 2012, and so
it could be used to check the SR curves of Meteosat-5 and -6 (using Indian Ocean
data coverage (IODC) data) and Meteosat-7. This could be done in the following
way. For a certain site,

LSc =
∫

LSc(λ)φMFG(λ, t )dλ (7.1)

could be compared with the observed MVIRI radiance LMFG. In this equation,
LSc(λ) is the spectral radiance derived from the Sciamachy measurements and
φMFG(λ, t ) is the spectral degradation model. Any differences between these val-
ues, must come from the SR curve used in Eq. (7.1), and this way an optimisation
of the shape of the SR could in theory be feasible. Such a study could either
be based on a set of SR curves for similar instruments like Geostationary Opera-
tional Environmental Satellites (GOES), Meteosat Second Generation (MSG)HRV
channel, etc., or on a gaussian shape by adjusting some parameters.
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Appendix

To determine how strong a time series is degrading in time, residual or original,
a least squares fit is made. As the degradation can be approximated by a linear
function, these fits have the form

f (t ) = a +b t

where a is the intercept of the fit and b is the slope (yr−1). What is most inter-
esting to know about degrading time series is their relative slope. Expressed in
percentage per year, the relative slope of f (t ) is equal to

∆ f (t ) = 100×b

a
.

To know the precision of ∆ f (t ), its standard deviation is calculated through the
standard deviations of a and b. Following Kutner et al. (2005), the standard devi-
ation on the intercept and slope are given by

σ(a) =σ
√√√√√√ 1

n
+ X̄ 2

n∑
i=1

(
Xi − X̄

)2
(A-1)

σ(b) = σ√
n∑

i=1

(
Xi − X̄

)2

(A-2)

respectively, whereσ is the standard deviation of the fit through the time series, n
is the number of data points in the time series, and i runs over the n data points.
Through the rules of error propagation of a division, the standard deviation of
∆ f (t ) is equal to

σ(∆ f (t )) =∆ f (t )

√(
σ(a)

a

)2

+
(
σ(b)

b

)2

(A-3)

by filling in Equations (A-1) and (A-2).
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