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Figure 1: Division into susbsystems of the RMIB GERB Processing. The three blocks 'RGS
SEVIRI Processing', 'RGS GERB Processing' and 'RGS Resolution Enhancement' are executed
in sequential order.

1 Introduction

1.1 Scope of this document

This document gives a development strategy overview of the subsystem �Resolution Enhancement�
of the RMIB part of the GERB Ground segment Processing (RGP), and describes brie�y the �nal
implementation.

Final implementation based on several tests on simulated and real Eumetsat images, is de-
scribed in annexes.

1.2 Role of the Resolution Enhancement within the RGS

The RMIB part of the GERB ground segment consists in total of three subsytems: 'RMIB SEVIRI
procesing', 'RMIB GERB processing' and 'Resolution Enhancement', to be executed in sequential
order. An RGP overview is described in more detail indocument MSG-RMIB-GE-TN-0004[4]. See
also �gure 1.

The subsytem 'RGS SEVIRI Processing' has as input full resolution SEVIRI spectrally nar-
rowband radiances and as output SEVIRI pixel resolution �ltered radiance estimates and broad-
band un�ltered estimates. Those outputs are referred to as 'high resolution SEVIRI based
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products'[?][6][7].
The subsystem 'RGS GERB Processing' has as input the GERB measured �ltered broadband

radiances as well as the high resolution SEVIRI based products, and as output GERB broadband
un�ltered �uxes. Those outputs are referred to as 'level 2 GERB resolution �uxes'[5].

The subsystem ' Resolution Enhancement' has as input the high resolution SEVIRI based �ux
estimates and the level 2 GERB resolution �uxes and as output high resolution �uxes that are
compatible with the level 2 GERB resolution �uxes. Those outputs are referred to as 'level 2 high
resolution �uxes'.

1.3 Description of the Resolution Enhancement problem (or processing
requirements)

The purpose of the RE process is to enhance the level 2 GERB �uxes resolution (GxG=256x256
pixels) to the high resolution SEVIRI (SxS=1233x1233 pixels) by use of SEVIRI �uxes estimation.

Let's denote :

1. F̃HR(i, j) the high resolution SEVIRI based �ux estimates, issued from the subsytem 'RGS
SEVIRI Processing', and de�ned at each SEVIRI pixel (i,j),

2. FL2
LR(x, y)the low resolution GERB L20-product �ux, issued from the subsystem'RGS GERB

Processing', and de�ned at each GERB pixel (x, y),

3. P d(i, j) the Point Spread Function (PSF)at pixel (i,j) for detector d.

In an ideal case, the down sampling of the high resolution measurement, weightened by the PSF,
should reproduce the low resolution measurement. We should have :

FL2
LR(x, y) =

∑
ixy

∑
jxy

[P d(i, j) F̃HR(i, j)]

where ixy, jx,ysweep the PSF area ({x-P,x+P} and {y-P,y+P}).
In reality this equality is not veri�ed, because the calibration quality, and the scanning time

interval, of both instruments, GERB and SEVIRI, are di�erent.
Forgetting time correlation problem that will be discussed in the next section1.4, the main aim

of the RE processing will be to �nd correction factor cS(i, j) to the high resolution SEVIRI based
�ux estimates F̃HR(i, j), so that the integration of the corrected �ux estimates does reproduce the
low resolution GERB L20-product �ux FL2

LR(x, y). We would like to satisfy, at each GERB pixel
(x, y),the condition :

FL2
LR(x, y) =

∑
ixy

∑
jxy

[P d(i, j) cS(i, j) F̃HR(i, j)]

These conditions can be seen as G2linear equations (one for every low resolution pixel(x,y)) in
the S2unknowns cS(i, j) (one unknown for every high resolution pixel (i,j)). Clearly, this set of
equations has more than one possible solution. In order to obtain a practical solution, di�erent
strategy were designed (see section 2).

1.4 Time concern in the Resolution Enhancement.

GERB and SEVIRI instruments do not scan Earth neither at the same time intervals, nor in
the same way. The GERB instrument takes 2 images of the Earth (1 Short Wave and 1 Total
Wave) each 5 minutes 14 secondes, columns by columns, while SEVIRI instrument scans Earth,
3 lines by 3 lines, each 15 minutes. Consequently, scanning time according to SEVIRI based data
F̃HR(i, j) and GERB based data FL2

LR(x, y) are di�erent. It's necessary to temporally match these
data before any comparison or combination. Since we decide to execute the core of the Resolution
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Enhancement at GERB acquisition time, this core process will be preceeded and followed by time
matching operations.(see next scheme)

First, SEVIRI data are interpollated at GERB acquisition time t = tG.
Secondly, the main job of the resolution enhancement, the estimation of correction factor is

computed at GERB acquisition time.
Third, in order to produce a �nal output according to SEVIRI acquisition time, a weighted

average for a 15 minutes interval centered on the SEVIRI acquisition time tS , is worked out.
Actually, only the correction factor is averaged, and then multiplied to the high resolution SEVIRI
based �ux estimation at SEVIRI acquisition time tS . So the resulting corrected high resolution
�ux is a `snapshot' �ux instead of a real average �ux.

Process
Enhancement
Resolution

averaging
time 

interpolation
time

= every 15 min
At SEVIRI time

= every 5 min
At GERB time

GERB CG
L2

SEVIRI

L2_flux
at SEVIRI
resolution

*
cS

Correction factors
at Seviri resolution

and fluxes 
radiances
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 radiances
(fluxes)

• First, SEVIRI data are interpollated at GERB acquisition time t = tG.

• Secondly, the main job of the resolution enhancement, the estimation of correction factor is
computed at GERB acquisition time.

• Third, in order to produce a �nal output according to SEVIRI acquisition time, a weighted
average of the correction factor for a 15 minutes interval centered on the SEVIRI acquisition
time tS , is worked out.

• Finally, corrected (or level 2) high resolution �ux according to SEVIRI acquisition time
is obtained from multiplication of the time averaged correction factor by the input high
resolution SEVIRI based �ux estimation.
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Figure 2: Triangular geolocation-based interpolation.
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Actually, time interpolation of SEVIRI based �ux estimation at SEVIRI time to GERB time is
already computed and saved on disk in the subsystem �RMIB GERB processing�. This step is,
then, out of concern in the RE subsystem.

We think more practical to divide the RE subsystem in 2 processes :

1. The �rst process is the core of the Resolution Enhancement system, described in section4,
and will give as output the high (or SEVIRI) resolution correction factor at GERB time :
cS(i, j, tg) .

2. The second process, described in section 5, will average these estimations at GERB time
to SEVIRI time, and then compute the �nal output, the L2 high resolution corrected �ux
averaged at SEVIRI time FL2

HR(i, j, ts).

2 PROCESSING DEVELOPMENT STRATEGY

2.1 Linear system resolution approach

The �rst resolution approach is to convert conditions1.3 into a set of G2equations in G2 unknowns.
Following this idea, we introduce, CG(x, y), one unknown correction factor per GERB pixel (x,y).
And we impose as extra condition on the high resolution correction factors cS(i, j) they are
interpolated values of the low resolution correction factors CG(x, y) :

cS(i, j) =
3∑

k=1

I∆(i, j, xk, yk) CG(xk, yk) =
∑
x′

∑
y′

I∆(i, j, x′, y′) CG(x′, y′)

As a baseline, we use a triangular geolocation-based interpolation function : I∆(i, j, x′, y′).
More precisely, correction factor at SEVIRI pixel (i,j) is an interpolation of correction factor

values at 3 GERB pixels ((x′, y′) = (xk, yk) with k = 1, 2, 3) surrounding, in geolocation terms,
the considered SEVIRI pixel. The 3 GERB pixels ((xk, yk) with k = 1, 2, 3) are chosen among 5
GERB pixels : the closest (in geolocation terms) pixel, and its 4 direct neighbours.( see �g 2)

Substituting the extra condition in the undetermined set of equations, we obtain a linear system
of G2equations in the G2 unknowns CG(x, y).

FL2
LR(x, y) =

∑
ixy

∑
jxy

P d(i, j)

∑
x′

∑
y′

I∆(i, j, x′, y′).CG(x′, y′)

 F̃HR(i, j)


This set of equations can be written in matrix form as F = MC, where F is the vector of

elements FL2
LR(x, y), C is the vector of elements CG(x, y), and M is the matrix of elements :
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M [(x, y), (x′, y′)] =
∑
ixy

∑
jxy

[
P d(i, j) I∆(i, j, x′, y′) F̃HR(i, j)

]
From a theoretical point of view, the vector C can be obtained by inverting M matrix : C =

M−1F
Once the low resolution factors CG(x, y) are known, the high resolution factor cS(i, j) can be

calculated using interpolation relation 2.1.
But from a practical point of view, full storage and explicit inversion of matrix M ( of size

2562*2562> 4.109) is unconceivable.
Looking forward to the M coe�cients, we remark M is a matrix with a diagonal band struc-

ture. The resolution of C = M−1F seen as a diagonal system of linear equations, using LU
decomposition[2], was tested at lower scale (i.e. with G2= 4000 unknowns). The computing time,
of about 30 minutes at this lower scale, demonstrates us extrapolation to real scale system is barely
conceivable.

As an alternative approach, we will try to compute the corrections CG(x, y)and cS(i, j) by an
iterative process.

2.2 Iterative approach

Aiming to solve the linear system F = MC by avoiding explicit inversion of matrix M, a iterative
approach is followed. At the k'th step of the iteration one has the approximations CG(x, y) ∼=
CG(k)(x, y) and cS(i, j) ∼= cS(k)(i, j)

Condition 1.3 can be re-written in terms of the sum of the current approximation plus a needed
extra correction :

FL2
LR(x, y) =

∑
i

∑
j

[P d(i, j) cS(k)(i, j) F̃HR(i, j)]+
∑

i

∑
j

[P d(i, j)
(
cS(i, j)− cS(k)(i, j)

)
F̃HR(i, j)]

Let's assume :
cS(ixy, jxy) =

∑3
k=1 I∆(i, j, xk, yk) CG(xk, yk) ∼= CG(x, y)

where (x, y)is the GERB pixel where the condition is considered.
The needed extra correction can be developed ;∑

ixy

∑
jxy

[P d
(
cS − cS(k)

)
F̃HR]

=
(
CG(x, y)− CG(k)(x, y)

) ∑
ixy

∑
jxy

[P d(i, j) F̃HR(i, j)]
After substitution, we �nd the iteration equation :

CG(k+1)(x, y) = CG(k)(x, y) +
FL2

LR(x, y)−
∑

i

∑
j [P

d(i, j) cS(k)(i, j) F̃HR(i, j)]∑
i

∑
j

[
P d(i, j) F̃HR(i, j)

]
The iteration recipe is as follows :

1. Start with CG(0)(x, y) and cS(0)(i, j)= interpolation of the CG(0)(x, y).

2. Apply the iteration equation 2.2 to calculate CG(k+1)(x, y) from CG(k)(x, y) and cS(k)(i, j).

3. Calculate cS(k+1)(i, j) by interpolating CG(k+1)(x, y).

4. Repeat the second and the third step until convergence criterion is reached.

Two iterative schemes were developed and tested, but have given the same disappointing results:
In the �rst algorithm, there is not storage of M matrix. The corrected �ux convolution is explicitely
computed, at each iteration, for every GERB point. In the second algorithm, the M coe�cient
are calculated and stored before the �rst iteration, then iterative correction of vector C, using
pre-conditioning matrix method, try to reach a better C estimation.
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For both algorithm, the iterations stop criterion is to reduce the maximal error on correlation
condition 1.3 below 1% :

MAXx,y

∣∣∣∣∣∣FL2
LR(x, y)−

∑
ixy

∑
jxy

[P d(i, j) cS(i, j) F̃HR(i, j)]

∣∣∣∣∣∣ < 0.01

Tested on simulated images (of size 900x900 for SEVIRI and 64x64 for GERB), these algorithms
lead to good results if the PSF area is smaller than 14 SEVIRI pixels, i.e. if there is not overlapping
of the in�uence of the low resolution factor CG(x, y) to the high resolution factor cS(i, j). But,
for PSF area of side size bigger than 14 (tested with 41), both iterative scheme versions start
with reducing error during the �rsts iterations, then diverge dangerously, far from the 1% error
requirement. Unfortunately, for the real GERB image, the PSF area overlaps more than one
GERB geolocation.

2.3 Lagragian approach

As the two �rst approaches were unsucceeful, we will try to design the Resolution Enhancement
problem as Generalised Lagrange function to minimise under 'm' constraints. This approach is,
�rst, described and tested on simpli�ed problem (see section 3). Successfull results encourage us
to implement the Lagragian methods on full or �real� problem (see section 4)

3 METHODOLOGYDESCRIPTION AND TESTING THROUGH

SIMPLIFIED APPROACH

3.1 Simpli�ed Problem Description

For the methodology explanation, only a simpli�ed version of the problem is considered. It is
expected that the essential features of the problem have been taken into account in order to allow
extrapolation to the real problem.

The original data are two images: a high resolution image (HRI) and a low resolution image
(LRI). The LRI is a low resolution version of the HRI. The two images are related by the simple
window average:

L(x, y) =
1

(2Nc + 1)(2Nl + 1)

∑
k=−Nl,..,Nl,l=−Nc,..,Nc

c(xSl + k, ySc + l)H(xSl + k, ySc + l) (1)

where Nc (Nl) is the window half-height (half-width), Sl (Sc) is the sampling distance between
lines (columns) and c is a correction factor that is unknown.

The correction factors c are unknown and have to be determined. They are not unique since the
problem is underdetermined (only one equality equation of type 1 for Sc∗Sl correction factors1). So
additional features must be added to de�ne what can be considered as a good solution. Constraints
in order to have a smooth correction image will be shown to be a good candidate. As simple
smoothing constraints:

1
2

∑
i,j

(c(i, j)− 1
8

∑
k,l=−1,..,1 6={0,0}

c(i + p, j + q))2 (2)

This constraints means that a correction factor must be the mean of its 8 neighbours. The
solution of this kind of constraints is a linear variation of the correction factors.

1The solution is trivial if the windows are not over-lapping. It is always considered that the windows overlap.
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3.2 Lagrange Minimization Methodology

Let f(x) a function to minimise under m constraints gi(x) = 0. This problem can be numerically
solved with a simple minimization method on the generalized Lagrange function (see [1]):

Λ(x, λ, r) = f(x) +
m∑

i=1

λigi(x) + r
m∑

i=1

[gi(x)]2 (3)

The λ parameters are the usual Lagrange parameters. The value of r can be chosen freely.
This last term takes into account the constraints even when the Lagrange parameters are null (see
below the �rst step of numerical solution).

The numerical iterative solution is the following:

1. start with λ null (or positive)

2. minimise the function 3 for x

3. update the Lagrange parameters with an iteration towards the maximum for λ, i.e. λk+1 =
λk + ρkg(xk) where g(xk) is the gradient for the Lagrange parameters and ρk depends on
the minimization method.

4. if stop test is veri�ed end else go to step 2

3.3 Application on simpli�ed problem

3.3.1 Generalized Lagrange Function

For the considered problem, the Generalized Lagrange function is:

Λ(c, λ, r) =
1
2

∑
i,j

[C(i, j)]2 +
∑
x,y

λx,yE(x, y) + r
∑
x,y

[E(x, y)]2

where

• (i, j) are the pixel coordinates in HR image,

• (x, y) are the pixel coordinates in LR image,

• C is the local di�erence between a value and its neighbours:

C(i, j) = c(i, j)− 1
8

∑
k,l=−1,..,1 6={0,0}

c(i + k, j + l)

• and the constraints are

E(x, y) =
1

(2Nc + 1)(2Nl + 1)

∑
k,l=−N,..,N

c(xSl + k, ySc + l)H(xSl + k, ySc + l)− L(x, y)
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3.3.2 Iterative equation

The gradient of correction factor c(p, q) is for the �rst term of Λ(c, λ, r):

δ1 = C(p, q)− 1
8

∑
m,n=−1,..,1 6={0,0}

C(p + m, q + n)

For the second term:

δ2 =
∑
x,y

λxy

 1
(2Nc + 1)(2Nl + 1)

∑
k,l|k+xSl=p,l+ySc=q

H(xSl + k, ySc + l)


For the last term

δ3 = 2r
∑
x,y

1
(2Nc + 1)(2Nl + 1)

∑
k,l|k+xSl=p,l+ySc=q

E(x, y)H(xSl + k, ySc + l)

A simple gradient can be applied on the correction factors:

ck+1 = ck − αc(δk
1 + δk

2 + δk
3 )

and on the Lagrange parameters:

λk+1
xy = λk

xy + αλE(x, y)

This method has some drawbacks in term of stability and scalability.
The gradients δ2, δ3 strongly depend on the number of terms in the sum. This number can be

di�erent and introduce strange behaviour in some areas during iterations. These areas depend on
the high-to-low window size. The correction factors values of these areas are converging slower. It
is always a good feature to have for every variable the same level of error and speed of convergence.
When the iteration process is stopped, the error is uniformly distributed. To avoid this problem,
δ2 and δ3 will be divided by the number of terms in their sum.

3.3.3 Stop tests

The stop test usually done is based on the updating value. What is important here is not the
error on the correction factor but the constraints validity and the smoothing factor. The chosen
tests are:

MAX

∣∣∣∣∣∣L(x, y)− 1
(2Nc + 1)(2Nl + 1)

∑
k=−Nl,..,Nl,l=−Nc,..,Nc

c(xSl + k, ySc + l)H(xSl + k, ySc + l)

∣∣∣∣∣∣ < εL

√
1

#c

∑
i,j

[C(i, j)]2 < εc

3.3.4 Initialisation

Starting from closer values to the solution improves dramatically the speed of convergence. A
good estimate can be obtained using the rough estimation:

c(i, j) = c(xSl, ySc) =
L(x, y)

1
(2Nc+1)(2Nl+1)

∑
k=−Nl,..,Nl,l=−Nc,..,Nc

H(xSl + k, ySc + l)

and bilinear interpolation for the other correction factors.
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3.4 Testing

Included in annex B.

3.5 Conclusion

Lagrangian approach succeeded to solve a simpli�ed Resolution Enhancement problem, applied
on simulated, as on Meteosat 7 images, using acceptable ressource. The extension to real RE
problem seems feasible.

Three features allowing to improve the algorithm are pointed out : First, it seems essential to
use initialisation. Second, it seems not useful to use the Lagrange parameters. Third, to lower
computing time, only pixels that are not verifying the end tests should be updated. For the
test on METEOSAT image, only 619 pixels (in low resolution) are not verifying the tests after
initialisation. So about only 2% of the data should be updated since the processing is local. A
good method should be to make some iterations on bad pixels and then one iteration on all the
pixels and so on.

These conclusions must be veri�ed on real con�guration problem ( and applied on real SEVIRI
images ).

4 IMPLEMENTATION ON REAL PROBLEM

4.1 Introduction

Let's summarize : The aim of the process main part is to �nd cS(i, j), the high ( or SEVIRI) res-
olution correction factor, correction to the high resolution SEVIRI based �ux estimates F̃HR(i, j),
so that the down sampling of the corrected �ux estimates does reproduce the low resolution GERB
L20-product �ux FL2

LR(x, y).
Comparing to the simpli�ed approach, we will now add the time dimension and take into

account of the geolocation di�erence.
Since the acquisition time frequency is not the same for the two instruments, the Resolution

Enhancement processing is divided in two parts. First, we will work at GERB acquisition time tg.
Secondly, we will working out a weighted average to get high resolution �ux at SEVIRI acquisition
time tS .

As explained in the last section, the �rst part of the Resolution Enhancement problem, the
search for the cS(i, j, tg), or the high SEVIRI resolution correction factor at GERB time, can be
seen as a problem of minimization of function under 'm' constraints.

4.2 Problem description

As explained in the simpli�ed approach, the main part of the Resolution Enhancement problem,
the search for the cS(i, j, tg), the SEVIRI or high resolution correction factor at GERB time, can
be seen as a problem of function minimization under 'm' constraints. The function to minimise
is an estimation of the roughness of the correction factors at high resolution cS(i,j). And the 'm'
constraints are the equalities between, the down sampling of the high resolution corrected �ux
estimates, and the low resolution GERB L20-product �uxes.

Let's denote :

1. (x, y) representing a GERB pixel,

2. (i, j) representing a SEVIRI pixel,

3. FL2
LR(x, y)the low resolution GERB L20-product �ux at GERB pixel (x, y),

4. (xS, yS)representing the SEVIRI pixel which geolocation is the closest from the GERB
pixel (x,y) geolocation (Indeed, any GERB pixel geolocation is assuming to match with any
SEVIRI pixel geolocation.
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5. P d(i, j) the Point Spread Function (PSF)at pixel (i,j) for detector d.

6. cS(i, j) the high ( or SEVIRI)resolution Correction factor at SEVIRI geolocated pixel (i,j).

7. m,n=1->N sweeping the PSF area ,

8. F̃HR(i, j) the high resolution SEVIRI based �ux estimates for pixel (i,j)

Following this notation, the correlation or equality constraint at GERB pixel (x, y) is written :

FL2
LR(x, y) =

N∑
m,n=1

[
P d=y(m,n) cS(xS + m, yS + n)F̃HR(xS + m, yS + n)

]
Since this relation should be checked at each GERB pixel (x, y), we have a number of constraints

equal to the number of GERB pixel : m = GERB_IMAGE_WIDTHx GERB_IMAGE_HEIGHT.
The function to minimize, the smoothing estimation function compares each correction factor

at high resolution cS(i,j) to the mean of its 8 neighbours :

function[cS(i, j)] =
1
2

∑
i,j

cS(i, j)− 1
8

∑
k,l=−1,1

(c(i + k, j + l))


Minimizing this function is equivalent to impose a linear variation to the correction factors

cS(i,j).

4.3 Generalized Lagrange function

The problem seen as a problem of minimization of function under 'm' constraints is then numeri-
cally solved using a simple iterative method of minimization of Generalized Lagrange Function.

For the considered real problem, the Generalized Lagrange Function is :

Λ(cS, r) =
1
2

∑
i,j

(
Cmean(i, j)2

)
+ r

∑
x,y

(
E(x, y)2

)
with
Cmean(i, j) = cS(i, j)− 1

8

∑
k,l=−1,1 (c(i + k, j + l))

E(x, y) =
∑N

m,n=1

[
P d=y(m,n) cS(xS + m, yS + n)F̃HR(xS + m, yS + n)

]
− FL2

LR(x, y)

4.4 Minimization iterative scheme

The method chosen to minimise the Generalized Lagrange Function is an iterative process based
on the gradient calculation :

1. Let's start with a �rst guess of the solution cS(k=0)

2. Calculate the Lagrangian gradient (at step k) : δΛ(k)(i, j) = ∂Λ
∂cS(k)(i,j)

3. Calculate next cS estimation : cS(k+1)(i, j) = cS(k)(i, j)− α δΛ(k)(i, j)

4. Go back to step 2 (k=k+1).

The choice of the step factor α is of major importance for the convergence speed of this process,
and will be discuss in a following section.

Let's develop the gradient of the Lagrange function (δΛ(i, j)), relative to the the correction
factor at pixel (i, j).

For the �rst term, we get :
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δ1 = δ
δcS(i,j)

∑
i,j

(
Cmean(i, j)2

)
= Cmean(i, j)− 1

8

∑
m,n=−1,1 (Cmean(i + m, j + n))

And for the second term, we have :
δ2 = δ

δcS(i,j)

∑
x,y

(
E(x, y)2

)
= 2

∑
x,y

(
E(x, y). δE(x,y)

δcS(i,j)

)
= 2

∑
x,y

(
E(x, y).F̃HR(i, j).P d=x(i− xS, j − yS

)
with x, y such as the corresponding xS is included in {i-N/2,i+N/2} and yS is included in

{j-N/2,j+N/2}
These developments allow us to write the Lagrangian gradient as a function of Cmean and E :

cS(k+1)(i, j) = cS(k)(i, j)− α
(
δ1(Cmean(k)) +

r

nb
δ2(E(k))

)
• where nb is the number of term in the sum

∑
x,y building up δ2. Indeed, we saw in the

simpli�ed approach, gradient δ2strongly depends of the number of term in the sum. And to
avoid scalability problem, it's important to renormalize this term.

• and where r is a ponderation factor aiming to balance importance between the 2 gradient
terms δ1and δ2. The choice of its value is explained in a following section (see 4.8).

4.5 Initialisation

As iterative scheme, this process requires the choice of good initial values cS(0). The closer to the
solution is this �rst solution guess, the faster is the convergence.

A good �rst estimation of cS(0)(i, j) value can be derived from the correction factor at GERB
resolution CG(x, y) computed in the GERB Processing, applying a bilinear interpolation.

cS(0)(i, j) =Bilinear interpolation of the 4th CG(x, y)surrounding pixel (i, j)
with CG(x, y) the low (or GERB)resolution Correction factor at GERB geolocated pixel (x,y).

4.6 Stop tests

The iterative process is stopped, meaning the updating value cS(k+1)(i, j) is estimated close enough
from one solution, when

the 2 following criteria are valid :
1. Test on the smoothing factor :

εS =

√∑
i,j (Cmean(i, j)2)

nb(Cmean)
< εrequired

S

2. Test the constraint validity :

εE = Maxx,y |E(x, y)| < εrequired
E

In the current processing version, the following values have been chosen :

εrequired
S 0.001

εrequired
E 0.01 ∗ Max(F̃HR)/2

4.7 Selection of parameter α

The α parameter de�nes the scale of the correction step and therefore is of preeminent concern
for the success of the iterative process.

Four methods to selectionnate α where implemented and compared :
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4.7.1 Method of constant step

The �rst one, the simplest, consist to choose α constant for all steps. The α value is �xed at the
�rst iteration such as corrections are all inferior to 1.5 %. More precisely, we evaluate the maximal
value of the correction : maxcorr =Maxi,j

∣∣δΛ(1)(i, j)
∣∣, then we take α = 0.015

maxcorr . This methods
ensure stability of the iterative process but, as drawback, can be very slow.

In order to speed up the convergence, we tried other methods where αvalue is reevaluated at
each iteration. The common principle is to chose among di�erent αvalue the one that minimises
a good estimation of combined errors, without losing too much computing time.

4.7.2 Estimation of combined error

• Analytical calculation of εS

Di�erent values of the smoothing factor εS , according to di�erent αvalues, can be easily and
quickly calculated at the same step k, thank to the following development :

ε
(k)
S =

√∑
i,j

(Cmean(k)(i,j)2)
nb(Cmean) =

√∑
i,j

(
cS(k)(i,j)− 1

nb(C)

∑
k,l

cS(k)(i,j)
)2

nb(Cmean)

ε
(k+1)
S =

√∑
i,j

(
cS(k)−α δΛ(k)− 1

nb(C)

∑
k,l

(cS(k)−α δΛ(k))
)2

nb(Cmean)

ε
(k+1)
S =

√∑
i,j

(Cmean(k)−α δΛmean(k))2

nb(Cmean) where δΛmean = δΛ − 1
nb

∑
k,l δΛ

If we precalculate the 2 coe�cients c1 =
∑

i,j
(Cmean(k) δΛ(k))
nb(Cmean) and c2 =

∑
i,j

(δΛ(k))2

nb(Cmean) , ε
(k+1)
S can

be evaluated for several αvalues without waste of computing time :

ε
(k+1)
S =

√
ε
(k)
S − 2c1 α + c2 α2

• Local evaluation of the correlation constraint εE

Since time to fully compute the correlation constraint εE is very expensive, correlation constraint
is evaluated, for di�erent αvalues, locally (We note ε∗E). Meaning the in�uence of this di�erent
αvalues, on the correlation constraint, is not checked at all the GERB pixel (x,y), but only at M
GERB point. These M GERB points are selected at the next iteration, there are those where the
correlation relation was the worst. (e.i. pixel (x,y) where |E(x, y)|is maximum)

Finally, in order to get one estimation of error, these two errors factors (ε∗Eand εS) are combined
with the ponderation factor r : ε∗combined(α) = εS(α) + r ε∗E(α). Among all the tested αvalues the
one minimizes ε∗combined(α)is selected and then applied to the full image.

Based on this combined error estimation, 3 di�erent methods were tested, di�erent because of
the choice of the tested αvalues.

4.7.3 Method of the N regularly spaced values

This methods consist to make a selection among N αvalues taken regularly spaced in the range
[0,αMAX ], with α

(k)
MAX = 0.05

maxcorr(k) .
More precisely, ε∗combined(α) is computed for N αvalues : 1

N αMAX , 2
N αMAX , ..., N−1

N αMAX , αMAX

. Then, the αvalue minimizing ε∗combined(α)is kept out.

4.7.4 Recursive bracketing method

As an improvement of the last method, here we also search for the best α value in a given bracket
[0,αMAX ], but using an iterative process we get, for the same computing time, i.e. the same
number of ε∗combined(α)computation, a more precise result. This methods consist to divide by 2,
at each step, the size of the bracket assuming to include the best α. The subbracket selection
requires at each step 2 calculations of ε∗combined(α). The iterative process is stopped, either after
a �xed number of iteration, or when the size of the bracket reaches the required precision.
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4.7.5 Golden Section Search

Golden section search is an iterative method to quickly isolate the minimum of a function ( for
instance f(α)) in a given bracketing triplet of abscissas (α1, α2, α3) (ref. [2] : Numerical recipe
in C). At each step, the routine reduces the bracket size until the bracket reaches the required
precision.

From an external point of view, this minimization method looks more e�cient than the last one.
But, for our speci�c case of minimization , several tests show us the opposite. The �rst problem in
our case is that we don't minimise the real function, the full error calculation εcombined = εS + εE ,
but a local estimation of the error function ε∗combined. Since this minimum search is not rigorous,
we have to limit the �rst bracket, we take [0,αMAX ]. The second problem of this method is that
its e�ciency is based on an initial bracket really including a minimum, therefore, when choosing
the �rst bracket as [0,αMAX ], we are never sure we bracket a minimum of ε∗combined(α).

4.7.6 Conclusion

After several tests on simulated, and on real Eumetsat images, we chose the recursive bracketing
method as the more e�cient regarding to computing time savings.

4.8 Ponderation factor r

The factor r is aiming to balance the importance between the 2 terms of the Generalized Lagrange
function :

Λ(cS, r) =
1
2

∑
i,j

(
Cmean(i, j)2

)
+ r

∑
x,y

(
E(x, y)2

)
The choice of a well �tted ponderation factor r is of major importance for the convergence of our

iterative process[1]. On one hand, if r is chosen too big the problem becomes wrong conditionned
and generate numerical di�culties. On the other hand, r must be chosen big enough to reach an
optimal solution (e.i. to reach low enough value of E).

We can also see the balance role of the factor r at an other level. The factor r is ponderating
the 2 parts of the correction applied to cS, through the Lagragian gradient :

cS(k+1)(i, j) = cS(k)(i, j)− α
(
δ1(i, j) +

r

nb
δ2(i, j)

)
The �rst part (δ1)is corresponding to the smoothing constraint, and the second part(δ2)is

corresponding to the correlation constraint.
Intuitively, it seems good to ponderate the 2 parts of the correction, at each step, proportionally

to ratio between the 2 errors factors at this step.
With others words, if the correlation criterion (εE) is less satis�ed than the smoothing criterion

(εS) , the correction part relative to the correlation constraint(δ2) must be bigger than the �rst
part(δ1), in the same rate.

So, we should chose r such as we get grossly at each point (i,j) :

r δ2
δ1

= εrel
E

εrel
S

with εrel
E = εE

εrequired
E

and εrel
S = εS

εrequired
S

Several tests on simulated data and on Eumetsat images [see : Developping and validation
tests in annex C] show us to chose :

r =

|E∗|
εrequired

E

εS

εrequired
S

‖δ1‖2

|δ2|

where :

• ‖δ1‖2 =

√∑
i,j

(δ1(i,j)2)

nb(δ1)
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• |δ2| =
∑

i,j
|δ2|

nb(δ2)

• |E∗| =
∑

x,y
|E∗|

nb(E∗) with x, y such as |E(x, y)| > εrequired
E

4.9 Convergence improvement attempts

In order to reduce the global computing time of the RE process, we tried, through di�erent ways,
to reduce, either the number of calculation at each iteration, or the total number of iteration,
meaning speed up the convergence.

4.9.1 Method of the conjugated gradient (or Flechter and Reeves method)

In stand to correct the factors cS at the step k in the direction of the Lagrangian Gradient at this
step δΛ(k),we take into account of the gradient direction at the step k-1, and we combined both
directions. The algorithm described below become :

1. Start with a �rst guess of the solution cS(0)and D(0) = δΛ(0) = ∂Λ
∂cS(0)

2. Calculate next cS estimation : cS(k+1)(i, j) = cS(k)(i, j)− α D(k)

3. Calculate next Lagrangian gradient : δΛ(k+1)and the next conjugated gradient D(k+1) =

δΛ(k+1) − ‖δΛ(k+1)‖2

‖δΛ(k)‖2 δΛ(k)

4. Go back to step 2.

This method sometimes allow us to reach a convergence speed faster than with simple gradient
algorithm. The required critera are veri�ed after less iteration. As drawback, the conjugated
gradient calculation requires a bit more storage and a little bit more computing time at each
iteration. For the tested cases, the increase of RAM storage ( 1 high resolution image) is acceptable.
But the computing time increase is higher than the time savings with less iteration. So we decided
to not keep this method.

4.9.2 Limitation of the correction area

An other idea to save computing time is to limit the number of points (i,j) where cS(i,j) is updated.
By this way we reduce the number of point where δΛ(i, j) is computed, one of the more time-
expensive calculation.

During the �rst iterations, the factor cS is updated at all the SEVIRI pixel (i,j), and so,
δΛ(k)must be calculated at all the SEVIRI pixel. Then, when the number of points where the
correlation criterion is not satis�ed, is inferior to a speci�ed value (for example 50), the factor cS
and the gradient δΛ are updated only at the pixels (i,j) located in the neighbourhood of this bad
εE values (i.e. in PSF area where εE(x, y) < εrequired

E ). So during the last iterations, we save a
big part of the time used to compute δΛ.

4.9.3 Updating εrequired
S

Despite the limitation of the correction area during the last iterations, computing time remains too
long for some con�guration of tested images. In these case, we save computing time by lowering
our smoothing requirement. After N (for example N=15) iterations interval, the smoothing error
required εrequired

S is incremented.
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4.10 Algorithm scheme

ε S ε Sand required>
εEεE >

required

Update if necessary
requiredεS

ε C (k+1)ε (k+1),E

and MAX(d Λ)

δΛαCompute cS(k+1)=cS(k) -

Select α using local error test

MAIN INPUTS

CG GERB
flux

L20

256

Scheme
Iterative

OUTPUT

While

Do

Initialisation

E = fct(L20_flux,cS,PSF,SeviriBand)

Cmean = fct(cS)
cS = Interpolation of CG

5

4

3

2

1

Sev_coordofG = coordinates of GERB pixels in SEVIRI image

PROCESS

 PSF filters

256

cS

factorCorrection 

resolution
at SEVIRI

and  k<max_it

 SEVIRI flux Bands
at GERB columns time

Compute  dΛ(k) = fct[Cmean(k),E(k)]

Compute  Cmean(k+1), E(k+1), 
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For more detail about program structure, see Annex A.

4.11 Testing

Included in annex C.

5 Resolution Enhancement averaged at SEVIRI time

The �rst part of the Resolution Enhancement system, described in section4, gives as output the
high (or SEVIRI) resolution correction factor at GERB time : cS(i, j, tg) . In the second part we
will average these estimations at GERB time to SEVIRI time, and then compute the �nal output,
the L2 high resolution corrected �ux averaged at SEVIRI time FL2

HR(i, j, ts).

5.1 Correction ratio time averaging

At each SEVIRI pixel (i,j), a weighted average on 15 minutes (according to SEVIRI image acqui-
sition period) is worked out.

cS(i, j, tsij) =
∑

r

[
I(tgijr) cS(i, j, tgijr, g

s
ij)

]
With :
tsij means time average on 15 minutes surrounding the acquisition time of SEVIRI pixel (i,j)

at slot r.
tgij represents a time period of 5min14 surrounding the acquisition time according to SEVIRI

pixel (i,j) at GERB slot r.
The weighting factor I(tgijr)is taken proportional to overlap factor of time period tgijron time

period tsij .

5.2 Multiplication to get level 2 high resolution �ux

Finally, the level 2 high resolution �ux products can be calculated at each SEVIRI pixel (i,j) as a
multiplication :

FL2
HR(i, j, ts) = cS(i, j, ts) F̃HR(i, j, ts)

It's maybe important to notice that only the correction factor is averaged, and then multiplied
to the high resolution SEVIRI based �ux estimation at SEVIRI acquisition time tS . So the
resulting corrected high resolution �ux is a `snapshot' �ux instead of a real average �ux.

This �nal output is stored in directory L20_SEVIRI/L2S_SF (or L20_SEVIRI/L2S_TF )with
a �le name following the convention

L2S_SF_<date>_<version>.rma (or L20_TF_<date>_<version>.rma).
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A Program structure description

see �le : RE_progdescription.lyx ( in directory: /rain/aline/Docu/gerb/Resol/ )

B Testing on simpli�ed approach

see �le : RE_test_simple.lyx ( in directory: /rain/aline/Docu/gerb/Resol/simple_approach )

C Testing on real problem

see �le : RE_test.lyx ( in directory: /rain/aline/Docu/gerb/Resol/real_problem )
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