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1 Introduction 

In the context of global warming and rapid changes of the land use due to human economical 
activities, it is fundamental to be able to accurately estimate key variables such as the 
evapotranspiration (ET). Accurate quantification of ET is critical for understanding the 
terrestrial water cycle, carbon cycle, land–atmosphere interactions, surface energy balance, 
and for managing water resources, particularly under changing climatic conditions (Sellers et 
al., 1997; Oki and Kanae, 2006; Trenberth et al., 2009; Liou and Kar, 2014; Michel et al., 2016; 
Fisher et al., 2017; Behrendt et al., 2020). As pointed out in the IPCC report on “Climate Models 
and Their Evaluation” (Randall et al., 2007), ET is a key variable in model evaluation. The 
Coupled Model Intercomparison Project (CMIP, Eyring et al. (2016)), which evaluates the 
climate models and provides input on future climate predictions for the IPCC reports, relies on 
ET climate data records (CDRs). Numerous studies made a dedicated analysis of the modelled 
ET in the CMIP ensemble (Mueller and Seneviratne, 2014; Lian et al., 2018; Wang et al., 2021). 
Examples of impactful multi-model benchmarking and evaluation studies are legion, including 
the Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model 
Benchmarking Evaluation Project (PLUMBER; Best et al. (2015)) and Global Energy and 
Water Cycle Exchanges (GEWEX) LandFlux project (McCabe et al., 2016). They highlight the 
importance of ET, and emphasise that the climate modelling community is strongly relying on 
ET CDRs. Accurate estimates of ET can also be useful for the calibration of hydrological 
models (Rajib et al., 2018; Nijzink et al., 2018; Sirisena et al., 2020). Moreover, various studies 
have used ET to investigate the impacts of climate change on hydrology (Liu et al., 2021), 
droughts (Joetzjer et al., 2013; Kim and Rhee, 2016; Cook et al., 2022; Perez et al., 2024; 
Zhang et al., 2023b), feedbacks with vegetation (Yang et al., 2023), and to assess planetary 
boundary layer (Wang-Erlandsson et al., 2022). In addition, ET is a fundamental component 
in numerous studies based on the water balance framework (Pan et al., 2012; Zhang et al., 
2012; Ukkola and Prentice, 2013; Oliveira et al., 2014; Wang et al., 2014b,a, 2015; Liu et al., 
2016; Chen et al., 2020; Pascolini-Campbell et al., 2020; Wong et al., 2021; Ruhoff et al., 2022; 
Tan et al., 2022; Michailovsky et al., 2023; Unnisa et al., 2023; Xiong et al., 2023). 

The water balance equation provides a physically grounded method to estimate ET by 
combining observed or modeled data on precipitation, river discharge, and terrestrial water 
storage change. Its basic formulation is expressed as: 

 ET = P - Q - 
dS
dt  (1) 

where P is the precipitation, Q denotes river discharge and dS
dt

 is the change in water storage 
over time. Various studies, particularly those analyzing long-term periods (annual or more), 
considered the change in water storage (dS

dt
) as negligible under the assumption that, over 

extended timescales, the inputs and outputs balance out, resulting in minimal net change in 
storage (Hobbins et al., 2001; Zhang et al., 2012; Hasenmueller and Criss, 2013; Xue et al., 
2013). However, the validity of this assumption depends on the temporal scale, as well as the 
specific hydrological characteristics of the region under investigation (Zeng et al., 2012; Wu et 
al., 2019; Han et al., 2020). 
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Water balance basin analysis is particularly valuable for quantifying water availability, 
diagnosing the influence of climatic drivers on hydrological regimes, and supporting water 
resource management. Some studies have analyzed the water budget and the sources of 
imbalances (Pan et al., 2012; Wang et al., 2014b, 2015; Tan et al., 2022; Unnisa et al., 2023). 
Furthermore, it is commonly used to estimate ET itself. In this context, ET derived from the 
water balance serves to assess independent ET products and for conducting climate studies. 
As mentioned by Sheffield et al. (2009) and Oliveira et al. (2014), estimation of water balance 
components using ground-based measurements remains challenging due to uneven 
monitoring networks, expensive operations, and inadequate data openness and availability. 
To address these challenges, remote sensing offers a promising alternative by delivering 
spatially consistent estimates of terrestrial water cycle components across regional to global 
scales (Sheffield et al., 2009, 2018). 

Satellite-derived data, particularly evapotranspiration and precipitation estimates, play an 
important role in optimizing the accuracy and applicability of the water balance equation. From 
the available products, the EUMETSAT CM SAF (Climate Monitoring Satellite Application 
Facility) datasets are distinguished by a high temporal resolution, long-term continuity, and 
explicit design for climate monitoring purposes. These products ensure temporal homogeneity 
and are particularly well-suited for hydrological and climatological studies. Their open-access 
availability also contributes to their value for regions with poor ground-based observations and 
research. In this context, two recent CM SAF products offer promising datasets for water 
balance analysis: the LANDFLUX Ed. 1 ET dataset (Moutier et al., 2024) and the GIRAFE v1 
precipitation dataset (Konrad et al., 2025). The LANDFLUX dataset includes ET estimates at 
hourly, daily, and monthly resolutions over a 0.05°grid (approximately 5.5 km) covering the 
Meteosat disk (65°N–65°S and 65°W–65°E) for the 1983–2020 period. The GIRAFE dataset 
has global daily precipitation estimates, including sampling uncertainty and monthly means, at 
a spatial resolution of 1.0°, covering the period 2002–2022. Despite advancements in satellite 
sensors and retrieval techniques, closing the surface water budget using remote sensing data 
remains challenging. A recent paper by Zhang et al. (2023a) found substantial discrepancies 
between energy-balance-based ET (ETEB) and water-balance-based ET (ETWB) across 53 
catchments in central-western Europe. These discrepancies were particularly pronounced in 
energy-limited catchments. At the annual scale, ETEB showed weak agreement with ETWB 
(correlation = 0.35), whereas at the monthly scale the correlation was stronger (r = 0.73). Such 
differences underscore the importance of basin characteristics, temporal aggregation, and 
input dataset choices in ET estimation. Given these challenges, it is essential to assess the 
suitability of CM SAF datasets for regional water balance applications. This study aims to: (i) 
evaluate the applicability of the CM SAF ET product in the context of water balance framework, 
(ii) compare water-balance-derived ET with independent remote sensing and reanalysis 
products, and (iii) assess water balance closure (i.e., the residual or imbalance) under various 
configurations of input datasets, including three distinct precipitation products, across a wide 
range of basin types. The analysis is conducted over 332 river basins across Europe. To 
provide a comprehensive evaluation of our dataset, we included a comparison with four widely 
used evapotranspiration products (LSA SAF, ERA5-Land, GLEAM, and GLDAS 2.1). 
Following the approach of Zhang et al. (2023a), we also investigate the influence of accounting 
for water storage changes and the role of basin characteristics, such as size and climate 
regime, on ET estimation accuracy. Furthermore, the choice of precipitation dataset, often a 
major source of uncertainty, is critically examined. Through this comprehensive evaluation, the 
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study provides insights into the strengths and limitations of CM SAF products for both scientific 
research and operational water resource management. It also contributes to the broader effort 
of integrating remote sensing data into hydrological assessments and climate monitoring 
frameworks. 
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2 Material and Method 

 

Figure 1: Schematic representation of data sources and methodologies used for 
estimating and comparing evapotranspiration based on the water balance method 
including (ETWB) or not (ETPQ) the change in water storage with remote sensing-
based/reanalysis products. 

 

Figure 1 shows the approach which is used, at each selected basin, in comparing 
evapotranspiration (ET) derived from various independent datasets (satellite-based approach, 
reanalysis datasets) and those estimated using the water balance equation with (ETWB) and 
without considering the change in water storage (ETPQ). On the left, the components of the 
water balance equation are presented, including precipitation (P, see Section 2.3) from various 
sources (GIRAFE, MSWEP, and E-OBS), water storage changes (dS

dt
) derived from GRACE 

data (averaged across JPL, CSR, and GFZ solutions, see Section 2.4), and discharge (Q) from 
the GRDC dataset (see Section 2.1). On the right, in addition to the CM SAF ET product, other 
ET products were also considered in the analysis for comparison purposes. Those products, 
selected for their widespread use within the scientific community, are the LSA SAF, GLEAM, 
ERA5-Land, and GLDAS 2.1 ET products. The imbalance will also be analyzed by calculating 
the difference between water balance-derived ET and independent products: 

 
ε = 

∑ Pi
n
i=0 -Qi-

dSi
dt  -ETPi

N  

=∑
ETWBi 

n
i=0 -	ETPi

N  

(2) 
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where N is the number of estimations, 𝐸𝑇%&  corresponds to evapotranspiration values for 
various independent products (CM SAF, LSA SAF, GLEAM, GLDAS 2.1 and ERA5-Land) and 
𝐸𝑇'(&  represents the evapotranspiration values calculated using equation 1 (ETWB can be 
replaced by ETPQ). Furthermore, specific analyses will be conducted based on basin size 
(larger or smaller than 90 000 km2; see Section2.4) and climate regime (water- or energy-
limited basins; see Section 2.5). 

A detailed description of the used datasets is provided in Table 1 and the following subsections. 
From their native spatial resolution, all datasets have been remapped to a common spatial 
(0.25°) and temporal (monthly or yearly) resolutions. This ensures consistency across datasets 
and allows direct comparisons over different timescales. 

Table 1: Overview of the datasets used in this study, including their names, temporal and spatial 
resolution (as used in this study), and periods of availability. 

Products 

 Dataset name Temporal 
resolution 

Native spatial 
resolution Period 

Evapotranspiration 

LANDFLUX Ed.1 
(CM SAF) Monthly 0.05° 1983-2020 

LSA SAF (CDR) Daily 0.05° 2004-2020 

GLEAM v4.2a Monthly 0.1° 1980-2023 

GLDAS 2.1 Monthly 0.25° 2000-present 

ERA5-Land Monthly 0.1° 1950-present 

Precipitation 

GIRAFE (CM 
SAF) Monthly 1° 2002-2022 

E-OBS v23.1e Daily 0.25° 1950-present 

MSWEP v2.8 Monthly 0.1° 1979-present 

Water storage 

GRACE v6.3 
CSR RL06 Monthly 1° 2002- 

~present 

GRACE v6.3 
JPL RL06 Monthly 1° 2002- 

~present 

GRACE v6.3 
GFZ RL06 Monthly 1° 2002- 

~present 

Discharge GRDC Monthly station 1806- present 
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2.1 Discharge Global Runoff Data Center (GRDC) 

The monthly discharges data were collected from the Global Runoff Data Center (GRDC). 
Established in 1988, the GRDC maintains the most comprehensive and quality-controlled 
collection of river discharge data worldwide. It archives river discharge data up to 216 years 
old at both daily and monthly scales for more than 10 800 stations from 160 countries. 
Discharge values are originally provided in cubic meters per second (m3 s-1) and have been 
converted to mm month−1 (Q (mm month−1) = Q (m3 s-1) × 86400000 × number of days in month 
/Area(m2)). The GRDC river discharge database includes essential metadata such as station 
coordinates, station and river names, upstream catchment area, elevation, long-term mean 
discharge, and a shapefile delineating the contributing basin. The shapefile of the basin is used 
to spatially aggregate other water balance components from gridded datasets. By averaging 
these variables over each basin, consistent input values are obtained for application in the 
water balance equation. 

For this study, we selected stations that met the following criteria: (i) a drainage area greater 
than 1 000 km2, (ii) a minimum of five consecutive years of data, and (iii) availability of valid 
data from all other datasets covering 100% of the basin surface for each station. Based on 
these criteria, 332 stations across Europe (Figure 2) were used for the analysis. 
 

 

Figure 2: Spatial distribution of the 332 river discharge stations selected from the Global Runoff 
Data Centre (GRDC) across Europe. Each dot represents a station, with red indicating large 
basins (area > 90 000 km2) and black indicating small basins (area ≤ 90 000 km2). The associated 
basin shapes are also shown, colored according to their aridity index (AI): blue for energy-limited 
basins (AI ≤ 1) and orange for water-limited basins (AI > 1). 
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To account for variations in basin size and climate regime, we performed specific analyses 
based on these factors. First, since GRACE provides more reliable estimates dS

dt
 for basins 

larger than 90 000 km2 (Tangdamrongsub et al. (2021), see Section 2.4 for details), we 
categorized the basins into two groups: 25 large basins (area >= 90 000 km2) and 307 smaller 
basins. Additionally, based on an estimation of the aridity index (AI) (see Section 2.5), the 
basins were classified into two climate categories: 94 “energy-limited” (wet; AI ≤1) and 238 
“water-limited” (dry; AI>1) basins (see details in Section 2.5). 

For visualization purposes, among the 25 stations located in basins larger than 90 000 km2 
(across seven rivers), the largest station from each river was selected to provide a 
representative sample of the major basins. This results in a subset of seven stations (see Table 
2 in the Appendix), hereafter referred to as the six largest river stations for simplicity. 

 

2.2 Actual evapotranspiration 

2.2.1 CM SAF LANDFLUX Ed. 1 dataset 

The CM SAF Surface Radiation and Fluxes - Edition 1 (LANDFLUX Ed. 1; Moutier et al. (2024)) 
dataset provides nearly 40 years (1983–2020) of parameters depicting the surface states and 
radiation fluxes, including the Surface Radiation Balance (SRB), Cloud Fractional Cover 
(CFC), Land Surface Temperature (LST), Evapotranspiration (ET), and Latent (LE) and 
Sensible (H) Heat Fluxes. Retrievals are based on two sensors aboard the Meteosat suite of 
geostationary satellites: the Meteosat Visible and InfraRed Imager (MVIRI) and the Spinning 
Enhanced Visible and InfraRed Imager (SEVIRI). 

The parameter ET is calculated using an adapted version of the methodology developed by 
the Land surface Land Surface Analysis SAF (Barrios et al. (2024)), based on the Hydrology 
Tiled ECMWF Scheme for Surface Exchanges over Land (H-TESSEL; van den Hurk et al., 
2000; Balsamo et al., 2009). This adaptation allows the use of both satellite-based data and 
numerical weather prediction (NWP) model outputs as forcing inputs. A full description of the 
methodology is described in Moutier et al. (2023b). 

LANDFLUX Ed. 1 data are available in hourly, daily, and monthly temporal resolutions, as well 
as monthly diurnal cycle composites. The dataset covers the ±65° longitude and ±65° latitude 
region on a 0.05°× 0.05°regular grid. In the following, only monthly data will be used. To 
simplify the reading, this dataset will hereafter be referred to as the CM SAF evapotranspiration 
product. 

2.2.2 LSA SAF dataset 

The LSA SAF ET dataset is a satellite-based product based on SEVIRI observations (Barrios 
et al., 2024). The data record demonstrator provides 30-minute and daily evapotranspiration 
estimates between 2004 and 2020 at a 0.05°× 0.05°spatial resolution over the Meteosat 
coverage area. As discussed in Section 2.2.1, the LSA SAF and the CM SAF share a similar 
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core model, with key differences arising from the choice of input data. For instance, while CM 
SAF uses ERA5 as input to estimate the soil moisture, the LSA SAF approach relies on the H 
SAF soil moisture dataset. Other differences can be seen in the choice of the stomatal 
resistance values and the retrieval of the leaf area index (LAI) for each tile. For instance, an 
inversion matrix approach is used in the LSA SAF (Ghilain et al., 2011, 2012) while a LUT 
approach is adopted in the CM SAF (Moutier et al., 2023b). 

2.2.3 ERA5-Land dataset 

ERA5 dataset (Hersbach et al., 2019) is the fifth generation of global atmospheric reanalysis 
generated by the ECMWF. The underlying land surface model used is H-TESSEL. ERA5 ET 
is derived from the ERA5 atmospheric reanalysis, which includes coupled atmosphere–land 
interactions. All global atmospheric, oceanic and land surface fields are available at an hourly 
time step with a spatial resolution of 0.25°(~32km) covering the period from January 1950 to 
present, thus the full extend of the record. ERA5-Land (Muñoz Sabater et al., 2021) is a high-
resolution land component of the ERA5 atmospheric reanalysis, providing data at a spatial 
resolution of 0.1°× 0.1°. ERA5-Land is generated using the same land surface model but forced 
with downscaled meteorological variables from ERA5 without the direct feedback of 
atmospheric coupling. This later demonstrated its performance in simulating the 
evapotranspiration in offline experiments (Muñoz Sabater et al., 2021, and reference therein). 

2.2.4 GLDAS dataset 

Global Land Data Assimilation System version 2 (GLDAS; Rodell et al., 2004) is a new 
generation of reanalysis developed jointly by the National Aeronautics and Space 
Administration (NASA) Goddard Space Flight Center (GSFC) and National Center for 
Environmental Prediction (NCEP). GLDAS, which has been streamlined and parallelized by 
the Land Information System (LIS; Kumar et al., 2006), generates land surface products by 
using various offline (not coupled to the atmosphere) land surface models (LSM) and ingesting 
satellite- and ground-based observational datasets (Rodell et al., 2004). Details about the 
forcing data and description of the model are available on 
http://disc.Sci.GSFC.NASA.Gov/Hydrology. Currently, GLDAS has three components: 
GLDAS-2.0 (1948-2014), GLDAS-2.1 (2000- Present), and GLDAS-2.2 (Feb 2003-Present). 
Beyond their differences in term of forcing or data assimilation source, the choice of the product 
has been dictated by the period covered to validate the CM SAF product. We have selected 
the GLDAS-2.1 product with a monthly temporal resolution. GLDAS-2.1 data have been 
simulated by the Noah 3.6 Model in Land Information System Version 7 with a spatial resolution 
of 0.25°. This simulation was forced with National Oceanic and Atmospheric Administration 
(NOAA)/Global Data Assimilation System (GDAS) atmospheric analysis fields (Derber et al., 
1991), the disaggregated Global Precipitation Climatology Project (GPCP) V1.3 Daily Analysis 
precipitation fields (Adler et al., 2003; Huffman et al., 2001), and the Air Force Weather 
Agency’s AGRicultural METeorological modeling system (AGRMET) radiation fields. The 
simulation was only used with GDAS and GPCP from January 2000 to February 2001, followed 
by the addition of AGRMET from March 1, 2001 onwards. 
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2.2.5 GLEAM dataset 

The Global Land Evaporation Amsterdam Model (GLEAM; Miralles et al., 2011; Martens et al., 
2017; Miralles et al., 2024) is a remote sensing-based model allowing the estimation of the 
terrestrial evapotranspiration components, including transpiration, bare soil evaporation, 
interception loss, sublimation, as well as root-zone soil moisture. To account for random errors 
in the forcing data and other processes not explicitly represented in the model, such as 
irrigation, GLEAM assimilates microwave soil moisture (SMs) and/or backscatter observations 
into the soil profile. Interception loss is calculated separately using the approach from Zhong 
et al. (2022). Potential evapotranspiration is calculated using the Priestley-Taylor (PT) equation 
(Priestley and Taylor, 1972) and, the actual evapotranspiration is derived by including stress 
factors such as soil moisture states and vegetation physiological characteristics. Key features 
of this model include the integration of microwave-derived soil moisture, land surface 
temperature, and vegetation density, along with a detailed parameterization of rainfall 
interception loss. The GLEAM dataset is available globally at daily, monthly and yearly 
temporal resolutions, with a spatial resolution of 0.1°, covering the period 1980 to 2023. In this 
use case, we use GLEAM V4.2a product at a monthly temporal resolution with a spatial 
resolution of 0.1°. 

2.2.6 Intercomparison of evapotranspiration products 

Figure 3 displays the probability density functions (PDFs) of monthly ET estimates for all 
selected basins from the five datasets reggrided at 0.25°: CM SAF, LSA SAF, GLEAM, ERA5-
Land, and GLDAS-2.1. The CM SAF and LSA SAF distributions exhibit a strong peak at lower 
ET values, indicating a higher frequency of low ET estimates. In particular, mode values are 
of 3 mm month−1 for CM SAF and 6 mm month−1 for LSA SAF datasets whereas other datasets 
show higher values ranging from 8 (GLDAS) to 12 (GLEAM) mm month−1. Furthermore, CM 
SAF presents a lower median value of 21 mm month−1, compared to 36 ± 2 mm month−1 for 
other datasets. This suggests that CM SAF dataset tends to produce slightly lower values. This 
finding is aligned with the results reported in Moutier et al. (2023a). This comparison 
underscores the variability in ET estimates across different datasets and emphasizes the 
importance of understanding the underlying model assumptions and forcing data when 
analyzing water balance components. 
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Figure 3: Probability density functions (PDFs) of monthly evapotranspiration (ET) estimates for 
all selected basins, over the period 2004-2020, from the five regridded (0.25°) datasets: CM SAF 
(blue), LSA SAF (red), GLEAM (green), ERA5-Land (purple), and GLDAS-2.1 (yellow). Vertical 
solid lines indicate the median ET values for each dataset. 

 

2.3 Precipitation 

2.3.1 E-OBS 

E-OBS v23.1e is an ensemble gridded dataset of surface climate observations (precipitation 
sum, mean sea level pressure, mean wind speed, mean relative humidity, global radiation and 
mean, minimum and maximum temperature) at daily resolution for Europe (25°N-71.5°N x 
25°W-45°E; Cornes et al., 2018). These variables are available on a 0.1°and 0.25° land-only 
regular grid, offering detailed spatial resolution. The E-OBS gridded data set is derived through 
interpolation of observations (see details in Haylock et al., 2008; Cornes et al., 2018) from a 
dense network of meteorological stations data collated by the ECA&D initiative (European 
Climate Assessment and Data; Klein Tank et al., 2002; Klok and Klein Tank, 2009). Since the 
initial construction of E-OBS by Haylock et al. (2008), the number of stations has drastically 
changed, with approximately 2,500 to approximately 9000 stations in the case of precipitation. 
The uncertainty of the product is not homogeneous over the grid as the product uncertainty 
increases in data-sparse regions. However, the robustness and reliability of E-OBS are further 
ensured through rigorous quality control measures and the inclusion of a wide range of 
meteorological stations, making it suitable for this use case. Before extracting the basin shape, 
monthly data was obtained by accumulating the daily product. 
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2.3.2 GIRAFE 

The CM SAF has recently released its first global precipitation climate data record: the Global 
Interpolated RAinFall Estimation version 1 (GIRAFE v1; Konrad et al., 2025). It provides daily 
accumulated precipitation and respective sampling uncertainty, as well as monthly mean 
values, covering the period 2002–2022 at a 1.0°spatial resolution. Estimations are derived from 
a combination of passive microwave (PMW) observations onboard polar orbiting satellites and 
infrared (IR) observations onboard geostationary satellites distributed around the equator 
(Geo-Ring). Originally developed for the Megha-Tropiques satellite mission, the Tropical 
Amount of Precipitation with an Estimate of ERrors (TAPEER; Chambon et al., 2013; Roca et 
al., 2018) approach has been adapted to merge PMW and IR data as well as the estimation of 
the daily sampling uncertainty. In the 55°S–55°N latitude range, PMW-derived precipitation 
rates are merged with IR-based precipitation occurrence to compute daily precipitation 
accumulations. Beyond the 55°S–55°N latitude range, the IR Geo-Ring pixel distortion is too 
high, and daily accumulation estimation exclusively relies on PMW observations. Thus, the 
GIRAFE sampling uncertainty, being estimated from IR observations, is only available in the 
55°N/S latitude region. Please note that a full description of the method can be found in 
(Konrad et al., 2025; Niedorf et al., 2024). In the framework of this study, only monthly data 
has been extracted and remapped to a common 0.25°grid using the “remapcon” function of 
the Climate Data Operators (CDO) tool. 
 

2.3.3 MSWEP 

The Multi-Source Weighted-Ensemble Precipitation v2.8 (MSWEP; Beck et al., 2019) dataset 
is a high-resolution, global precipitation dataset that combines information from multiple 
sources, including gauge observations, satellite estimates, and reanalysis data. The dataset is 
unique in being able to incorporate daily gauge observations and correct for gauge reporting 
times, which minimizes temporal mismatches between the different data sources (see Beck et 
al. (2017, 2019) for more information). MSWEP v2.8 has a 3-hourly, daily, and monthly 
temporal resolution and a spatial resolution of 0.1° in three variants: "NRT", "Past_nogauge", 
and "Past". The "NRT" is the near real-time extension (with latency of 3 hours). The "Past" and 
"Past_nogauge"" are the historical satellite-reanalyses merged with and without gauge 
corrections, respectively, for the period 1979–2020. In the framework of this study, we have 
used the ’Past’ version as it includes all the data sources of "Past_nogauge" but also includes 
daily gauge corrections. This version provides the optimal precipitation estimates by merging 
gauge data and is suitable for hydrological and climatological purposes. 

2.3.4 Intercomparison of precipitation products 

Figure 4 displays the probability density functions (PDFs) of monthly precipitation (P) estimates 
for all selected basins from the three datasets regridded at 0.25°: GIRAFE, MSWEP and E-
OBS. The GIRAFE distributions exhibit lower precipitation values as compared to MSWEP and 
E-OBS products. Indeed, the median value for GIRAFE is of 31 mm month−1 while medians of 
65 and 62 mm month−1 are observed for MSWEP and E-OBS, respectively. This observation 
aligns with the findings by Konrad et al. (2025), where GIRAFE tends to produce lower values 
over Europe. This underestimation could be partially related to the inadequate detection of 
precipitation over snow and ice surfaces (Konrad et al., 2025) and a general tendency toward 
lower daily precipitation (Konrad et al., 2024). To further illustrate this, an extended version of 
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the PDF analysis is provided in Appendix Figure 19, which shows how applying different 
thresholds on the number of snow days affects the distribution of GIRAFE precipitation values. 
 

 

Figure 4: Probability density functions (PDFs) of monthly precipitation (P) estimates for all 
selected basins, over the period 2004-2020, from the three regridded (0.25°) datasets: GIRAFE 
(blue), MSWEP (red) and E-OBS (green). Vertical solid lines indicate the median precipitation 
values for each dataset. 

 

2.4 Water storage 

For each basin, the changes in total water storage (dS
dt

 at monthly timescale) are estimated 
using data from NASA Gravity Recovery And Climate Experiment (GRACE) and its follow-up 
mission, the Gravity Recovery and Climate Experiment Follow-on (GRACE-FO) data (Landerer 
and Swenson, 2012). These missions provide estimates of terrestrial water storage by 
detecting variations in Earth’s gravity field caused by mass redistribution, primarily associated 
with changes in water storage. The GRACE-derived total water storage is available for the 
period 2002–near present at a spatial resolution of 1°based on three RL06 solutions provided 
by major processing centers: GFZ (GeoForschungsZentrum; Landerer, 2021b, 2023a), CSR 
(Center for Space Research, University of Texas; Landerer, 2021a, 2024), and NASA JPL (Jet 
Propulsion Laboratory; Landerer, 2021c, 2023b). The estimation of water storage changes 
follows a well-established approach (Swann and Koven, 2017), where the monthly variation in 
water storage is computed using a centered finite difference of the monthly total water storage 
values: 

 dS
dt ≈ 

St+1- St-1
2∆t  (3) 
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where ∆t represents a time step of one month, and St+1 and St−1 correspond to the monthly 
mean water storage in the basin for the following and preceding months, respectively. 

 

Finally, we have used a simple average of the three different GRACE spherical harmonic 
solutions (GFZ, CSR, and JPL) to reduce uncertainties associated with individual processing 
strategies and enhance the robustness of total water storage estimates (Sakumura et al., 
2014). As described by Tangdamrongsub et al. (2021), the sensitivity of GRACE to changes 
in terrestrial water storage is constrained by the design of its satellites and orbital configuration. 
GRACE is more accurate while detecting variations over relatively large areas (e.g., >90 000 
km2) or mass changes exceeding ≃1 Gton, which corresponds to approximately 1 cm of 
equivalent water height over 3°×3°grid cell. This coarse spatial resolution limits its applications 
for detailed dS

dt
 assessments in smaller river basins. Nevertheless, numerous studies include 

smaller basins into their analyses (e.g., Zeng et al., 2012; Wang et al., 2014b; Xiong et al., 
2023; Zhang et al., 2023a), demonstrating that GRACE data can still be valuable at finer 
scales. Therefore, this limitation has been used as a threshold to categorize basins into 
different groups for further analysis (see Section 2.1). 

Please note that the use of a centered finite difference approach ideally requires a continuous 
time series. However, the original GRACE mission terminated in June 2017, while its 
successor, GRACE-FO, only began data acquisition in June 2018, resulting in an 11-month 
gap between July 2017 and May 2018. Furthermore, the GRACE mission itself contains 
additional missing months, and certain months were excluded due to poor temporal centering. 
A data file spanning from 20 March 2012 to 20 April 2012 is not considered to be centered on 
a specific month and was therefore excluded from the analysis. Although various gapfilling 
methods have been proposed to address these discontinuities (Zhang et al., 2025), the 
implementation of such techniques was beyond the scope of this study. 

2.4.1 Intercomparison of change in water storage products 

Figure 5 shows the probability density functions (PDFs) of monthly changes in water storage 
estimates across all selected basins, based on the three GRACE solutions, JPL, GFZ, and 
CSR, regridded to 0.25°. The spread of the distributions suggests variability between the 
datasets, suggesting differences in how each solution captures changes in water storage. 
Despite this variability, the distributions are generally centered around zero, indicating, over 
the period 2004-2020, no pluriannual accumulation or depletion of water at the basin scale. 
Nevertheless, the variability implies the presence of fluctuations at finer temporal or spatial 
resolutions. 
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Figure 5: Probability density functions (PDFs) of monthly water storage (dS
dt

 ; mm month−1) 
estimates for all selected basins, over the period 2004-2020, from the three sources: GRACE-
CSR (blue), GRACE-JPL (red) and GRACE-GFZ (green). Vertical solid lines indicate the median 
values for each PDFs. 

 

2.5 Aridity index 

The aridity index (AI), here defined as the ratio of annual reference evapotranspiration ETref to 
annual precipitation (though the potential ET is sometimes used as well; Zarch et al., 2015; 
Kukal and Irmak, 2016, and references therein), is a key indicator of climate dryness in a given 
region. An AI of 0 corresponds to extremely arid areas with no precipitation, while values close 
to 1 indicate humid environments where most precipitation is returned to the atmosphere 
through evapotranspiration. Values greater than 1 represent areas where precipitation 
exceeds evapotranspiration. To distinguish the impact of climate on water balances, we 
followed the Palmer et al. (2010) and Zhang et al. (2023a) approaches by classifying basins 
as either water-limited (AI > 1) or energy-limited (AI ≤ 1). 

In the framework of this study, we derive several AI thanks to the LSA SAF ETref daily product 
(Trigo et al. (2011); Paredes et al. (2021)), and the three precipitation products (see section 
2.3). ETref LSA SAF and precipitation data were initially remapped to a common 0.25°grid using 
the “remapcon” function of the CDO tool. Subsequently, the daily/monthly mean values were 
calculated for each basin and aggregated to annual timescales, considering only years with a 
full set of 12 valid months. Yearly ETref and P values have been averaged to finally obtain three 
AI estimates: AIGIRAFE, AIE-OBS, and AIMSWEP. A fourth AI was computed as the median of the 
three individual estimates and named AIAverage. 
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2.5.1 Intercomparison of AI products 

Figure 6 presents these four aridity indices’ probability density functions (PDFs). As expected, 
the lower precipitation values from GIRAFE (see Section 2.3.2) result in a higher AI as 
compared to other datasets. The median value for AIGIRAFE is 1.5, whereas median values for 
AIMSWEP and AIE-OBS are 0.8 and 0.84, respectively. By using AIAverage for the classification, 94 
basins were identified as water-limited and 238 as energy-limited. 

 

 

Figure 6: Probability density functions (PDFs) of the aridity index (AI), computed as the ratio of 
reference evapotranspiration from LSA SAF (ETrefLSA SAF ) to precipitation (P), for all selected 
basins over the period 2004–2020. The analysis is based on three regridded (0.25°) precipitation 
datasets: GIRAFE (blue), E-OBS (red), and MSWEP (green). The grey-shaded area represents the 
distribution of median AI values derived from the three individual datasets. Vertical solid lines 
indicate the median AI for each dataset. 

 

2.6 Statistical metrics 

The evaluation is made in terms of bias, mean absolute difference (MAD) and unbiased root 
mean square difference (uRMSD): 

 

 Bias = ∑
ETPi- ETWBi

n
i=0

N  (4) 
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 MAD = 
∑ |ETPi

- ETWBi|
n
i=0

N  (5) 

 

 uRMSD = +(RMSD)2 -	(Bias)2 .
1

2/  (6) 

with, 

 RMSD = 0
∑ 𝐸𝑇%& −	𝐸𝑇'(&
2
345

𝑁 7

8
9/
 (7) 

where N is the number of estimations, 𝐸𝑇%& corresponds to evapotranspiration values for 
various independent products (CM SAF, LSA SAF, GLEAM, GLDAS 2.1 and ERA5-Land) and 
𝐸𝑇'(&  represents the evapotranspiration values calculated using equation 1 (ETWB can be 
replaced by ETPQ). 
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3 Results & Discussion 

3.1 Specific example for the Düsseldorf station (Rhine River) 

 

Figure 7: Location of the GRDC station Düsseldorf (red dot) and its associated river basin (blue 
polygon) derived from GRDC shapefiles (area of 147680 km2). The basin, part of the Rhine River 
system, is classified as large (area > 90 000 km2) and energy-limited (AI ≤ 1). 

 

Analyzing a single basin provides a valuable opportunity to examine key hydrological 
components individually, gaining information about their magnitudes and variability. This 
approach not only enhances the understanding of each component separately but also helps 
to identify inconsistencies between different data sources or estimation methods. For instance, 
discrepancies between water balance-derived evapotranspiration (ETWB and ETPQ) and 
satellite-based or reanalysis estimates can indicate biases in precipitation, discharge, or water 
storage change components. In the same way, variations among precipitation datasets or 
GRACE-derived storage changes from different processing centers can reveal uncertainties 
related in data source/processing choices. This analysis clarifies how precipitation, discharge, 
and change in water storage are combined to estimate the overall water balance 
evapotranspiration, ultimately improving confidence in remote sensing based and reanalysis 
product-based evapotranspiration estimates. 

The Rhine River (Düsseldorf GRDC station, basin area of 147680 km2; Figure 7), holds 
significant importance due to its hydrological significance, economic impact, and role in climate 
studies, offering insights into water management challenges and climate change impacts in a 
major European river basin (Görgen et al., 2010; Bosshard et al., 2014; Stahl et al., 2022). 
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Figure 8: Monthly time-series of key hydrological components for the Rhine River at Düsseldorf 
(2003–2020). The panels display, from top to bottom: (1) observed discharge (QGRDC); (2) 
precipitation (P) from multiple datasets (GIRAFE, E-OBS, MSWEP), including their mean (P 
Average , red solid line); (3) water storage change (dS

dt
) estimated from GRACE solutions (CSR, 

JPL, GFZ), with their ensemble mean (red solid line); (4) evapotranspiration (ET) estimates from 
different datasets (CM SAF, LSA SAF, GLEAM, ERA5-Land, GLDAS 2.1), including their mean 
(red solid line); and (5) water balance-derived evapotranspiration with (ETWB) and without (ETPQ) 
including the water storage component, along with the monthly averages of key hydrological 
variables used in their computation: discharge (QGRDC; red solid line), mean water storage 
(dS

dt
GRACEAverage; yellow solid line), GIRAFE precipitation (PGIRAFE, bar-plot in blue) and the CM 

SAF evapotranspiration (ETCM SAF). 

Figure 8 presents the monthly time series of key hydrological components for the Rhine River 
at Düsseldorf from 2003 to 2020. The first panel illustrates the observed discharge (QGRDC), 
which exhibits variability, with peak values exceeding 75 mm month−1 during high-flow periods 
and minimum values around 20 mm month−1 (5th percentile (perc) = 17.9 mm month−1). The 
second panel shows monthly precipitation estimates from three datasets (GIRAFE, E-OBS, 
MSWEP), with the mean (PAverage). Precipitations exhibit substantial month-to-month variability, 
with 5th and 95th percentile of the distribution being 8 and 135 mm month−1 (including all 
products), respectively. The third panel presents the change in terrestrial water storage (dS

dt
), 

estimated from GRACE solutions (CSR, JPL, GFZ) and averaged. Most variations are ranged 
between ±45 mm month−1 (more than ≃90% of the data) with minimal and maximal values 
obtained in June (≃-32 mm month−1) and November (≃38 mm month−1). The estimated change  
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Figure 9: Scatter plots comparing monthly evapotranspiration estimates from the CM SAF 
product (ETCM SAF in mm month−1) with water balance-derived evapotranspiration estimates with 
(ETWB in mm month−1; left panels) and without (ETPQ in mm month−1; right panels) considering dS

dt
 

for all basins. GIRAFE (top panels), MSWEP (middle panels), and E-OBS (bottom panels) 
precipitation products are considered for the calculation of ETWB and ETPQ. The dashed black 
line represents the 1:1 relationship. Statistical metrics, including the coefficient of determination 
(R2), unbiased root mean square deviation (uRMSD), bias, mean absolute deviation (MAD), the 
number of observations (N), and the linear relationships, are provided in each panel. 
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in water storage varies according to the GRACE solution. Across the three datasets, the 
average maximum difference is of 10 mm month−1, while the standard deviation is on average 
of 5.5 mm month−1. For all methods, several gaps are observed between 2011 and 2018. As 
explained in the section 2.4, missing values are primarily due to data gaps between the 
GRACE and GRACE-FO missions, as well as the exclusion of months with missing or poorly 
centered observations, which are required for the finite difference approach. The fourth panel 
presents evapotranspiration (ET) estimates from various datasets (CM SAF, LSA SAF, 
GLEAM, ERA5-Land, GLDAS 2.1). A clear seasonal pattern is observed, with the maximum 
values of about 110 mm month−1 in summer and the minimum values of about 0 mm month−1 
in winter. While the ET values tend to be in the same order of magnitude, the highest 
differences are observed in summer. The final panel shows precipitation, discharge, GRACE-
derived storage change, and evapotranspiration. Two estimates of water balance-derived 
evapotranspiration are included: ETWB and ETPQ. These comparisons provide insights into 
potential discrepancies between datasets and the water balance approach. 

With a specific focus on evapotranspiration, we observe similar temporal dynamics between 
ETWB and ETCM SAF, while ETPQ shows a less consistent pattern. However, ETWB presents 
significant data gaps. This similarity in the temporal courses is confirmed by the 1:1 comparison 
in Figure 9, where ETCM SAF is compared with ETWB and ETPQ, based on GIRAFE (ETWB

GIRAFE 
and ETPQ

GIRAFE ), MSWEP ( ETWB
MSWEP  and ETPQ

MSWEP ) and E-OBS ( ETWB
E-OBS  and ETPQ

E-OBS ) 
products. When dS

dt
 is not considered, bias values are between 1 (ETPQ

E-OBS) and -34.9 mm 

month−1 (ETPQ
GIRAFE), but the correlation is weak with R2 values between 0.04 (ETPQ

E-OBS) and 
0.43 (ETPQ

GIRAFE).  The availability of GRACE data is a limiting factor for the ETWB timeseries. 
The analysis presented here uses a consistent subset of common match-ups across datasets 
to ensure statistical comparability. However, when this constrain is relaxed, the number of valid 
matchups increases significantly, by a factor of 1.6 to 3.2. This illustrates trade-off between 
statistical robustness and data availability when incorporating dS

dt
. Conversely, when dS

dt
 is 

included, bias values remain similar, but stronger relationships (≥0.57) are observed, and both 
the uRMSD and MAD tend to decrease. Only the MAD for GIRAFE remain nearly unchanged. 
Notably, the best R2 is obtained with the GIRAFE (CM SAF) dataset with a value of 0.83. While 
this strong relationship suggests potential for developing basin-specific models and supports 
the integration of CM SAF products in further climate analyses, several factors must be 
considered. Extremely low values are observed for ETWB

GIRAFE, which could bias the relationship, 
and ETCM SAF shows a cluster of points near zero. 

This cluster of low values is not unexpected, as it primarily corresponds to winter months when 
precipitation, evapotranspiration, and runoff are all typically reduced. As a result, the overall 
water balance, defined as the net difference between inputs and outputs, tends to be small. 
Under such conditions, even moderate uncertainties in individual components can strongly 
affect the residuals. For example, errors of approximately 10 mm in storage change estimates 
(Landerer and Swenson., 2012) and ~10% in discharge estimates (~5 mm month-1; Aerts et 
al., 2024) can introduce significant relative variability. Additionally, ET from CM SAF tends to 
provide lower values (see section 2.2.1), which may contribute to the clustering near zero. This 
pattern is not limited to a single case but is also observed across most basins and for several 
other ET products. Finally, precipitation may be underestimated in the GIRAFE dataset. In the 
case of GIRAFE, this underestimation is partly due to limitations in the GIRAFE v1 precipitation 
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dataset, which has a reduced ability to detect precipitation in mid-to-high latitudes during snow 
or ice conditions. This issue arises from limitations in the passive microwave (PMW) input data 
and can lead to an underestimation of precipitation in these areas. A dedicated quality flag is 
available to help users identify and exclude potentially affected grid cells. 

To further investigate the robustness of the observed relationships, we extended the R² 
analysis across all basins using different ET datasets, both with and without applying the 
GIRAFE snow flag. This was done to evaluate whether the improved agreement seen when 
using GIRAFE precipitation is consistent across datasets and basins, and to assess the 
potential role of snow-related biases. 
 

Figure 10 displays the probability density functions (PDFs) of R2 values between independent 
ET products (CM SAF, GLEAM, LSA SAF, ERA5-Land, GLDAS 2.1) and three water balance-
based ET estimates: ETWB

GIRAFE, ETWB
MSWEP, and ETWB

E-OBS. Across all datasets and basins, the 
use of GIRAFE precipitation systematically leads to higher R² values compared to MSWEP or 
E-OBS, indicating stronger alignment with independent ET products. This pattern is not limited 
to a specific product or region; it is observed across all independent ET datasets, suggesting 
that the higher correlations are not driven by dataset-specific features (e.g., CM SAF only) or 
by local conditions (e.g., the Düsseldorf basin). When applying the GIRAFE snow flag the 
number of valid months and basins decreases (see Figure 20 in Appendix), shifting the 
analysis toward summer periods. Nevertheless, the overall pattern remains: the use of 
GIRAFE precipitation continues to yield higher R² values, reinforcing the robustness of this 
result. This indicates that the observed improvements are not solely driven by extreme or low 
winter values but reflect a more consistent alignment between precipitation inputs and ET 
estimates. 

 

Figure 10: Probability density functions (PDFs) of R² values between independent 
evapotranspiration (ET) products (CM SAF, GLEAM, LSA SAF, ERA5-Land, GLDAS 2.1) and ET 
derived from the water balance-derived evapotranspiration estimates based using three different 
precipitation datasets: GIRAFE (top row, ETWB

GIRAFE), MSWEP (middle row, ETWB
MSWEP), and E-OBS 

(bottom row, ETWB
E-OBS).Left panels show results without applying a snow flag, while right panels 

include only values where the GIRAFE snow flag is set to 0. Each color represents one ET 
product, with N in the legend indicating the number of valid R² values (p-value < 0.05) used to 
compute the PDFs (corresponding to the number of basins). 
One possible hypothesis for this consistent increase in R² is that GIRAFE precipitation and the 
ET products share model sensitivity inputs and large-scale atmospheric drivers (e.g., (e.g., 
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radiation, cloud cover, convective activity), which can introduce structural similarities in their 
outputs regardless of true ET variability. This shared reliance on similar satellite observations 
could lead to consistent seasonal signals or structural similarities in both precipitation and ET 
estimates. Consequently, the higher R² values may result from these shared inputs. Another 
complementary hypothesis is that the higher R² values are driven by the stronger seasonal 
amplitude observed in the GIRAFE precipitation dataset. Among the three precipitation 
products, GIRAFE exhibits a markedly more pronounced seasonal cycle (see Figure 21 in 
Appendix), which more closely matches the seasonal variability in ET products. This stronger 
seasonal cycle in GIRAFE might reflect real climate patterns, but it could also be exaggerated, 
for example due to underestimation of winter precipitation. In either case, the stronger seasonal 
cycle aligns more closely with the dominant mode of variability in ET, which is also strongly 
seasonal, thereby inflating R² values. This interpretation is supported by a comparison of the 
annual cycle R² between precipitation and ETCM SAF: values reach 0.77 for GIRAFE, but only 
0.23 and 0.30 for E-OBS and MSWEP, respectively. A similar pattern is observed across all 
basins and ET products (results not shown), indicating that the stronger seasonal alignment 
between GIRAFE and ET products is not limited to a specific region. However, this hypothesis 
does not imply improved agreement in anomalies or short-term variability. Indeed, when 
comparing anomalies between ETWB based on GIRAFE and ETCM SAF, correlations are close to 
zero (not shown here). This suggests that the higher R² values may primarily reflect 
climatological alignment, such as annual cycles, rather than a more accurate representation 
of interannual or sub-seasonal dynamics. 
 
This consistent improvement in correlation across datasets supports the potential use the 
ETWB

GIRAFEvs. ETCM SAF relationship in practical applications, such as over the Düsseldorf basin. 
Indeed, this relationship could serve, for instance, as a basis for a gap-filling method or for 
extending time series of another component of the water balance equation, as illustrated in 
Figure 11. This figure shows the temporal course of dS

dt
 over the Düsseldorf basin, derived from 

both GRACE solutions (CSR, JPL, GFZ and their ensemble mean) and computed from the 
water balance equation (Eq. 1) using the GIRAFE precipitation, GRDC discharge and 
evapotranspiration estimated from established linear relationship between ETWB

GIRAFE and ETCM 

SAF (ETWB
GIRAFE	= 1.2 ´ ETCM SAF − 42). The water balance-derived dS

dt
 captures the temporal 

dynamics well and aligns closely with GRACE estimations, especially during periods with data 
gaps, suggesting its usefulness for gap-filling. It seems important to note that there is no 
significant bias, which would not be the case if CM SAF evapotranspiration were used directly. 
While promising, this approach remains a simplified representation of storage dynamics and 
requires further refinement to improve its robustness and applicability. Despite its encouraging 
result, this approach is a simplified representation of dS

dt
 and should be applied with caution. 

Indeed, it needs to be applied in a well-defined context in which the user is fully aware of the 
associated uncertainties and limitations. Its reliability depends on various factors as the 
selected GRACE solution used, the precipitation input to estimate ETWB, and the 
characteristics of the study basin. The empirical relationship itself is subject to uncertainty and 
may not be applicable to all regions or climatic regimes. Note that the approach has also been 
tested after removing spurious clusters of points near zero, and the conclusions remain valid 
(results not shown here). However, the users should define the acceptable error threshold for 
their specific application and check whether the error associated with the use of this gap-filling 
method falls within those limits. 
 

In the following sections, we extend the comparison of ET estimates from various independent 
products with both ETWB and ETPQ, analyzing the results according to seasonal variability, 
basin size, and climatic regimes of the basin. 

Formatted: Font: (Default) Arial, 11 pt

Formatted: Font: (Default) Arial, 11 pt

Formatted: Font: Not Bold

Formatted: Font: (Default) Arial, 11 pt

Formatted: Font: (Default) Arial, 11 pt

Formatted: Subscript

Formatted: Font: (Default) Arial, 11 pt

Formatted: Font: (Default) Arial, 11 pt

Formatted: Font: (Default) Arial, 11 pt

Formatted: Font: (Default) Arial, 11 pt, Subscript

Formatted: Font: (Default) Arial, 11 pt

Formatted: Subscript

Formatted: Font: (Default) Arial, 11 pt

Formatted: English (US)

Deleted: a limitation of the GIRAFE v1 precipitation dataset is 
its reduced ability to detect precipitation accurately in mid-to-
high latitudes during snow or ice conditions, due to limitations 
in the passive microwave (PMW) input data. This can lead to 
the underestimation of precipitation in these areas. A dedicated 
quality flag is provided to help users identify and exclude 
potentially affected grid cells. Figure 10 illustrates the impact 
on the relation of applying different snow-day flags as criteria 
to extract the data. By limiting the number of snow days to 5 
during the extraction of the values, the lowest values are 
excluded while keeping a strong relationship with a R2 value of 
approximately 0.7.

Formatted: Font: (Default) Arial, 11 pt

Formatted: Justified

Formatted: Subscript

Formatted: Font: (Default) Arial, 11 pt
Deleted: ¶

Deleted: T

Deleted: be 

Deleted: used

Deleted: the 

Deleted: Figure 11

Deleted: 1

Deleted: 38

Deleted:  with a snow-day flag threshold of maximum five 
days to extract GIRAFE precipitation data

Formatted: Font: (Default) Arial, 11 pt

Deleted: Therefore

Deleted: ¶
¶
➝¶
¶
¶
¶
¶
¶
¶
¶
¶
¶



 
Report 

Doc. 
No: 
Issue: 
Date:  

SAF/CM/DWD/CDOP4/REP/ET_WB_UC 
1.0 

15.04.2025 

 

32 

 

Figure 11: Temporal evolution of monthly dS
dt

 (mm month−1) estimates over the Düsseldorf basin, 

based on GRACE satellite observations and the water balance method. GRACE-derived dS
dt

 
includes individual solutions from CSR (blue dashed line), JPL (orange dashed line), and GFZ 
(green dashed line), along with their ensemble mean (solid red line). The water balance-based 
estimate (dS

dt WB dashed violet line), is calculated as P − ETWB − Q, where ETWB is derived from CM 
SAF ET data using the empirical relationship ETWB = 1.2 ´ ETCM SAF − 42 (see ). 

3.2 Monthly annual cycle analyses for the largest river stations 

As observed in the previous section, strong seasonality is observed for the various datasets 
considered in the study. This seasonal sensitivity highlights the importance of conducting time-
dependent analyses. Figure 12 displays the monthly mean annual cycle of ET derived from 
three different estimation approaches for the six largest stations of each river in our dataset 
with basin areas exceeding 90 000 km2. For each basin, the blue, orange, and green solid lines 
represent the mean ET values derived from independent products (CM SAF, LSA SAF, 
GLEAM, ERA5-Land, GLDAS 2.1), from the water balance method with and without 
considering dS

dt
 based on the three precipitation products, respectively. Shaded areas indicate 

the corresponding standard deviations showing the intra-product variability. Note that the 
standard deviation values for ETWB and ETPQ are identical, as they only depend on the choice 
of precipitation input used in their computation. 

Across all basins, the highest intra-product variability, reflected by the standard deviation, is 
observed in summer for ET derived from independent products with average values around 
15.3 ± 3 mm month−1. At the opposite, variability is lowest for ETWB and ETPQ during the same 
period. Most of the variability is observed in winter and autumn, with standard deviation values 
around 18 mm month−1 when differences between values from GIRAFE and values from other 
products are higher (results not shown here). Overall, intra-product variability is higher for 
water balance-derived ET, with an average standard deviation of 14.7 mm month−1, compared 
to 9.2 mm month−1 for ET from independent sources. This highlights the strong influence of the 
selected precipitation product on estimations. In addition, the magnitude of intra-product 
variability for ETWB and ETPQ is more dependent on the basin than for independent sources. 
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For instance, the standard deviation in summer is only 6.1 mm month−1 at the Senta station, 
compared to 16.3 mm month−1 at the Lobith station. With regard to the product differences, as 
noted in the previous section, it appears that accounting for changes in water storage is crucial 
for temporal course analysis. The ET values from independent products are, for most of the 
cases, higher than those from ETWB (on average 1.4 times higher), with the magnitude of this 
difference varying seasonally and with the basin. However, the general temporal pattern 
remains similar. In contrast, ETPQ provides higher values in winter and autumn with values on 
average 2.7 and 1.04 times higher, respectively. In summer and spring, it shows much lower 
values, being 1.5 and 2.2 times lower on average. Consequently, the distinct bell-shaped curve 
observed for ET and ETWB is no longer clearly apparent. The water storage change term plays 
a critical role, especially in summer, where its contribution is more important and can greatly 
impact the water balance closure. 

 

 

Figure 12: Monthly mean annual cycle (MMAC) of evapotranspiration (ET; mm month−1) 
estimated from different approaches for the six largest river basins from our database. Each 
panel represents a different basin, illustrating the average (solid line) and the standard deviation 
(shaded area) of the evapotranspiration MMAC. The estimates are derived from independent 
datasets (in blue) and from the water balance equation using different precipitation products, 
with (orange) and without (green) considering changes in water storage. 

 

Figure 13 and Figure 14 present the monthly variability of the imbalance (ϵ, Eq. 2) or excluding 
(Figure 14) the change in water storage (dS

dt
). The imbalance is computed for each of the 

independent ET datasets: CM SAF, LSA SAF, GLEAM, ERA5-Land, and GLDAS 2.1. The 
analysis focuses on the six largest river stations in the database, with each subplot 
representing a different basin and illustrating the seasonal cycle of the imbalance. Overall, 
negative imbalances dominate across all basins for both ETWB

GIRAFEand ETPQ
GIRAFE, with only a 
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few exceptions in certain months. On average, the imbalance is approximately -28 mm 
month−1, with average values ranging from -15 mm month−1 for CM SAF to -35 mm month−1 
for GLDAS 2.1 datasets. Thus, while the average imbalance may remain stable, the intra-
annual variability and monthly magnitude of the imbalance vary across basins, both with and 
without accounting for changes in water storage. Those results reflect the combined influence 
of the temporal scale of analysis, input data uncertainty, potential errors in water balance 
components, discrepancies among independent ET products, and the effects of basin area 
and climatic regime. 

 

 

Figure 13: Monthly mean annual cycle of the imbalance (ϵ), calculated using Eq. 2, where each 
curve corresponds to a different independent ET dataset (CM SAF in red, LSA SAF in green, 
GLEAM in grey, ERA5-Land in yellow, and GLDAS 2.1 in violet). The GIRAFE dataset is used as 
input for precipitation. Results are shown for the six largest river basins in the dataset, with each 
panel representing a different basin. The dashed blue line indicates the zero-imbalance 
reference. 
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Figure 14: Same as Figure 13, but calculated without including the change in water storage (dS
dt

) 
in Eq. 2. 

3.3 All basins analysis 

In the following section, this analysis is extended to the full dataset by considering not only the 
largest river basins, but also examining the influence of precipitation sources, basin size, and 
climate regime on the observed imbalances. 

3.3.1 Imbalance 

The averaged imbalance was calculated for each of the 332 basin time series using Eq. 2, 
based on different precipitation products (E-OBS, GIRAFE, MSWEP) and various ET sources 
(CM SAF, LSA SAF, GLEAM, ERA5-Land, and GLDAS 2.1). Figure 15 shows the distribution 
of the monthly mean imbalance (ϵ; Eq. 2) across each station in the database, comparing the 
impact of the precipitation product for the five independent ET products. Results are shown for 
the three precipitation datasets with or without the consideration of water storage changes. 
Overall, results tend to show negative imbalances, except while comparing with ETCM SAF. The 
choice of precipitation dataset appears to have the largest impact on the mean imbalance, 
while the inclusion of the water storage term (dS

dt
) has essentially no impact on the monthly 

mean imbalance when aggregated over the full dataset. This suggests that at this temporal 
scale (mean across multiple years for each basin), changes in water storage tend not to be 
significant in analyzing the imbalance. Differences due to the inclusion or exclusion of dS

dt
 are 

thus of secondary importance in this context. This observation aligns with findings in the 
literature (e.g., Zhang et al. (2023a)), but we refine this assumption by focusing specifically on 
the global imbalance from each basin and not the intra-annual variability discussed in the 
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previous section. While assuming negligible storage changes may be valid in certain contexts, 
this assumption remains elusive and appears to be limited to well-defined study cases. 

 

Figure 15: Boxplots of the monthly imbalance (ϵ; Eq. 2) averaged over the full time series for 
each of the 332 basins (N = 332). The imbalance is computed using three different precipitation 
datasets: E-OBS (top panel), GIRAFE (middle panel) and MSWEP (bottom panel). 
Evapotranspiration estimates are taken from CM SAF, LSA SAF, GLEAM, ERA5-Land, and 
GLDAS 2.1. The left panels show results including the water storage change component (dS

dt
), 

while the right panels exclude it. The dashed red line indicates the zero-imbalance reference. 

 

 

The second-order effect comes from the variability between independent ET products, which 
nevertheless significantly influence the imbalance values. Among these, results for CM SAF 
ET dataset tend to provide higher imbalance values than other sources with median values, 
on average 12.5 mm month−1 higher. Such results were expected as they reflect the lower 
values observed by Moutier et al. (2023a) over Europe while making inter-comparisons 
between ETCM SAF and other products. Importantly, the choice of the precipitation dataset 
strongly determines the magnitude of the imbalance. MSWEP consistently produces the 
smallest average imbalances across most of the ET products and configurations. On average 
median values are of -34.4 mm month−1 for GIRAFE, -5.3 mm month−1 for E-OBS, and -1.6 
mm month−1 for MSWEP. This suggests that MSWEP may offer the most consistent agreement 
in a water balance framework at this scale. However, the best-performing precipitation dataset 
still depends on the independent ET source considered, indicating no universally optimal 
combination. For instance, when using the ETCM SAF dataset, the best performances for ETWB 
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are obtained while using E-OBS as precipitation dataset to get a median value of 5.3 mm 
month−1 when it is of 9.2 mm month−1 while using MSWEP as precipitation dataset. 

While the precipitation dataset appears to dominate the behaviour of the imbalance at the 
global scale, these aggregated results may mask important patterns. Therefore, we 
investigated how the imbalance varies according to basin size and climate regime, using 
various precipitation datasets. 

 

Figure 16: Boxplots of the monthly imbalance (ϵ; Eq. 2) averaged over the full time series of each 
basin using Eq. 2, based on different precipitation products: E-OBS (top panel), GIRAFE (middle 
panel) and MSWEP (bottom panel). Evapotranspiration estimates are taken from CM SAF, LSA 
SAF, GLEAM, ERA5-Land, and GLDAS 2.1. Each panel contains two boxplots per dataset, 
distinguishing between different basin characteristics. Left panels categorize basins based on 
the aridity index (AI), with energy-limited (wet) basins and water-limited (dry) basins. The bottom 
panels differentiate between large basins (≥ 90 000 km2) and small basins (< 90 000 km2). The 
dashed red line indicates the zero-imbalance reference. 

 

Figure 16 presents the distribution of monthly imbalance values computed using three 
precipitation products (E-OBS, GIRAFE, MSWEP), across different subsets: water-limited 
versus energy-limited basins and large versus small basins, for all independent ET datasets 
(CM SAF, LSA SAF, GLEAM, ERA5-Land, GLDAS 2.1). As previously observed, the choice 
of the precipitation product remains the primary driver of the imbalance magnitude and 
imbalance values for ETCM SAF tend to be higher. Nevertheless, basin characteristics also 
introduce significant differences. The most important distinction is observed between water- 
limited and energy-limited basins while using the GIRAFE dataset. The difference in median 
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imbalance for water-limited and energy-limited basins is between 10 and 19 mm month−1 for 
the LSA SAF and the CM SAF datasets, respectively. For E-OBS and MSWEP, a smaller 
difference around 6 and 5.5 mm month−1 are observed for ETCM SAF, while other ET datasets 
show median differences within ± 2 mm month−1. These results suggest that ETCM SAF 
estimations tend to be more sensitive to the climatic conditions of the basin as compared to 
other datasets. In contrast, the influence of basin size (large vs. small) appears to be of 
secondary importance for all configurations. Only the imbalance based on GIRAFE and ET 
from CM SAF and GLEAM are slightly impacted (³ 5 mm month-1), with median differences 
between large and small basins of 6.7 and 7 mm month−1, respectively. These variations are 
smaller than those observed between ET products, highlighting that inter-product variability 
dominates. This limited sensitivity of the imbalance value according to the basin area is 
expected, as the primary goal of focusing on large basins is to ensure more reliable estimations 
of dS

dt
. Moreover, this finding aligns with previous studies such as Zhang et al. (2012) and Zhang 

et al. (2023a), who reported no significant differences in results when separating basins into 
small (≤5000 km2) and large (> 5000 km2) subsets. However, as observed in Figure 15, taking 
into account the water storage term or not does not led to significant changes in the resulting 
imbalance values when aggregated at the basin scale. It is worth noting that it remains difficult 
to identify a single best-performing independent ET product based on basin size or climate 
regime. The relative performance of each product depends firstly on the precipitation dataset 
used and secondly on the climate regime for certain cases, indicating a complex interaction 
between input datasets and local conditions. Notably, when using the GIRAFE dataset and/or 
ETCM SAF, the climate regime of the basin plays a crucial role in shaping the water balance 
closure performance. In contrast, basin size plays a minor role, and the effect of including dS

dt
 

remains limited at this aggregation scale. 

 

3.3.2 Statistical analysis 

To further explore the influence of water storage changes without focusing the analysis on the 
imbalance, we present a statistical comparison between the monthly CM SAF 
evapotranspiration product (ETCM SAF) and the water balance-derived estimates computed both 
with (ETWB) and without (ETPQ) the change in water storage component for the three 
precipitation datasets, using all available match-ups across all basins (Figure 17). 

Specifically, with and without considering dS
dt

, bias values are approximately 28 mm month−1 

(GIRAFE), –2 mm month−1 (E-OBS), and –7 mm month−1 (MSWEP). Accounting for dS
dt

 
increases the coefficient of determination (R2) from 0.18 to 0.43 for GIRAFE, from 0.07 to 0.34 
for E-OBS, and from 0.08 to 0.36 for MSWEP. Thus, the highest agreement is observed with 
the GIRAFE precipitation product. When limiting the analysis to the six largest river basins 
(where dS

dt
 estimates are considered more reliable) the R2 reached values of 0.76 with GIRAFE 

(see Figure 22 in the Appendix). This analysis highlights the added value of including water 
storage changes in the water balance, particularly in configurations where  
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Figure 17: Density scatter plots comparing monthly evapotranspiration estimates from the CM 
SAF product (ETCM SAF in mm month−1) with water balance-derived evapotranspiration estimates 
with (ETWB in mm month−1; top panels) and without (ETPQ in mm month−1; bottom panels) 
considering dS

dt
 for all basins. GIRAFE (left panels), E-OBS (middle panels), and MSWEP (right 

panels) precipitation products are considered for the calculation of ETWB and ETPQ. The color 
scale indicates point density, with warmer colors representing higher densities. The dashed 
black line represents the 1:1 relationship. Statistical metrics, including the coefficient of 
determination (R2), unbiased root mean square deviation (uRMSD), bias, mean absolute 
deviation (MAD), and the number of observations (N), are provided in each panel. 

 

storage dynamics have a greater influence on evapotranspiration estimates. Moreover, the 
stronger performance observed for larger basins suggests that global statistics may mask 
patterns. 

 

To investigate this further, similar statistical analysis has been applied, using the GIRAFE 
precipitation, to all other evapotranspiration sources (LSA SAF, GLEAM, ERA5-Land, and 
GLDAS 2.1) and across five different basin subsets: all basins, water-limited basins (AI > 1), 
energy-limited basins (AI ≤ 1), small basins (< 90 000 km2), and large basins (≥ 90 000 km2). 
Figure 18 summarizes the results using heatmaps for several performance metrics, including 
MAD, bias, R2, uRMSD, and N. Across all basin subsets, CM SAF consistently outperforms 
other datasets in terms of bias and MAD. The best performances are observed in water-limited 
basins, where CM SAF shows a bias of 9 mm month−1 and MAD of 22 mm month−1. For similar 
subset, other products exhibit bias between 21 and 30 mm month−1 and MAD values between 
27 and 33 mm month−1. It is worth noting that incorporating water storage changes (dS

dt
) does 

not significantly reduce MAD or bias, suggesting that the main discrepancies between ET from 
the water balance and satellite/reanalysis products are not primarily due to the omission of the 
storage term. Instead, errors in precipitation (P), discharge (Q), or biases in the ET datasets 
themselves are likely responsible for most of the differences. 
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Figure 18: Heatmaps of statistical metrics assessing the agreement between monthly 
evapotranspiration estimates from different datasets (CM SAF, GLEAM, GLDAS 2.1, ERA5-Land, 
and LSA SAF) and water balance-derived evapotranspiration estimates considering (ETWB) or 
not (ETPQ) dS

dt
 and based on the GIRAFE precipitation product. Statistics are made for all matchup-

ups include in different subsets: All, water-limited (AI > 1), energy-limited (AI ≤ 1), small (< 90 000 
km2) and large (≥ 90 000 km2). The panels display (top-left) the coefficient of determination (R), 
(top-middle) bias (mm month−1), (top-right) unbiased root mean square deviation (uRMSD, mm 
month−1), (bottom-left) median absolute deviation (MAD, mm month−1), and (bottom-right) the 
number of observations (N). Warmer colors indicate higher values, while cooler colors represent 
lower values. 

 

In terms of uRMSD, results vary between 20 mm month−1 for ETWB in large basins and 42 mm 
month−1 for ETPQ in energy-limited basins. uRMSD values are generally slightly better for ETWB 
compared to ETPQ, but marginal improvements of 5 mm month−1 can still be observed in 
specific cases. No independent ET product consistently outperforms others across all subsets 
for this metric. 

Regarding R2, values are generally in the same order of magnitude across independent 
datasets within each subset, but become significantly higher when water storage variations 
are included (ETWB). The improvement in R2 (especially for large basins) shows that adding dS

dt
 

improves the ability to capture the temporal variability of ET. This reinforces the idea that 
storage is an important component to analyze inter-annual and seasonal fluctuations, even if 
its effect is not significant on cumulative ET values (no impact on the bias). This improvement 
of R2 is most notable in large basins (0.74 for ETWB

Largeand 0.35 for ETPQ
Large), although small 

basins also benefit, but with less improvement and lower absolute values (0.41 for ETWB
Small	and 

0.17 for ETPQ
Small). This observation for small basins is potentially due to their faster hydrological 

Deleted: 2

Deleted: 8



 
Report 

Doc. 
No: 
Issue: 
Date:  

SAF/CM/DWD/CDOP4/REP/ET_WB_UC 
1.0 

15.04.2025 

 

41 

response times and less significant storage capacity, meaning that short-term precipitation and 
discharge dominate the water balance. Finally, water-limited basins tend to produce higher R2 
values than energy-limited ones. For instance, in the case of the CM SAF dataset, R2 are 0.43 
and 0.63 for energy-limited and water-limited basins, respectively. Additionally, the 
improvement of the R2 is more pronounced for water-limited basins than energy-limited ones. 
This is potentially due to the fact that the influence of dS

dt
 on the evapotranspiration in energy-

limited basins is less direct because ET is primarily controlled by energy availability rather than 
water storage. Indeed, the temporal course in energy-limited basins is mainly driven by the 
availability in energy. Overall, the R2 values obtained in this study are of the same order of 
magnitude as those reported in previous works such as (Ruhoff et al., 2022; Zhang et al., 
2023a). In addition, Ruhoff et al. (2022) also observed better consistency in water-limited 
conditions. However, contrasting results were found by Zhang et al. (2023a), who observed 
higher R2 values in energy-limited basins. This discrepancy can be attributed to several factors. 
First, each basin has its own unique hydrological and climatic characteristics that may affect 
the estimations performance. Second, differences in the input datasets used in the water 
balance equation (precipitation, discharge, or water storage) which can lead to different results. 
Third, a key limitation in classifying basins as water- or energy-limited lies in the use of the 
aridity index, which is sensitive to both its mathematical formulation and the choice of input 
datasets (e.g., reference evapotranspiration and precipitation sources). As a result, a basin 
classified as water-limited in one study could be considered energy-limited in another, 
potentially leading to differing interpretations of the same region’s water balance behaviour. 

It is also important to note that calculating R2 values for every basin and then averaging them 
for each subset results in higher aggregated R2 values (see Figure 23 in the Appendix). For 
example, in the large basin subset and when considering water storage change, the mean R2 
reaches approximately 0.82 (0.74 in Figure 18). In addition, the difference in R2 values between 
water-limited and energy-limited basins diminishes to about 0.06 (0.67 vs. 0.61, respectively) 
when compared against ETCM SAF. 
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4 Conclusion 

This study presents a comprehensive evaluation of the CM SAF LANDFLUX Ed. 1 
evapotranspiration (ET) product within a water balance framework, using data from 332 
European river basins. One of the key objectives is to assess the potential of the CM SAF ET 
product for hydrological basin applications, particularly in the context of water balance closure. 
Several ET datasets (CM SAF, LSA SAF, ERA5-Land, GLDAS 2.1, and GLEAM) and three 
precipitation products (GIRAFE, E-OBS, and MSWEP) were assessed to analyze water 
balance closure performance, quantify the residual (imbalance), and explore the sensitivity of 
estimates to basin characteristics and input choices. 

A major focus of this study was the role of water storage changes (dS
dt

), derived from GRACE 

data, in the water balance equation. While the inclusion of dS
dt

 had a limited effect on the long-
term average imbalance across all basins and the full study period, it is crucial to take it into 
account for accurately capturing intra-annual variations and catching the temporal course of 
independent evapotranspiration products such as CM SAF. For instance, when considering all 
available match-ups, the correlation (R2) between CM SAF ET and water-balance-derived ET 
was relatively low without accounting for dS

dt
 (e.g., R2 = 0.18 with GIRAFE). However, when dS

dt
 

was taken into account, more robust relationship was obtained (R2 = 0.43 overall and up to R2 
= 0.76 for largest river basins). This highlights that omitting the change in water storage leads 
to weaker temporal consistency, even when long-term mean imbalances remain unaffected. 

More broadly, the choice of precipitation dataset was the primary driver of imbalance, 
reaffirming the first-order importance of accurate precipitation estimates in closing the water 
balance and underlining the challenges in estimating precipitation, especially regarding snow 
cases for GIRAFE. However, the best-performing configuration depends on the combination 
of ET and precipitation products. For example, GIRAFE showed the strongest consistency (i.e., 
higher R2) with independent ET products, whereas MSWEP tended to minimize the average 
imbalance across most ET products. These findings indicate that no universally optimal 
combination exists. Therefore, the selection of input products should be guided by the specific 
objectives or/and the users’ needs. Furthermore, the variations of the results depending on the 
chosen input indicate that independent ET datasets, such as the CM SAF ET product, may 
offer greater reliability than water-balance derived ET estimates. 

The influence of basin size on imbalance was limited, especially when compared to the climatic 
regime. Differences in performance were more pronounced between energy-limited and water-
limited basins. For example, when using GIRAFE precipitation and CM SAF ET, the median 
imbalance differed by up to 19 mm month−1 between the two climate regimes. However, the 
classification of basins by aridity index (AI) itself is sensitive to the choice of input datasets 
(e.g., reference evapotranspiration and precipitation sources), and thus this climate-based 
distinction must be interpreted with caution. 

Overall, the CM SAF LANDFLUX Ed. 1 product demonstrated strong potential for hydrological 
applications, especially when combined with the GIRAFE precipitation dataset. While MSWEP 
emerged as a suitable compromise for minimizing long-term water balance imbalances, the 
combination of CM SAF ET and GIRAFE precipitation proved to be the best-performing pair 
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for capturing temporal dynamics, showing both high correlation and low mean absolute 
differences. Building on this, we have shown the potential of a gap-filling approach using an 
empirical linear relationship between CM SAF ET and water-balance ET derived from GIRAFE 
data. This approach captures the temporal variability of dS

dt
 well, particularly for filling GRACE 

data gaps. The analysis was conducted for a typical example at the Düsseldorf station in the 
Rhine River. However, it must be applied carefully, considering the basin characteristics, 
precipitation accuracy, and quality of available data. Users should always define their 
acceptable uncertainty thresholds before applying such empirical corrections. 

Additionally, the CM SAF LANDFLUX Ed. 1 evapotranspiration product, which combines high 
temporal and spatial resolution over nearly 40 years, has proven to be a reliable, well 
performing, and accessible tool, making it highly suitable for large-scale hydrological and 
climatological studies. The results highlight its potential for both scientific research and 
operational water resource management. The study also illustrates the value of integrating 
satellite-based datasets and encourages the continued refinement of the methodologies for 
gap-filling, uncertainty quantification, and application-specific optimization. 
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7 Appendix 

 

Figure 19: Probability density functions (PDFs) of monthly precipitation (P) estimates for all 
selected basins over the period 2004–2020, based on three regridded (0.25°) datasets: GIRAFE 
(blue), MSWEP (green), and E-OBS (red). The three panels correspond to different thresholds on 
the number of snow days used to filter the GIRAFE data: no snow flag (top) and and 0 snow days 
(bottom). The number of matchups (N) varies accordingly. Vertical solid lines indicate the median 
precipitation values for each dataset. 
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Figure 20: Monthly data availability used in the analysis, showing the number of valid months 
across all basins for each calendar month. Blue bars represent the full dataset ("All data"), while 
orange bars correspond to the subset where the GIRAFE snow flag equals zero (i.e., months with 
no snow-affected grid cells).  
 

 

 

Figure 21: Mean annual cycles of hydrological variables over the Düsseldorf basin for 
the period 2004–2020. The top left panel shows the monthly climatology of river 
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discharge (Q), while the top right panel displays the average monthly change in water 
storage (dS/dt) derived from GRACE data. The middle left panel presents 
evapotranspiration (ET) estimates from five independent datasets: CM SAF, LSA SAF, 
GLEAM, ERA5-Land, and GLDAS 2.1. The middle right panel shows monthly 
precipitation from three datasets: GIRAFE, E-OBS, and MSWEP. The bottom left panel 
displays ET derived from the water balance approach, calculated using different 
combinations of precipitation (P) datasets with (ETWB) and without (ETPQ) considering 
changes in water storage.  
 
 

 

 

Figure 22: Density scatter plots comparing monthly evapotranspiration estimates from the CM 
SAF product (ETCM SAF in mm month−1) with water balance-derived evapotranspiration estimates 
with (ETWB in mm month−1; top panels) and without (ETPQ in mm month−1; bottom panels) 
considering dS

dt
 for matchups from the six largest river basins from our database. GIRAFE (left 

panels), E-OBS (middle panels), and MSWEP (right panels) precipitation products are considered 
for the calculation of ETWB and ETPQ. The color scale indicates point density, with warmer colors 
representing higher densities. The dashed black line represents the 1:1 relationship. Statistical 
metrics, including the coefficient of determination (R2), unbiased root mean square deviation 
(uRMSD), bias, mean absolute deviation (MAD), and the number of observations (N), are provided 
in each panel. 
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Figure 23: Heatmaps of statistical metrics assessing the agreement between monthly 
evapotranspiration estimates from different datasets (CM SAF, GLEAM, GLDAS 2.1, ERA5-Land, 
and LSA SAF) and water balance-derived evapotranspiration estimates considering (ETWB) or 
not (ETPQ) dS

dt
 and based on the GIRAFE precipitation product. Statistics are made for each basin 

and averaged for different subsets: All, water-limited (AI > 1), energy-limited (AI ≤ 1), small (< 90 
000 km2) and large (≥ 90 000 km2). The panels display (top-left) the coefficient of determination 
(R), (top-middle) bias (mm month −1), (top-right) unbiased root mean square deviation (uRMSD, 
mm month−1), (bottom-left) median absolute deviation (MAD, mm month−1), and (bottom-right) 
the number of observations (N). Warmer colors indicate higher values, while cooler colors 
represent lower values. 
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Table 2: Summary information of the six largest GRDC river stations (area (≥ 90 000 km2) 
extracted from the dataset. The columns include the GRDC station number (grdc_no), river and 
station names, country code (ISO 3166), geographical coordinates (latitude and longitude in 
decimal degrees), catchment area (in km²), and gauge altitude (in meters above sea level). 

gdrc_no River Station Country Lat 
(°N) 

Lon 
(°E) 

Area 
(km2) 

Altitude 
(m) 

6279500 Prypyats’ Mozyr BY 52.05 29.27 101000 113.0 

6340110 Elbe river Neu 
Darchau DE 53.23 10.89 131950 5.68 

6357010 Oder river Hohensaat
en-Finow DE 52.87 14.14 109564 0.16 

64350060 Rhine river Lobith NL 51.84 6.11 160800 8.53 

6544100 Tisa Senta RS 45.93 20.08 140130 74 

6742900 Danube 
river 

Ceatal 
Izmail RO 45.22 28.72 807000 0.6 
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8 Glossary – List of Acronyms in alphabetical order 

 
 
AD Applicable Document 

AGRMET AGRicultural METeorological modeling system 

AI Aridity Index 

CDOP Continuous Development and Operations Phase 

CDR Climate Data Record 

CFC Cloud Fractional Cover 

CM SAF EUMETSAT Satellite Application Facility on Climate 
Monitoring 

CMIP Coupled Model Intercomparison Project 

CSR Center for Space Research 

DWD Deutscher Wetterdienst 

E-OBS Ensemble of Gridded Observations 

ECA&D European Climate Assessment & Dataset 

ECMWF European Centre for Medium-Range Weather Forecasts 

ERA5-Land ECMWF Reanalysis 5th Generation (Land) 

ET Evapotranspiration 

EUMETSAT European Organisation for the Exploitation of 
Meteorological Satellites 

GEWEX Global Energy and Water Exchanges 

GFZ GeoForschungsZentrum 

GIRAFE Global Interpolated RainFall Estimation 

GLDAS Global Land Data Assimilation System 

GLEAM Global Land Evaporation Amsterdam Model 
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GPCP Global Precipitation Climatology Project 

GRACE Gravity Recovery And Climate Experiment 

GRACE-FO GRACE Follow-On 

GRDC Global Runoff Data Centre 

H Sensible Heat 

H-TESSEL Hydrology Tiled ECMWF Scheme for Surface Exchanges 
over Land 

IPCC Intergovernmental Panel on Climate Change 

IR Infrared 

ISO International Organization for Standardization 

JPL Jet Propulsion Laboratory 

LAI Leaf Area Index 

LE Latent Heat 

LSA SAF Satellite Application Facility on Land Surface Analysis 

LST Land Surface Temperature 

MAD Mean Absolute Deviation 

MMAC Monthly Mean Annual Cycle 

MSWEP Multi-Source Weighted-Ensemble Precipitation 

MVIRI Meteosat Visible and InfraRed Imager 

NASA National Aeronautics and Space Administration 

NRT Near Real Time 

NWP Numerical Weather Prediction 

P Precipitation 

PALS Protocol for the Analysis of Land Surface models 

PDFs Probability Density Functions 
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Perc Percentile 

PLUMBER Land sUrface Model Benchmarking Evaluation pRoject 

PMW Passive Microwave 

PT Priestley-Taylor 

Q Discharge 

R2 Coefficient of Determination 

RD Reference Document 

SAF Satellite Application Facility 

SEVIRI Spinning Enhanced Visible and InfraRed Imager 

SM Soil Moisture 

SRB Surface Radiation Balance 

TAPEER Tropical Amount of Precipitation with an Estimate of 
ERrors 

uRMSD Unbiased Root Mean Square Deviation 
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