

## Extending TOA radiation to 1978

RMIB

#### Introduction

Aim & justificatio Data sources

#### Modelling

Assumptions limitations Procedure

#### Results

Radiation maps Quality of the regression

Conclusions

# Extending TOA radiation back to 1978 using wide field-of-view data

E. Baudrez I. Decoster N. Clerbaux P.-J. Baeck S. Dewitte A. Ipe S. Nevens A. Velázquez

Royal Meteorological Institute of Belgium

7 September 2010

▲□▶▲□▶▲□▶▲□▶ □ のQ@



## Outline

## Extending TOA radiation to 1978

RMIB

#### Introduction

Aim & justificatio Data sources

#### Modelling

Assumptions & limitations Procedure

#### Results

Radiation maps Quality of the regression

Conclusions

#### 1. Introduction Aim & justification Data sources

2. Modelling Assumptions & limitations Procedure

### . Results Radiation maps

Quality of the regression

▲□▶▲□▶▲□▶▲□▶ □ のQ@

### 4. Conclusions



## Aim of this work

## Extending TOA radiation to 1978

RMIB

#### Introduction

Aim & justification Data sources

#### Modelling

Assumptions 8 limitations

Tiocedule

#### Results

Radiation maps Quality of the regression

Conclusions

### Fill the gap!

Long time series of the total radiation emitted by the Earth, whose coverage extends as far as possible spatially and temporally, for the purpose of climate studies

- ► Total radiation (sw+Lw) emitted by the Earth,  $W m^{-2}$
- Averaged per month
- Extent in time and space:
  - Coverage from +81° to -81° latitude
  - Coverage from -180° to +180° longitude
  - Coverage from November 1978 to September 1999 (nearly 21 years)



## The wide field-of-view radiometer

#### Extending TOA radiation to 1978

RMIB

#### Introduction

Aim & justification Data sources

#### Modelling

Assumptions limitations

Procedure

#### Results

Radiation maps Quality of the regressio

Conclusions



### Nonscanner on board ERBS

- 2 wide field-of-view radiometers:
  - one radiometer for sw:
    0.2 to 5 μm
  - one radiometer for TW: all wavelengths

2 medium field-of-view radiometers

Source: http://mynasadata.larc.nasa.gov/images/erbenonscanner.gif



RMIR

Aim & justification

## Earth radiation budget



Source: http://mvnasadata.larc.nasa.gov/docs/earth radiation budget 17.pdf



## Extending TOA radiation to 1978

RMIB

#### Introduction

Aim & justification

#### Modelling

Assumptions & limitations

Procedure

#### Results

Radiation maps Quality of the regression

Conclusions

## Justification

## ► Why wFov?

- Long, uninterrupted time series (scanner usually broke down after a few years)
- ▶ Why total radiation and not SW & LW?
  - sw filter suffers from ageing
  - Little degradation of the total radiation measurements over time
- Disadvantages
  - Cloud forcing cannot be studied
  - Low spatial resolution
- Compared to former work?
  - Improve accuracy of monthly averages by using state-of-the-art models and processing techniques



### Data sources Experiments

## Extending TOA radiation to 1978

RMIB

#### Introduction

Aim & justification

Data sources

#### Modelling

Assumptions & limitations

#### Desulte

Radiation maps Quality of the regression

Conclusions

- ► ERB experiment on board NIMBUS-7 spacecraft
  - Solar and Earth Flux Data Tape (SEFDT) dataset
  - ▶ 1978/11 1993/01
- ERBE experiment on board ERBS, NOAA-9 and NOAA-10 spacecraft
  - Monthly Medium-Wide Data Tape (MWDT) dataset
  - ▶ 1984/11 1999/9





### Data sources Spacecraft

## Extending TOA radiation to 1978

RMIB

- Introduction
- Aim & justification
- Data sources

#### Modelling

- Assumptions a limitations
- Procedure

#### Results

- Radiation maps Quality of the regressio
- Conclusions

- ▶ NIMBUS-7
  - Sun-synchronous satellite with an inclination  $\approx 99^{\circ}$
  - ► Local time equator passing, ascending node ≈ 11:00 (initially)
- **ERBS** 
  - Precessing satellite with an inclination  $\approx 57^{\circ}$
- NOAA-9
  - Sun-synchronous satellite with an inclination  $\approx 99^{\circ}$
  - ► Local time equator passing, ascending node ≈ 14:30 (initially)
- NOAA-IO
  - Sun-synchronous satellite with an inclination  $\approx 99^{\circ}$
  - ► Local time equator passing, descending node ≈ 7:30 (initially)



## Extending TOA radiation to 1978

RMIB

#### Introduction

Aim & justification Data sources

#### Modelling

Assumptions & limitations Procedure

#### Results

Radiation maps Quality of the regression

Conclusions

#### 1. Introduction

Outline

Aim & justification Data sources

#### 2. Modelling Assumptions & limitations Procedure

Results Radiation maps Quality of the regression

▲□▶▲□▶▲□▶▲□▶ □ のQ@

### 4. Conclusions



## Assumptions & limitations

## Extending TOA radiation to 1978

RMIB

Introduction

Aim & justification Data sources

#### Modelling

Assumptions & limitations

Procedure

#### Results

Radiation maps Quality of the regression

Conclusions

- We assume the spectral response of the total wave (TW) measurement is sufficiently flat
- No intercalibration of different satellites (except common reference altitude)
- For the moment: albedo independent of solar zenith angle



## Obtaining the monthly average flux

## Extending TOA radiation to 1978

RMIB

#### Introduction

Aim & justification Data sources

#### Modelling

Assumptions & limitations

#### Procedure

#### Results

Radiation maps Quality of the regression

Conclusions

Starting from instantaneous measurements from the wFov radiometer:

- Conversion of datafiles from native format to NETCDF
- Processing the raw measurements
- Binning in 5°× 5° bins
- Regression of the diurnal model on the data
- Numerical integration of the monthly average diurnal model from 0 to 24 hours
- Checks on the quality of the regression and final output



## Conversion of datafiles from native format

## Extending TOA radiation to 1978

RMIB

#### Introduction

Aim & justification

#### Modelling

Assumptions 8 limitations

#### Procedure

#### Results

Radiation maps Quality of the regression

Conclusions

- These data were originally stored and processed on mainframes with tape drives
- Decode according to tape specifications
  - ERBE: User's Guide on http://eosweb.larc.nasa.gov/ GUIDE/dataset\_documents/erbe\_s7.html
  - ERB ON NIMBUS-7: NASA Contractor Report 170616 (Ray, Tighe & Scherrer, 1984)

 Add useful orbit & instrument information: inclination, orbit type (direct or retrograde), field-of-view aperture



### Processing the raw measurements Overview

## Extending TOA radiation to 1978

RMIB

- Introduction
- Aim & justificatio Data sources

#### Modelling

Assumptions & limitations

#### Procedure

#### Results

Radiation maps Quality of the regression

Conclusions

- Add required quantities when not available in the datafiles
  - Solar zenith angle
  - Local time at nadir
- Direct sunlight elimination (geometric)
- Quality flags
  - Negative or otherwise unphysical data
  - Instrument looking off-nadir
  - Spacecraft status flags
  - Detector blinded by direct sunlight



### Processing the raw measurements Elimination of direct sunlight

## Extending TOA radiation to 1978

RMIB

- Introduction
- Aim & justificatio Data sources

#### Modelling

Assumptions & limitations

#### Procedure

#### Results

Radiation maps Quality of the regression

Conclusions

- Not using solar zenith angle: seems to throw away good measurements without taking into account solar eclipse by Earth disc
- But using geometric technique
  - Takes into account angle between spacecraft, Earth and sun

 Takes into account solar eclipse by Earth (ellipsoid shape with GRS80 parameters)



# Regression of the diurnal model

## Extending TOA radiation to 1978

RMIB

#### Introduction

Aim & justificatio Data sources

#### Modelling

Assumptions & limitations

#### Procedure

#### Results

Radiation maps Quality of the regressio

Conclusions

- ► The diurnal model can be specified:
  - In terms of local time
  - In terms of (cosine of) solar zenith angle
    - Assume sloped line (daytime) intercepts flat line (night-time) at solar zenith angle of zero
- We've chosen to regress the model specified in terms of cosine of solar zenith angle
- Two-parameter diurnal model:

$$F(t) = \begin{cases} p_0 + p_1 \cos z(t) & \text{if } \cos z > 0\\ p_0 & \text{otherwise} \end{cases}$$
(1)

• Modified diurnal model during polar winter:

$$F(t) = p_0 \tag{2}$$

(日)



## Extending TOA radiation to 1978

RMIB

#### Introduction

Aim & justificatio Data sources

#### Modelling

Assumptions & limitations

#### Procedure

#### Results

Radiation maps Quality of the regression

Conclusions

 Solar zenith angle at noon varies considerably, depending on season and latitude

Regression of the diurnal model Why a diurnal model in terms of solar zenith angle?

- Corollary: even measurements at fixed local time lead to a range of zenith angles, which is better for the regression
- Regression of a linear two-parameter model is the obvious approach when only heliosynchronous data with two measurements per day are available
- Can estimate baseline (night-time) flux without night-time measurements

## Disadvantage:

 Limited range of the independent variable at high latitudes



## Regression of the diurnal model Example (Sahara region)





# Numerical integration of the diurnal model Example (Sahara region)



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで



## Checks on the quality of the regression Values can be rejected for several reasons

## Extending TOA radiation to 1978

#### RMIB

#### Introduction

Aim & justification

#### Modelling

Assumptions & limitations

#### Procedure

#### Results

Radiation maps Quality of the regression

Conclusions

- 1. An error occured during fitting (e.g., too many iterations in Levenberg-Marquardt)
- 2. Regression as a whole is not significant
- **3.** Regression is useless according to the Box criterion (explains less than the error)
- **4**. Null hypothesis cannot be rejected for at least one of the parameters
- **5.** At least one parameter is nonphysical (e.g., negative night-time flux)
- **6.** Numerical integration cannot be performed for numerical reasons
- 7. Resulting average flux is nonphysical (i.e., negative)



## Outline

## Extending TOA radiation to 1978

RMIB

#### Introduction

Aim & justificatio Data sources

#### Modelling

Assumptions & limitations Procedure

#### Results

Radiation maps Quality of the regression

Conclusions

### 1. Introduction

Aim & justification Data sources

2. Modelling Assumptions & limitations Procedure

3. Results Radiation maps Quality of the regression

▲□▶▲□▶▲□▶▲□▶ □ のQ@

### 4. Conclusions



## **Radiation maps**

## Extending TOA radiation to 1978

RMIB

#### Introduction

Aim & justificatio

#### Modelling

Assumptions a limitations Procedure

#### Results

Radiation maps

Quality of the regression

Conclusions

- Fluxes as measured by the instrument at satellite altitude, but reduced to common altitude by inverse-square law
- ▶ ... And then mapped at nadir in boxes of 5°×5°
- First a set of maps of 1979, obtained using only NIMBUS-7 data (heliosynchronous, two measurements per day)
- Then a set of maps of 1987, obtained using all satellites (NIMBUS-7, ERBS, NOAA-9, and NOAA-10)





RMIB

#### Introduction

Aim & justificatio Data sources

#### Modelling

Assumptions a limitations Procedure

#### Results

Radiation maps

Quality of the regression

Conclusions



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで





▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

80°

60°

40°

20°

20

-60°

-80°



### Total radiation, W m<sup>-2</sup> September 1979



RMIB

#### Introduction

Aim & justificatio Data sources

#### Modelling

Assumptions a limitations Procedure

#### Results

Radiation maps

Quality of the regression

Conclusions







RMIB

#### Introduction

Aim & justificatio Data sources

#### Modelling

Assumptions a limitations Procedure

#### Results

Radiation maps

Quality of the regression

Conclusions



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで





RMIB

#### Introduction

Aim & justificatio Data sources

#### Modelling

Assumptions a limitations Procedure

#### Results

Radiation maps

Quality of the regression

Conclusions







RMIB

#### Introduction

Aim & justificatio Data sources

#### Modelling

Assumptions limitations Procedure

#### Results

Radiation maps

Quality of the regression

Conclusions



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで



### Total radiation, W m<sup>-2</sup> September 1987



RMIB

#### Introduction

Aim & justificatio Data sources

#### Modelling

Assumptions a limitations Procedure

#### Results

Radiation maps

Quality of the regression

Conclusions



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで



#### Extending TOA radiation to 1978

RMIB

#### Introduction

Aim & justificatio Data sources

#### Modelling

Assumptions a limitations Procedure

#### Results

Radiation maps

Quality of the regression

Conclusions



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで



## Quality of the regression

## Extending TOA radiation to 1978

RMIB

#### Introduction

Aim & justificatio Data sources

#### Modelling

Assumptions a limitations Procedure

#### Results

**Radiation maps** 

Quality of the regression

#### Conclusions

- Statistics for the regression
- R<sup>2</sup>: multiple correlation coefficient, test for linear correlation
- F: null hypothesis for all parameters simultaneously, test for significance of regression



#### Extending TOA radiation to 1978

RMIB

#### Introduction

Aim & justificatio Data sources

#### Modelling

Assumptions limitations Procedure

#### Results

Radiation maps

Quality of the regression

Conclusions





# Quality of the regression December 1987



#### RMIB

#### Introduction

Aim & justificatio Data sources

#### Modelling

Assumptions limitations Procedure

#### Results

Radiation maps

Quality of the regression

#### Conclusions



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで



# Quality of the regression December 1987



#### RMIB

#### Introduction

Aim & justificatio Data sources

#### Modelling

Assumptions limitations Procedure

#### Results

**Radiation maps** 

Quality of the regression

#### Conclusions





# $\underset{R^{2}\text{-value}}{\textbf{Ouality of the regression}}$

## Extending TOA radiation to 1978

RMIB

- Introduction
- Aim & justification

#### Modelling

- Assumptions limitations Procedure
- Results
- Radiation maps
- Quality of the regression

Conclusions

- ► No *R*<sup>2</sup> at high latitude in northern hemisphere: polar winter, one-parameter model
- Band of low-quality regression at 40 degrees latitude south
  - Seems to be caused by NIMBUS-7 (and sometimes NOAA-10) measurements
  - Related to refracted light?
  - Related to viewing geometry?
- $R^2$  seems to be higher over land than over ocean

- More pronounced diurnal cycle over land
- Related to cloud cover?



# Quality of the regression



#### RMIB

#### Introduction

Aim & justificatio Data sources

#### Modelling

Assumptions limitations Procedure

#### Results

**Radiation maps** 

Quality of the regression

#### Conclusions



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

## An example of a good regression $R^2 = 0.98$



イロト イヨト イヨト イヨト

æ

## **Partially sunlit at sunrise/sunset transition** $R^2 = 0.96$



◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●

## Zenith angle dependence over ocean surface $R^2 = 0.91$



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

### **A very poor regression** $R^2 = 0.05$ with NIMBUS-7 data, $R^2 = 0.96$ without



# Estimate intercept with daytime measurements only $R^2 = 0.99$



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQで

### **Modified diurnal model during polar winter** $s^2 = 37705$ with NIMBUS-7 data, $s^2 = 91$ without



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQで



## Outline

## Extending TOA radiation to 1978

RMIB

#### Introduction

Aim & justificatio Data sources

#### Modelling

Assumptions & limitations Procedure

#### Results

Radiation maps Quality of the regression

Conclusions

### 1. Introduction

Aim & justification Data sources

### 2. Modelling

Assumptions & limitations Procedure

## 3. Results

Radiation maps Quality of the regression

▲□▶▲□▶▲□▶▲□▶ □ のQ@

### 4. Conclusions



## Conclusions

## Extending TOA radiation to 1978

RMIB

#### Introduction

Aim & justificatio Data sources

#### Modelling

Assumptions a limitations Procedure

#### Results

Radiation maps Quality of the regression

#### Conclusions

- ► Revived the old NIMBUS-7 and less older ERBE data
- wFOV measurements do contain usable spatial information
- Made TOA radiation maps over nearly 21 years (November 1978 – September 1999) and nearly the entire globe, sometimes with scarce data

Problems remain: stray light? diurnal models inappropriate?



## Future work

## Extending TOA radiation to 1978

RMIB

#### Introduction

Aim & justificatio Data sources

#### Modelling

Assumptions & limitations Procedure

#### Results

Radiation maps Quality of the regression

#### Conclusions

- ► Incorporate more recent measurements (GERB, CERES)
- Better filtering of the data
- Improve diurnal models
- Applications: e.g. volcanic eruptions (El Chichón 1982, Pinatubo 1991)

▲□▶▲□▶▲□▶▲□▶ □ のQ@



#### Extending TOA radiation to 1978

RMIB

#### Introduction

Aim & justificatio Data sources

#### Modelling

Assumptions 8 limitations Procedure

#### Results

Radiation maps Quality of the regression

#### Conclusions

## Acknowledgements

- Dr. George L. Smith
- Dr. Takmeng Wong
- Michelle, Kathleen and staff of NASA Langley User and Data Services
- ▶ GERB team at RMIB, and in particular Nicolas & Steven

RMIB