

Extending TOA radiation to 1978

RMIB

Introduction

Aim & justificatio Data sources

Modelling

Assumptions limitations Procedure

Results

Radiation maps Quality of the regression

Extending TOA radiation back to 1978 using wide field-of-view data

E. Baudrez I. Decoster N. Clerbaux P.-J. Baeck S. Dewitte A. Ipe S. Nevens A. Velázquez

Royal Meteorological Institute of Belgium

16 September 2010

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Extending TOA radiation to 1978

RMIB

Introduction

Aim & justificatio Data sources

Modelling

Assumptions & limitations Procedure

Results

Radiation maps Quality of the regressio

1. Introduction

Aim & justification Data sources

2. Modelling

Assumptions & limitations Procedure

3. Results

Radiation maps Quality of the regression

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Aim of this work

Extending TOA radiation to 1978

Aim

RMIB

Introduction

Aim & justification Data sources

Modelling

Assumptions & limitations

Results

Radiation maps Quality of the regressio Long time series of the total radiation emitted by the Earth, for the purpose of climate studies

- ► Total radiation (sw+Lw) measured by wide field-of-view radiometer, W m⁻²
 - Operated much longer than scanner
 - sw filter suffers from ageing
- Monthly averages
- Coverage in time and space: +81° to -81° latitude, November 1978 to September 1999 (nearly 21 years)
- Disadvantages: cannot study cloud forcing, TOA albedo; low spatial resolution
- Compared to former work: want to use more recent models and processing techniques

The wide field-of-view radiometer

Extending TOA radiation to 1978

RMIB

Introduction

Aim & justification Data sources

Modelling

Assumptions limitations

Procedure

Results

Radiation maps Quality of the regression

Nonscanner on board ERBS

- 2 wide field-of-view radiometers:
 - one radiometer for sw:
 0.2 to 5 μm
 - one radiometer for TW: all wavelengths

2 medium field-of-view radiometers

Source: http://mynasadata.larc.nasa.gov/images/erbenonscanner.gif

Data sources

Extending TOA radiation to 1978

RMIB

Introduction

Aim & justification

Data sources

Modelling

Assumptions & limitations Procedure

Results

Radiation maps Quality of the regression

- ► Three sun-synchronous satellites with an inclination \approx 99°: NIMBUS-7 (11 am), NOAA-9 (2.30 pm), NOAA-10 (7.30 pm)
- One precessing satellite: ERBS (inclination $\approx 57^{\circ}$)
- Instantaneous (4-second) measurements from SEFDT and MWDT datasets

Extending TOA radiation to 1978

RMIB

Introduction

Aim & justificatio Data sources

Modelling

Assumptions & limitations Procedure

Results

Radiation maps Quality of the regressio

1. Introduction

Aim & justification Data sources

2. Modelling Assumptions & limitations Procedure

3. Results

Radiation maps Quality of the regression

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Assumptions & limitations

Extending TOA radiation to 1978

RMIB

Introduction

Aim & justification Data sources

Modelling

Assumptions & limitations

Procedure

Results

Radiation maps Quality of the regression

- We assume the spectral response of the total wave (TW) measurement is sufficiently flat
- No intercalibration of different satellites (except common reference altitude)
- For the moment: albedo independent of solar zenith angle

Obtaining the monthly average flux

Extending TOA radiation to 1978

RMIB

Introduction

Aim & justification

Modelling

Assumptions & limitations

Procedure

Results

Radiation maps Quality of the regressio Starting from instantaneous measurements from the wFov radiometer:

- Conversion of datafiles from native format to NETCDF
- Processing the raw measurements
- ▶ Binning in 5°× 5° bins
- Regression of the diurnal model on the data
- Numerical integration of the monthly average diurnal model from 0 to 24 hours
- Checks on the quality of the regression and final output

Elimination of direct sunlight

Extending TOA radiation to 1978

RMIB

Introduction

Aim & justificatio

Modelling

Assumptions & limitations

Procedure

Results

Radiation maps Quality of the regression

- Not using solar zenith angle: seems to throw away good measurements without taking into account solar eclipse by Earth disc
- But using geometric technique
 - Takes into account angle between spacecraft, Earth and sun

 Takes into account solar eclipse by Earth (ellipsoid shape with GRS80 parameters)

Regression of the diurnal model Model equation and example (Sahara region)

Extending TOA radiation to 1978

RMIB

Introduction

Aim & justificatio Data sources

Modelling

Assumptions 8 limitations

Procedure

Results

Radiation maps Quality of the regression

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Extending TOA radiation to 1978

RMIB

Introduction

Aim & justificatio Data sources

Modelling

Assumptions & limitations

Procedure

Results

Radiation maps Quality of the regression Solar zenith angle at noon varies considerably, depending on season and latitude

Regression of the diurnal model Why a diurnal model in terms of solar zenith angle?

- Corollary: even measurements at fixed local time lead to a range of zenith angles, which is better for the regression
- Regression of a linear two-parameter model is the obvious approach when only heliosynchronous data with two measurements per day are available
- Can estimate baseline (night-time) flux without night-time measurements

Disadvantage:

 Limited range of the independent variable at high latitudes

Numerical integration of the diurnal model Example (Sahara region)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Checks on the quality of the regression Values can be rejected for several reasons

Extending TOA radiation to 1978

RMIB

Introduction

Aim & justification

Modelling

Assumptions & limitations

Procedure

Results

Radiation maps Quality of the regression

- 1. An error occured during fitting (e.g., too many iterations in Levenberg-Marquardt)
- 2. Regression as a whole is not significant
- **3.** Regression is useless according to the Box criterion (explains less than the error)
- 4. Null hypothesis cannot be rejected for at least one of the parameters
- 5. At least one parameter is nonphysical (e.g., negative night-time flux)
- **6.** Numerical integration cannot be performed for numerical reasons
- 7. Resulting average flux is nonphysical (i.e., negative)

Extending TOA radiation to 1978

RMIB

Introduction

Aim & justification

Modelling

Assumptions & limitations

Results

Radiation maps Quality of the regression

1. Introduction

Aim & justification Data sources

2. Modelling

Assumptions & limitations Procedure

3. Results

Radiation maps Quality of the regression

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Total radiation, $W m^{-2}$ March 1979

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Total radiation, W m⁻² September 1979

◆□▶ ◆□▶ ◆目▶ ◆目▶ = ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Quality of the regression December 1987

RMIB

Introduction

Aim & justificatio Data sources

Modelling

Assumptions limitations Procedure

Results

Radiation maps

Quality of the regression

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Quality of the regression December 1987

RMIB

Introduction

Aim & justificatio Data sources

Modelling

Assumptions limitations Procedure

Results

Radiation maps

Quality of the regression

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - の々で

An example of a good regression $R^2 = 0.98$

イロト イヨト イヨト イヨト

æ

Partially sunlit at sunrise/sunset transition $R^2 = 0.96$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●

Zenith angle dependence over ocean surface $R^2 = 0.91$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

A very poor regression $R^2 = 0.05$ with NIMBUS-7 data, $R^2 = 0.96$ without

Estimate intercept with daytime measurements only $R^2 = 0.99$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQで

Modified diurnal model during polar winter $s^2 = 37705$ with NIMBUS-7 data, $s^2 = 91$ without

20

크

イロト イヨト イヨト イヨト

Conclusions

Extending TOA radiation to 1978

RMIB

Introduction

Aim & justificatio Data sources

Modelling

Assumptions a limitations Procedure

Results

Radiation maps

Quality of the regression

- ► Revived the old NIMBUS-7 and less older ERBE data
- WFOV measurements do contain usable spatial information
- Made TOA radiation maps over nearly 21 years (November 1978 – September 1999) and nearly the entire globe, sometimes with scarce data

Problems remain: stray light? diurnal models inappropriate?

Future work

Extending TOA radiation to 1978

RMIB

Introduction

Aim & justificatio Data sources

Modelling

Assumptions & limitations Procedure

Results

Radiation maps

Quality of the regression

- ► Incorporate more recent measurements (GERB, CERES)
- Better filtering of the data
- Improve diurnal models
- Applications: e.g. volcanic eruptions (El Chichón 1982, Pinatubo 1991)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Acknowledgements

Extending TOA radiation to 1978

RMIB

Introduction

Aim & justificatio Data sources

Modelling

Assumptions 8 limitations Procedure

Results

Radiation maps

Quality of the regression

- Dr. George L. Smith
- Dr. Takmeng Wong
- Michelle, Kathleen and staff of NASA Langley User and Data Services
- ▶ GERB team at RMIB, and in particular Nicolas & Steven

▲□▶▲□▶▲□▶▲□▶ □ のQ@

RMIB