

Meteosat MVIRI/SEVIRI TOA radiation data records within the Climate Monitoring SAF

The EUMETSAT Network of Satellite Application Facilities

Manon Urbain, Nicolas Clerbaux, Alessandro Ipe, Florian Tornow ^{*}, Edward Baudrez, Almudena Velazquez Blazquez, Johan Moreels

> Royal Meteorological Institute of Belgium *Institute for Space Sciences, Freie Universität Berlin

Earth Radiation Budget Workshop ECMWF 18-21st October 2016

RMIB

Introduction

Main products features

Validation

- Methodology
- Results

Summary of the errors

Introduction **TOA radiation in CM SAF**

- **Operational GERB EDR product** (since 2004)
- GERB/SEVIRI dataset ed01
 - Meteosat (MVIRI/SEVIRI) datasets ed01
- GERB/SEVIRI dataset ed02
- **TOA** radiation in CLARA-A3 (AVHRR)

The EUMETSAT Network of

Satellite pplication

Wild et al., 2013

CM SAF

- Generation of a TCDR from Meteosat instruments covering more than 30 vears
- > An unprecedented temporal (30min/15min) and spatial (2.5km/3km) resolution (compared to other ERB products)
- A better knowledge of the diurnal cycle and the small-scale spatial variations of radiation

CM SAF identifier	Content
CM-23311	TOA Reflected Solar radiative flux All Sky (TRS_AS)
CM-23341	TOA Emitted Thermal radiative flux All Sky (TET_AS)

2

RMIB

Main products

requirements

Processing

overview

Validation

Results

errors

Methodology

Summary of the

Data access and

features

Covered period 32 years → from 1 February 1983 to 31 January 2015 Output quantities TRS and TET fluxes in all-sky conditions →TIS provided as ancillary field of the TRS product Temporal characteristics Fluxes provided as Daily Mean (DM), Monthly Mean (MM) and Monthly Mean Diurnal Cycle (MMDC, 24 hourly intervals) Spatial resolution Data records provided on a regular grid with a spatial resolution of (0.05°)², i.e., about (5.5 km)² at sub-satellite point Format NetCDF file format following the CF convention

Main products features

The EUMETSAT Network of Satellite Application Facilities

RMIB

Introduction

Main products features

User requirements

Processing overview

Validation

- Methodology
- Results

Summary of the errors

Conclusion

Data access and documentation

User requirements

Stability requirements for CM-23311 and CM-23341

Products	Threshold	Target	Optimal	
TRS all sky MM	4 W/m²/dec	0.6 W/m²/dec	0.3 W/m²/dec	
TET all sky MM	4 W/m²/dec	0.6 W/m²/dec	0.3 W/m²/dec	

• Maximum acceptable change (max-min) of the systematic error over a period of 10 years

The EUMETSAT Network of Satellite

Application Facilities CM SAF

- Primarily caused by switches of instruments and instrumental drift
- Only defined for the MM products but also representative of the DM and MMDC products
- Should be met over most of the scene types

Accuracy requirements for CM-23311 and CM-23341

Products		Threshold	Target	Optimal	CM-113 and CM-115 accuracy
11	ММ	8 W/m²	4 W/m²	2 W/m²	3.0 W/m²
TRS 1-233	TRS 1-2333 MD	16W/m²	8 W/m²	4 W/m²	5.5 W/m²
ð	MMDC	16W/m²	8 W/m²	4 W/m²	12.8W/m²
11	41 MM		2 W/m²	1 W/m²	2.0 W/m ²
TET CM-2334	DM	8 W/m²	4 W/m²	2 W/m²	3.6 W/m²
	MMDC	8 W/m²	4 W/m²	2 W/m²	3.1 W/m²

Requirements referring to error:

- at 1 standard deviation (RMS error)
- at 1° x 1° scale
- taking only VZA<60°
- does not include error (bias) due to the absolute calibration

RMIB

Introduction

Main products features

User requirements

Processing overview

Validation

- Methodology
- Results

Summary of the errors

Conclusior

Data access and documentation

Processing overview

- VIRI Visible clear-sky processing:
 - Generates the clear-sky VIS data
 - Cloud effect filtered by image processing techniques (based on a series of 61 days of input VIS images)

- Data preprocessing:
 Calibration & ageing correction
 Stripes' interpolation
 - Conversion to "MET7-like" using theoretical regressions from NB channels

Instrument	TRS	TET		
MVIRI	SEVIRI Solar Channel Calibration (Govaerts et al., 2004)	MFG-2 and -3 : operational calibration MFG-4 to -7 : GSICS/EUMETSAT recalibration using HIRS (R. Stöckli and A. Tetzlaff, pers. comm.)		
SEVIRI	Meirink et al. (2013)	Operational calibration		

The EUMETSAT Network of Satellite

Application Facilities

5

CM SAF

RMIB

Introduction

Main products features

User requirements

Processing overview

Validation

- Methodology
- Results

Summary of the errors

Conclusion

Data access and documentation

• TOA fluxes processing:

- Scene identification (daytime only; Ipe, 2011
 & Ipe et al., 2010, 2004)
- Empirical NB to BB regressions (GERB used "off-line")
- Instantaneous fluxes computation:
 - TRS: using CERES TRMM angular dependency models (Loeb et al., 2003)
 - TET: using theoretical models (Clerbaux et al., 2003)

• Daily and monthly averaging:

Averaging of the instantaneous fluxes in hourly boxes from which the DM, MM and MMDC are estimated

- Monthly Mean Diumal Cycle Monthly Mean Maximum **3 hours** of successive missing data in the daily averaging (otherwise DM not issued)
- Minimum 15 days required in the monthly averaging (MM and MMDC)

- Seasonal change in insolation taken into account in the monthly averaging
 Regridding onto a regular grid at
- Regridding onto a regular grid at 0.05° x 0.05°

Validation methodology

MVIRI/SEVIRI TOA radiation data records

RMIB

Introduction

Main products features

User requirements

Processing overview

Validation

Methodology

Results

Summary of the errors

Conclusion

Data access and documentation

No "Ground Truth" observations for the TOA fluxes

intercomparison with other satellite-based data (polar satellites observations are preferred)

Source	Version	Variable	Temporal resolution	Spatial resolution	Period
CERES EBAF	2.8	TRS TET	MM	1° x 1°	March 2000 onward
CERES SYN1deg-Day	3A	TRS TET	DM	1° x 1°	March 2000 onward
CERES SYN1deg-M3Hour	3A	TRS TET	MMDC in 3-hourly intervals	1° x 1°	March 2000 onward
HIRS OLR CDR - Monthly	2.7	TET	MM	2.5° x 2.5°	1979 onward
HIRS OLR CDR - Daily	1.2	TET	DM	1° x 1°	Jan. 1979 to Dec. 2013
Univ. Reading ERBS WFOV-CERES (DEEP-C)	2	TRS TET	MM	0.7° x 0.7°	Jan. 1985 to May 2015
ISCCP FD	-	TRS TET	MM	2.5° x 2.5°	July 1983 to Dec. 2004

Three sources of error:

- Temporal stability of the data records
 - > Evaluated by computing time series of overall bias between CM SAF and reference products
- Accuracy (processing error)
 - Quantified by computing the RMS against CERES
 - CERES considered as the best reference, especially for the MM and MMDC products
 - cover the area 50°S-50°N and 50°W 50°E (approx. VZA<60°).</p>
- Effect of missing input data (not shown here)
 - Due to missing instantaneous fluxes for the DM (interpolation) and missing days in the MM and MMDC

RMIB

Introduction

Main products features

User requirements

Processing overview

Validation

- Methodology
- Results

Summary of the errors

Conclusion

Data access and documentation

Validation results Stability Monthly mean products

Wrt CERES EBAF TET Bias CMSAF - CERES EBA MFG MSG -1 -2 -3 Bias in W/m² Jan 02 Jan 00 Jan 04 Jan 06 Jan 08 Jan 10 .lan 12 lan 14 Jan 16 Time

Wrt HIRS NCDC OLR – Monthly

RMIB

Introduction

Main products features

User requirements

Processing overview

Validation

Methodology

MFG MSG

0

-2

-6

-8

-10

Jan 00

Jan 02

Jan 04

Jan 06

Bias in W/m²

Results

Summary of the errors

Conclusion

Data access and documentation

Stability Daily mean products

Wrt CERES SYN1deg-Day

Bias CMSAF - CERES SYN1deg-Day

Therma

Jan 08

Time

Jan 10

Jan 12 Jan 14

Jan 16

The EUMETSAT Network of Satellite Application Facilities

RMIB

Introduction

Main products features

User requirements

Processing overview

Validation

- Methodology
- Results

Summary of the errors

Conclusion

Data access and documentation

Stability Monthly mean diurnal cycle products

The EUMETSAT Network of

CM SAF

RMIB

TRS

30

30

-30

-10

CMSAF solar flux

-30

0.

Difference

30

Introduction

Main products features

User requirements

Processing overview

Validation

- Methodology
- Results

Summary of the errors

Conclusion

Data access and documentation

Regional comparison Monthly mean products

CERES_EBAF solar flux

200003

30' 30'

-30' -30'

-60' -60'

60

30' 30'

0.

-30' -30'

-60

-30

0

Ratio

R

Wrt CERES EBAF

-30

30

-30'

TET

RMIB

Introduction

Main products features

User requirements

Processing overview

Validation

- Methodology
- Results

Summary of the errors

Conclusion

Data access and documentation

Regional comparison Monthly mean diurnal cycle products

TRS

450 400 350

300 250

200

150 -

100 50

20

-10

-20 -

-30

The EUMETSAT Network of Satellite

Wrt CERES SYN1deg-M3Hour

CM SAF

TET

RMIB

Introduction

Main products features

User requirements

Processing overview

Validation

- Methodology
- Results

Summary of the errors

Conclusion

Data access and documentation

Accuracy Monthly mean products

Wrt CERES EBAF

TET

The EUMETSAT Network of Satellite

Application Facilities

13

RMIB

Introduction

Main products features

User requirements

Processing overview

Validation

- Methodology
- Results

Summary of the errors

Conclusion

Data access and documentation

Accuracy Daily mean products

Wrt CERES SYN1deg-Day

Wrt HIRS NCDC OLR – Daily

RMIB

Introduction

Main products features

User requirements

Processing overview

Validation

- Methodology
- Results

Summary of the errors

Conclusion

Data access and documentation

Accuracy Monthly mean diurnal cycle products

The EUMETSAT Network of Satellite

Application Facilities

15

ΜSΔF

Summary of the errors

F	ММ		DM		MMDC	
Error sources	TRS	TET	TRS	TET	TRS (midday) (3)	TET
Stability error	Stability of all the products better than 4 W/m ² (max-min) except for the TE during a given period in 1987 (MFG2) (4)					for the TET
Processing error (at 1 std. dev.)	ag error 3.6 W/m ²		6.5 W/m²	4.2 W/m²	11.0W/m²	3.5 W/m²
Additional error due to missing input data (1)(2)	0.3 W/m²/day	0.2 W/m²/day	0.5 W/m²	0.3 W/m²	0.7 W/m²/day	0.3 W/m²/day

Remarks

(1) The reported errors due to missing data do not affect the products without missing data. For the DM products, the missing data error is the 0.9 percentile of the error over days affected by missing repeat cycles of image acquisition.

(2) The missing data error must be added to the processing error (not a root mean summation of these errors).

(3) The reported errors for the MMDC of the TRS are estimated for the time intervals with the highest illumination of the Meteosat FOV (e.g. [11-12] and [12-13] UTC).
(4) Those months are January, February and March 1987.

MVIRI/SEVIRI TOA radiation data records

RMIB

Introduction

Main products features

User requirements

Processing overview

Validation

- Methodology
- Results

Summary of the errors

Conclusion

Data access and documentation

RMIB

ntroduction

Main products features

User requirements

Processing overview

Validation

- Methodology
- Results

Summary of the errors

Conclusion

Data access and documentation

Conclusion

The EUMETSAT Network of

- Quality of the early part of the data records verified against other data records (e.g. HIRS OLR CDR - Daily/Monthly, ERBS WFOV-CERES)
- In terms of accuracy, validation indicates that:
 - threshold requirements are fulfilled
 - target requirements are fulfilled for most of the products and periods
- In terms of stability, validation indicates that:
 - optimal and target requirements far from being achieved
 - threshold requirements are however fulfilled for most of the products and periods
 - systematic error shows a relatively good stability in time, without sharp transitions between satellites and generations of instruments
 - no instrumental drift (i.e. ageing effect) is apparent

RMIB

ntroduction

Main products features

User requirements

Processing overview

- Validation
- Methodology
- Results

Summary of the errors

Conclusion

Data access and documentation

Data access and documentation

The EUMETSAT Network of

Data ordering via the Web User Interface through the CM SAF homepage : <u>www.cmsaf.eu</u>

CM SAF identifier	Content
CM-23311	TOA Reflected Solar radiative flux All Sky (TRS_AS)
CM-23341	TOA Emitted Thermal radiative flux All Sky (TET_AS)

- Algorithm Theoretical Basis Document, version 1.3 : SAF/CM/RMIB/ATBD/MET_TOA
- Dataset Generation Capability Description Document, version 1.1 : SAF/CM/RMIB/DGCDD/MET_TOA
- Product User Manual, version 1.1 : SAF/CM/RMIB/PUM/MET_TOA
- Scientific Validation Report, version 1.1 : SAF/CM/RMIB/VAL/MET_TOA

CM SAF

Thank you for your attention !

- Ipe, A., Bertrand, C., Clerbaux, N., Dewitte, S., & Gonzalez, L. (2003). Pixel-scale composite top- of-the-atmosphere clearsky reflectances for Meteosat-7 visible data. Journal Geophysical Research, 108, 4612.
- Ipe, A., Bertrand, C., Clerbaux, N., Dewitte, S., & Gonzalez, L. (2004). Validation and homogenization of cloud optical depth and cloud fraction retrievals for GERB/SEVIRI scene identification using Meteosat-7 data. Atmospheric Research, 72(1), 17-37.
- Ipe, A., Gonzalez, L., Bertrand, C., Baudrez, E., Clerbaux, N., Decoster, I., Dewitte, S., Nevens, S., & Velazquez Blazquez, A. (2010). Cloud detection using IR SEVIRI channels for GERB. Remote Sens. Environ., submitted, 2010.
- Ipe, A. (2011). Cloud properties retrieval for climate studies from geostationary orbit. PhD thesis at Vrije Universiteit Brussel. Available via <u>http://gerb.oma.be</u>
- Loeb, N. G., Manalo-Smith, N., Kato, S., Miller, W. F., Gupta, S. K., Minnis, P., & Wielicki, B. A. (2003). Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth's Radiant Energy System instrument on the Tropical Rainfall Measuring Mission satellite. Part I: Methodology. Journal of applied meteorology, 42(2), 240-265.
- Clerbaux, N., Dewitte, S., Gonzalez, L., Bertand, C., Nicula, B. & Ipe, A. (2003a). Outgoing Longwave Flux Estimation: Improvement of Angular Modelling Using Spectral Information. Remote Sensing of Environment, 85, 389-395.
- Clerbaux, N. (2008). Processing of Geostationary Satellite Observations for Earth Radiation Budget Studies. PhD thesis at Vrije Universiteit Brussel Available via <u>http://gerb.oma.be</u>
- Govaerts, Y. M., Clerici, M., & Clerbaux, N. (2004). Operational calibration of the Meteosat radiometer VIS band. IEEE Transactions on Geoscience and remote sensing, 42, 1900-1914.
- Govaerts, Y. M., Clerici, M., & Clerbaux, N. (2004). Operational calibration of the Meteosat radiometer VIS band. IEEE Transactions on Geoscience and remote sensing, 42, 1900-1914.
- Meirink, J.F., Roebeling, R.A., & Stammes, P. (2013). Inter-calibration of polar imager solar channels using SEVIRI. Atmospheric Measurement Techniques, 6, 2495-2508.