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in_ mm _month~"; top panels) and without (ETpa in mm month™': bottom panels) considering dSdt_for
matchups from the six largest river basins from our database. GIRAFE (left panels), E-OBS (middle
panels), and MSWEP (right panels) precipitation products are considered for the calculation of ETws
and ETpa. The color scale indicates point density, with warmer colors representing higher densities. The
dashed black line represents the 1:1 relationship. Statistical metrics, including the coefficient of
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In the context of global warming and rapid changes of the land use due to human economical
activities, it is fundamental to be able to accurately estimate key variables such as the
evapotranspiration (ET). Accurate quantification of ET is critical for understanding the
terrestrial water cycle, carbon cycle, land—atmosphere interactions, surface energy balance,
and for managing water resources, particularly under changing climatic conditions (Sellers et
al., 1997; Oki and Kanae, 2006; Trenberth et al., 2009; Liou and Kar, 2014; Michel et al., 2016;
Fisher et al., 2017; Behrendt et al., 2020). As pointed out in the IPCC report on “Climate Models
and Their Evaluation” (Randall et al., 2007), ET is a key variable in model evaluation. The
Coupled Model Intercomparison Project (CMIP, Eyring et al. (2016)), which evaluates the
climate models and provides input on future climate predictions for the IPCC reports, relies on
ET climate data records (CDRs). Numerous studies made a dedicated analysis of the modelled
ET in the CMIP ensemble (Mueller and Seneviratne, 2014; Lian et al., 2018; Wang et al., 2021).
Examples of impactful multi-model benchmarking and evaluation studies are legion, including
the Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model
Benchmarking Evaluation Project (PLUMBER; Best et al. (2015)) and Global Energy and
Water Cycle Exchanges (GEWEX) LandFlux project (McCabe et al., 2016). They highlight the
importance of ET, and emphasise that the climate modelling community is strongly relying on
ET CDRs. Accurate estimates of ET can also be useful for the calibration of hydrological
models (Rajib et al., 2018; Nijzink et al., 2018; Sirisena et al., 2020). Moreover, various studies
have used ET to investigate the impacts of climate change on hydrology (Liu et al., 2021),
droughts (Joetzjer et al., 2013; Kim and Rhee, 2016; Cook et al., 2022; Perez et al., 2024;
Zhang et al., 2023b), feedbacks with vegetation (Yang et al., 2023), and to assess planetary
boundary layer (Wang-Erlandsson et al., 2022). In addition, ET is a fundamental component
in numerous studies based on the water balance framework (Pan et al., 2012; Zhang et al.,
2012; Ukkola and Prentice, 2013; Oliveira et al., 2014; Wang et al., 2014b,a, 2015; Liu et al.,
2016; Chen et al., 2020; Pascolini-Campbell et al., 2020; Wong et al., 2021; Ruhoff et al., 2022;
Tan et al., 2022; Michailovsky et al., 2023; Unnisa et al., 2023; Xiong et al., 2023).

The water balance equation provides a physically grounded method to estimate ET by
combining observed or modeled data on precipitation, river discharge, and terrestrial water
storage change. Its basic formulation is expressed as:

ds
= - - — 1
ET=P-Q 5 (1

where P is the precipitation, Q denotes river discharge and % is the change in water storage
over time. Various studies, particularly those analyzing long-term periods (annual or more),
considered the change in water storage (?) as negligible under the assumption that, over

extended timescales, the inputs and outputs balance out, resulting in minimal net change in
storage (Hobbins et al., 2001; Zhang et al., 2012; Hasenmueller and Criss, 2013; Xue et al.,
2013). However, the validity of this assumption depends on the temporal scale, as well as the
specific hydrological characteristics of the region under investigation (Zeng et al., 2012; Wu et
al., 2019; Han et al., 2020).
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Water balance basin analysis is particularly valuable for quantifying water availability,
diagnosing the influence of climatic drivers on hydrological regimes, and supporting water
resource management. Some studies have analyzed the water budget and the sources of
imbalances (Pan et al., 2012; Wang et al., 2014b, 2015; Tan et al., 2022; Unnisa et al., 2023).
Furthermore, it is commonly used to estimate ET itself. In this context, ET derived from the
water balance serves to assess independent ET products and for conducting climate studies.
As mentioned by Sheffield et al. (2009) and Oliveira et al. (2014), estimation of water balance
components using ground-based measurements remains challenging due to uneven
monitoring networks, expensive operations, and inadequate data openness and availability.
To address these challenges, remote sensing offers a promising alternative by delivering
spatially consistent estimates of terrestrial water cycle components across regional to global
scales (Sheffield et al., 2009, 2018).

Satellite-derived data, particularly evapotranspiration and precipitation estimates, play an
important role in optimizing the accuracy and applicability of the water balance equation. From
the available products, the EUMETSAT CM SAF (Climate Monitoring Satellite Application
Facility) datasets are distinguished by a high temporal resolution, long-term continuity, and
explicit design for climate monitoring purposes. These products ensure temporal homogeneity
and are particularly well-suited for hydrological and climatological studies. Their open-access
availability also contributes to their value for regions with poor ground-based observations and
research. In this context, two recent CM SAF products offer promising datasets for water
balance analysis: the LANDFLUX Ed. 1 ET dataset (Moutier et al., 2024) and the GIRAFE v1
precipitation dataset (Konrad et al., 2025). The LANDFLUX dataset includes ET estimates at
hourly, daily, and monthly resolutions over a 0.05°grid (approximately 5.5 km) covering the
Meteosat disk (65°N-65°S and 65°W-65°E) for the 19832020 period. The GIRAFE dataset
has global daily precipitation estimates, including sampling uncertainty and monthly means, at
a spatial resolution of 1.0°, covering the period 2002—2022. Despite advancements in satellite
sensors and retrieval techniques, closing the surface water budget using remote sensing data
remains challenging. A recent paper by Zhang et al. (2023a) found substantial discrepancies
between energy-balance-based ET (ETes) and water-balance-based ET (ETws) across 53
catchments in central-western Europe. These discrepancies were particularly pronounced in
energy-limited catchments. At the annual scale, ETes showed weak agreement with ETws
(correlation = 0.35), whereas at the monthly scale the correlation was stronger (r = 0.73). Such
differences underscore the importance of basin characteristics, temporal aggregation, and
input dataset choices in ET estimation. Given these challenges, it is essential to assess the
suitability of CM SAF datasets for regional water balance applications. This study aims to: (i)
evaluate the applicability of the CM SAF ET product in the context of water balance framework,
(ii) compare water-balance-derived ET with independent remote sensing and reanalysis
products, and (iii) assess water balance closure (i.e., the residual or imbalance) under various
configurations of input datasets, including three distinct precipitation products, across a wide
range of basin types. The analysis is conducted over river basins across Europe. To
provide a comprehensive evaluation of our dataset, we included a comparison with four widely
used evapotranspiration products (LSA SAF, ERA5-Land, GLEAM, and GLDAS 2.1).
Following the approach of Zhang et al. (2023a), we also investigate the influence of accounting
for water storage changes and the role of basin characteristics, such as size and climate
regime, on ET estimation accuracy. Furthermore, the choice of precipitation dataset, often a
major source of uncertainty, is critically examined. Through this comprehensive evaluation, the
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study provides insights into the strengths and limitations of CM SAF products for both scientific
research and operational water resource management. It also contributes to the broader effort
of integrating remote sensing data into hydrological assessments and climate monitoring

frameworks.
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Figure 1: Schematic representation of data sources and methodologies used for
estimating and comparing evapotranspiration based on the water balance method
including (ETws) or not (ETerq) the change in water storage with remote sensing-
based/reanalysis products.

shows the approach which is used, at each selected basin, in comparing
evapotranspiration (ET) derived from various independent datasets (satellite-based approach,
reanalysis datasets) and those estimated using the water balance equation with (ETws) and
without, considering the change in water storage .On
the left, the components of the water balance equation are presented, including precipitation
(P, see Section 2.3) from various sources (GIRAFE, MSWEP, and E-OBS), water storage

changes (Z—f) derived from GRACE data (averaged across JPL, CSR, and GFZ solutions, see

Section 2.4), and discharge (Q) from the GRDC dataset (see Section 2.1). On the right, in
addition to the CM SAF ET product, other ET products were also considered in the analysis
for comparison purposes. Those products, selected for their widespread use within the
scientific community, are the LSA SAF, GLEAM, ERA5-Land, and GLDAS 2.1 ET products.
The imbalance will also be analyzed by calculating the difference between water balance-
derived ET and independent products:

ds;
_ YioPi-Q-T¢ -ETp,

N )
_YiroETws, -ETp,
N
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where N is the number of estimations, ETp, corresponds to evapotranspiration values for
various independent products (CM SAF, LSA SAF, GLEAM, GLDAS 2.1 and ERA5-Land) and
ETwg, represents the evapotranspiration values calculated using equation 1 (ETwe can be
replaced by ETpq). Furthermore, specific analyses will be conducted based on basin size
(larger or smaller than 90 000 km?; see Section2.4) and climate regime (water- or energy-
limited basins; see Section 2.5).

A detailed description of the used datasets is provided in Table 1 and the following subsections.
From their native spatial resolution, all datasets have been remapped to a common spatial
(0.25°) and temporal (monthly or yearly) resolutions. This ensures consistency across datasets
and allows direct comparisons over different timescales.

Table 1: Overview of the datasets used in this study, including their names, temporal and spatial
resolution (as used in this study), and periods of availability.

Products
Dataset name Tempo.ral Native sr?atlal Period
resolution resolution
LANDFLUX Ed.1 R
(CM SAF) Monthly 0.05 1983-2020
LSA SAF Daily 0.05° 2004-2020
Evapotranspiration
GLEAM v4 .2a Monthly 0.1° 1980-2023
GLDAS 2.1 Monthly 0.25° 2000-present
ERA5-Land Monthly 0.1° 1950-present
""""""""""""""""""" GIRAFE(CM ..
SAF) Monthly 1 2002-2022
Precipitation . o
E-OBS v23.1e Daily 0.25 1950-present
MSWEP v2.8 Monthly 0.1° 1979-present
-~ GRACEW®3 . .. . 20020
CSR RL0O6 Monthly ! ~present
GRACE v6.3 R 2002-
Water storage JPL RLO6 Monthly 1 ~present
GRACE v6.3 R 2002-
GFZ RL06 Monthly ! ~present
Discharge GRDC Monthly station 1806- present
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The monthly discharges data were collected from the Global Runoff Data Center (GRDC).
Established in 1988, the GRDC maintains the most comprehensive and quality-controlled
collection of river discharge data worldwide. It archives river discharge data up to 216 years
old at both daily and monthly scales for more than 10 800 stations from 160 countries.
Discharge values are originally provided in cubic meters per second (m® s') and have been
converted to mm month™ (Q (mm month™") = Q (m*s™") x 86400000 x number of days in month
/Area(m?)). The GRDC river discharge database includes essential metadata such as station
coordinates, station and river names, upstream catchment area, elevation, long-term mean
discharge, and a shapefile delineating the contributing basin. The shapefile of the basin is used
to spatially aggregate other water balance components from gridded datasets. By averaging
these variables over each basin, consistent input values are obtained for application in the
water balance equation.

For this study, we selected stations that met the following criteria: (i) a drainage area greater
than 1 000 km?, (i) a minimum of five consecutive years of data, and (iii) availability of valid
data from all other datasets . Based on
these criteria, stations across Europe (Figure 2) were used for the analysis,

GRDC Stations

Water-limited basins
B Energy-limited basins

65 . .| ® targestations (areas > 90 000 km?)
) @ Small Stations (areas = 90 000 km?)

S
%

Latitude (°N)
wv
o

45
40
35
-20 -10 0 10 20 30
Longitude (°E)
Figure 2: Spatial distribution of the river discharge stations selected from the Global Runoff

Data Centre (GRDC) across Europe. Each dot represents a station, with red indicating large
basins (area > 90 000 km?) and black indicating small basins (area < 90 000 km?). The associated
basin shapes are also shown, colored according to their aridity index (Al): blue for energy-limited
basins (Al < 1) and orange for water-limited basins (Al > 1).
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To account for variations in basin size and climate regime, we performed specific analyses
based on these factors. First, since GRACE provides more reliable estimates %for basins
larger than 90 000 km? (Tangdamrongsub et al. (2021), see Section 2.4 for details), we

categorized the basins into two groups: 25 large basins (area >= 90 000 km?) and smaller
basins. Additionally, based on an estimation of the aridity index (Al) (see Section 2.5), the
basins were classified into two climate categories: “energy-limited” (wet; Al <1) and

“water-limited” (dry; Al>1) basins (see details in Section 2.5).

For visualization purposes, among the stations located in basins larger than 90 000 km?
(across seven rivers), the largest station from each river was selected to provide a
representative sample of the major basins. This results in a subset of seven stations (see Table
2 in the Appendix), hereafter referred to as the river stations for simplicity.

The CM SAF Surface Radiation and Fluxes - Edition 1 (LANDFLUX Ed. 1; Moutier et al. (2024))
dataset provides nearly 40 years (1983-2020) of parameters depicting the surface states and
radiation fluxes, including the Surface Radiation Balance (SRB), Cloud Fractional Cover
(CFC), Land Surface Temperature (LST), Evapotranspiration (ET), and Latent (LE) and
Sensible (H) Heat Fluxes. Retrievals are based on two sensors aboard the Meteosat suite of
geostationary satellites: the Meteosat Visible and InfraRed Imager (MVIRI) and the Spinning
Enhanced Visible and InfraRed Imager (SEVIRI).

The parameter ET is calculated using an adapted version of the methodology developed by
the Land surface Land Surface Analysis SAF (Barrios et al. (2024)), based on the Hydrology
Tiled ECMWF Scheme for Surface Exchanges over Land (H-TESSEL; van den Hurk et al.,
2000; Balsamo et al., 2009). This adaptation allows the use of both satellite-based data and
numerical weather prediction (NWP) model outputs as forcing inputs. A full description of the
methodology is described in Moutier et al. (2023b).

LANDFLUX Ed. 1 data are available in hourly, daily, and monthly temporal resolutions, as well
as monthly diurnal cycle composites. The dataset covers the +65° longitude and +65° latitude
region on a 0.05°x 0.05°regular grid. In the following, only monthly data will be used. To
simplify the reading, this dataset will hereafter be referred to as the CM SAF evapotranspiration
product.

The LSA SAF ET dataset is a satellite-based product based on SEVIRI observations (Barrios
et al, 2024). The data record demonstrator provides 30-minute and daily
evapotranspiration estimates between 2004 and 2020 at a 0.05°x 0.05°spatial resolution over
the Meteosat coverage area. As discussed in Section 2.2.1, the LSA SAF and the CM SAF

16

Deleted:
Deleted:
Deleted:
Deleted:

Deleted:

Deleted:

seven largest



EUMETSAT Doc. SAF/CM/DWD/CDOP4/REP/ET_WB_UC
CM SAF Report No: 1.0
'rfS:Jef 15.04.2025

share a similar core model, with key differences arising from the choice of input data. For
instance, while CM SAF uses ERA5 as input to estimate the soil moisture, the LSA SAF
approach relies on the H SAF soil moisture dataset. Other differences can be seen in the
choice of the stomatal resistance values and the retrieval of the leaf area index (LAI) for each
tile. For instance, an inversion matrix approach is used in the LSA SAF (Ghilain et al., 2011,
2012) while a LUT approach is adopted in the CM SAF (Moutier et al., 2023b).

ERAS5 dataset (Hersbach et al., 2019) is the fifth generation of global atmospheric reanalysis
generated by the ECMWF. The underlying land surface model used is H-TESSEL. ERA5 ET
is derived from the ERA5 atmospheric reanalysis, which includes coupled atmosphere—land
interactions. All global atmospheric, oceanic and land surface fields are available at an hourly
time step with a spatial resolution of 0.25°(~32km) covering the period from January 1950 to
present, thus the full extend of the record. ERA5-Land (Mufioz Sabater et al., 2021) is a high-
resolution land component of the ERA5 atmospheric reanalysis, providing data at a spatial
resolution of 0.1°x 0.1°. ERA5-Land is generated using the same land surface model but forced
with downscaled meteorological variables from ERA5 without the direct feedback of
atmospheric coupling. This later demonstrated its performance in simulating the
evapotranspiration in offline experiments (Mufioz Sabater et al., 2021, and reference therein).

Global Land Data Assimilation System version 2 (GLDAS; Rodell et al., 2004) is a new
generation of reanalysis developed jointly by the National Aeronautics and Space
Administration (NASA) Goddard Space Flight Center (GSFC) and National Center for
Environmental Prediction (NCEP). GLDAS, which has been streamlined and parallelized by
the Land Information System (LIS; Kumar et al., 2006), generates land surface products by
using various offline (not coupled to the atmosphere) land surface models (LSM) and ingesting
satellite- and ground-based observational datasets (Rodell et al., 2004). Details about the
forcing data and description of the model are available on
http://disc.Sci. GSFC.NASA.Gov/Hydrology. Currently, GLDAS has three components:
GLDAS-2.0 (1948-2014), GLDAS-2.1 (2000- Present), and GLDAS-2.2 (Feb 2003-Present).
Beyond their differences in term of forcing or data assimilation source, the choice of the product
has been dictated by the period covered to validate the CM SAF product. We have selected
the GLDAS-2.1 product with a monthly temporal resolution. GLDAS-2.1 data have been
simulated by the Noah 3.6 Model in Land Information System Version 7 with a spatial resolution
of 0.25°. This simulation was forced with National Oceanic and Atmospheric Administration
(NOAA)/Global Data Assimilation System (GDAS) atmospheric analysis fields (Derber et al.,
1991), the disaggregated Global Precipitation Climatology Project (GPCP) V1.3 Daily Analysis
precipitation fields (Adler et al., 2003; Huffman et al., 2001), and the Air Force Weather
Agency’s AGRicultural METeorological modeling system (AGRMET) radiation fields. The
simulation was only used with GDAS and GPCP from January 2000 to February 2001, followed
by the addition of AGRMET from March 1, 2001 onwards.
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The Global Land Evaporation Amsterdam Model (GLEAM; Miralles et al., 2011; Martens et al.,
2017; Miralles et al., 2024) is a remote sensing-based model allowing the estimation of the
terrestrial evapotranspiration components, including transpiration, bare soil evaporation,
interception loss, sublimation, as well as root-zone soil moisture. To account for random errors
in the forcing data and other processes not explicitly represented in the model, such as
irrigation, GLEAM assimilates microwave soil moisture (SMs) and/or backscatter observations
into the soil profile. Interception loss is calculated separately using the approach from Zhong
etal. (2022). Potential evapotranspiration is calculated using the Priestley-Taylor (PT) equation
(Priestley and Taylor, 1972) and, the actual evapotranspiration is derived by including stress
factors such as soil moisture states and vegetation physiological characteristics. Key features
of this model include the integration of microwave-derived soil moisture, land surface
temperature, and vegetation density, along with a detailed parameterization of rainfall
interception loss. The GLEAM dataset is available globally at daily, monthly and yearly
temporal resolutions, with a spatial resolution of 0.1°, covering the period 1980 to 2023. In this
use case, we use GLEAM V4.2a product at a monthly temporal resolution with a spatial
resolution of 0.1°.

Figure 3 displays the probability density functions (PDFs) of monthly ET estimates for all
selected basins from the five datasets reggrided at 0.25°: CM SAF, LSA SAF, GLEAM, ERA5-
Land, and GLDAS-2.1. The CM SAF and LSA SAF distributions exhibit a strong peak at lower
ET values, indicating a higher frequency of low ET estimates. In particular, mode values are
of 3 mm month™" for CM SAF and 6 mm month™" for LSA SAF datasets whereas other datasets
show higher values ranging from 8 (GLDAS) to 12 (GLEAM) mm month™. Furthermore, CM
SAF presents a lower median value of 21 mm month™, compared to 36, 2 mm month™ for
other datasets. This suggests that CM SAF dataset tends to produce slightly lower values. This
finding is aligned with the results reported in Moutier et al. (2023a). This comparison
underscores the variability in ET estimates across different datasets and emphasizes the
importance of understanding the underlying model assumptions and forcing data when
analyzing water balance components.
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Figure 3: Probability density functions (PDFs) of monthly evapotranspiration (ET) estimates for
all selected basins, over the period 2004-2020, from the five regridded (0.25°) datasets: CM SAF
(blue), LSA SAF (red), GLEAM (green), ERA5-Land (purple), and GLDAS-2.1 (yellow). Vertical
solid lines indicate the median ET values for each dataset.

E-OBS v23.1e is an ensemble gridded dataset of surface climate observations (precipitation
sum, mean sea level pressure, mean wind speed, mean relative humidity, global radiation and
mean, minimum and maximum temperature) at daily resolution for Europe (25°N-71.5°N x
25°W-45°E; Cornes et al., 2018). These variables are available on a 0.1°and 0.25° land-only
regular grid, offering detailed spatial resolution. The E-OBS gridded data set is derived through
interpolation of observations (see details in Haylock et al., 2008; Cornes et al., 2018) from a
dense network of meteorological stations data collated by the ECA&D initiative (European
Climate Assessment and Data; Klein Tank et al., 2002; Klok and Klein Tank, 2009). Since the
initial construction of E-OBS by Haylock et al. (2008), the number of stations has drastically
changed, with approximately 2,500 to approximately 9000 stations in the case of precipitation.
The uncertainty of the product is not homogeneous over the grid as the product uncertainty
increases in data-sparse regions. However, the robustness and reliability of E-OBS are further
ensured through rigorous quality control measures and the inclusion of a wide range of
meteorological stations, making it suitable for this use case. Before extracting the basin shape,
monthly data was obtained by accumulating the daily product.
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The CM SAF has recently released its first global precipitation climate data record: the Global
Interpolated RAinFall Estimation version 1 (GIRAFE v1; Konrad et al., 2025). It provides daily
accumulated precipitation and respective sampling uncertainty, as well as monthly mean
values, covering the period 2002-2022 at a 1.0°spatial resolution. Estimations are derived from
a combination of passive microwave (PMW) observations onboard polar orbiting satellites and
infrared (IR) observations onboard geostationary satellites distributed around the equator
(Geo-Ring). Originally developed for the Megha-Tropiques satellite mission, the Tropical
Amount of Precipitation with an Estimate of ERrors (TAPEER; Chambon et al., 2013; Roca et
al., 2018) approach has been adapted to merge PMW and IR data as well as the estimation of
the daily sampling uncertainty. In the 55°S—55°N latitude range, PMW-derived precipitation
rates are merged with IR-based precipitation occurrence to compute daily precipitation
accumulations. Beyond the 55°S-55°N latitude range, the IR Geo-Ring pixel distortion is too
high, and daily accumulation estimation exclusively relies on PMW observations. Thus, the
GIRAFE sampling uncertainty, being estimated from IR observations, is only available in the
55°N/S latitude region. Please note that a full description of the method can be found in
(Konrad et al., 2025; Niedorf et al., 2024). In the framework of this study, only monthly data
has been extracted and remapped to a common 0.25°grid

The Multi-Source Weighted-Ensemble Precipitation v2.8 (MSWEP; Beck et al., 2019) dataset
is a high-resolution, global precipitation dataset that combines information from multiple
sources, including gauge observations, satellite estimates, and reanalysis data. The dataset is
unique in being able to incorporate daily gauge observations and correct for gauge reporting
times, which minimizes temporal mismatches between the different data sources (see Beck et
al. (2017, 2019) for more information). MSWEP v2.8 has a 3-hourly, daily, and monthly
temporal resolution and a spatial resolution of 0.1° in three variants: "NRT", "Past_nogauge",
and "Past". The "NRT" is the near real-time extension (with latency of 3 hours). The "Past" and
"Past_nogauge™ are the historical satellite-reanalyses merged with and without gauge
corrections, respectively, for the period 1979-2020. In the framework of this study, we have
used the 'Past’ version as it includes all the data sources of "Past_nogauge" but also includes
daily gauge corrections. This version provides the optimal precipitation estimates by merging
gauge data and is suitable for hydrological and climatological purposes.

Figure 4 displays the probability density functions (PDFs) of monthly precipitation (P) estimates
for all selected basins from the three datasets regridded at 0.25°: GIRAFE, MSWEP and E-
OBS. The GIRAFE distributions exhibit lower precipitation values as compared to MSWEP and
E-OBS products. Indeed, the median value for GIRAFE is of 31,mm month™" while medians of
65 and 62, mm month™* are observed for MSWEP and E-OBS, respectively. This observation
aligns with the findings by Konrad et al. (2025), where GIRAFE tends to produce lower values
over Europe. This underestimation could be partially related to the inadequate detection of
precipitation over snow and ice surfaces (Konrad et al., 2025) and a general tendency toward
lower daily precipitation (Konrad et al., 2024).
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Figure 4: Probability density functions (PDFs) of monthly precipitation (P) estimates for all
selected basins, over the period 2004-2020, from the three regridded (0.25°) datasets: GIRAFE
(blue), MSWEP (red) and E-OBS (green). Vertical solid lines indicate the median precipitation
values for each dataset.

For each basin, the changes in total water storage (? at monthly timescale) are estimated

using data from NASA Gravity Recovery And Climate Experiment (GRACE) and its follow-up
mission, the Gravity Recovery and Climate Experiment Follow-on (GRACE-FO) data (Landerer
and Swenson, 2012). These missions provide estimates of terrestrial water storage by
detecting variations in Earth’s gravity field caused by mass redistribution, primarily associated
with changes in water storage. The GRACE-derived total water storage is available for the
period 2002—near present at a spatial resolution of 1°based on three RL06 solutions provided
by major processing centers: GFZ (GeoForschungsZentrum; Landerer, 2021b, 2023a), CSR
(Center for Space Research, University of Texas; Landerer, 2021a, 2024), and NASA JPL (Jet
Propulsion Laboratory; Landerer, 2021c, 2023b). The estimation of water storage changes
follows a well-established approach (Swann and Koven, 2017), where the monthly variation in
water storage is computed using a centered finite difference of the monthly total water storage
values:
dS _ Sus- S

—_— 3
dt 2At 3)
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where At represents a time step of one month, and S+ and Si-1 correspond to the monthly
mean water storage in the basin for the following and preceding months, respectively.

Finally, we have used a simple average of the three different GRACE spherical harmonic
solutions (GFZ, CSR, and JPL) to reduce uncertainties associated with individual processing
strategies and enhance the robustness of total water storage estimates (Sakumura et al.,
2014). As described by Tangdamrongsub et al. (2021), the sensitivity of GRACE to changes
in terrestrial water storage is constrained by the design of its satellites and orbital configuration.
GRACE is more accurate while detecting variations over relatively large areas (e.g., >90 000
km?) or mass changes exceeding ~1 Gton, which corresponds to approximately 1 cm of
equivalent water height over 3°x3°grid cell. This coarse spatial resolution limits its applications

., ds . . . .
for detailed p assessments in smaller river basins. Nevertheless, numerous studies include

smaller basins into their analyses (e.g., Zeng et al., 2012; Wang et al., 2014b; Xiong et al.,
2023; Zhang et al., 2023a), demonstrating that GRACE data can still be valuable at finer
scales. Therefore, this limitation has been used as a threshold to categorize basins into
different groups for further analysis (see Section 2.1).

Please note that the use of a centered finite difference approach ideally requires a continuous
time series. However, the original GRACE mission terminated in June 2017, while its
successor, GRACE-FO, only began data acquisition in June 2018, resulting in an 11-month
gap between July 2017 and May 2018. Furthermore, the GRACE mission itself contains
additional missing months, and certain months were excluded due to poor temporal centering.
A data file spanning from 20 March 2012 to 20 April 2012 is not considered to be centered on
a specific month and was therefore excluded from the analysis. Although various gapfilling
methods have been proposed to address these discontinuities (Zhang et al., 2025), the
implementation of such techniques was beyond the scope of this study.

Figure 5 shows the probability density functions (PDFs) of monthly changes in water storage
estimates across all selected basins, based on the three GRACE solutions, JPL, GFZ, and
CSR, regridded to 0.25°. The spread of the distributions suggests variability between the
datasets, suggesting differences in how each solution captures changes in water storage.
Despite this variability, the distributions are generally centered around zero, indicating, over
the period 2004-2020, no pluriannual accumulation or depletion of water at the basin scale.
Nevertheless, the variability implies the presence of fluctuations at finer temporal or spatial
resolutions.
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Figure 5: Probability density functions (PDFs) of monthly water storage (% ; mm month™)
estimates for all selected basins, over the period 2004-2020, from the three sources: GRACE-
CSR (blue), GRACE-JPL (red) and GRACE-GFZ (green). Vertical solid lines indicate the median
values for each PDFs.

The aridity index (Al), here defined as the ratio of annual reference evapotranspiration ET s to
annual precipitation (though the potential ET is sometimes used as well; Zarch et al., 2015;
Kukal and Irmak, 2016, and references therein), is a key indicator of climate dryness in a given
region. An Al of O corresponds to extremely arid areas with no precipitation, while values close
to 1 indicate humid environments where most precipitation is returned to the atmosphere
through evapotranspiration. Values greater than 1 represent areas where precipitation
exceeds evapotranspiration. To distinguish the impact of climate on water balances, we
followed the Palmer et al. (2010) and Zhang et al. (2023a) approaches by classifying basins
as either water-limited (Al > 1) or energy-limited (Al < 1).

In the framework of this study, we derive several Al thanks to the LSA SAF ET.es daily product
(Trigo et al. (2011); Paredes et al. (2021)), and the three precipitation products (see section
2.3). ETet LSA SAF and precipitation data were initially remapped to a common 0.25°grid using

. Subsequently, the daily/monthly mean values were
calculated for each basin and aggregated to annual timescales, considering only years with a
full set of 12 valid months. Yearly ET.et and P values have been averaged to finally obtain three
Al estimates: Algirare, Ale-oss, and Aluswer. A fourth Al was computed as the median of the
three individual estimates and named Alaverage-
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Figure 6 presents these four aridity indices’ probability density functions (PDFs). As expected,
the lower precipitation values from GIRAFE (see Section 2.3.2) result in a higher Al as
compared to other datasets. The median value for Algirare is 1.5, whereas median values for
Almswep and Ale.oss are 0.8 and 0.84, respectively. By using Alaverage for the classification, 9
basins were identified as water-limited and as energy-limited.

1.4 Sources
ETretisusu/ Pairare
1.2 iR ETrefisasar/ Pe - 0Bs
AR ET refigusu/ Puswer
1.0 A 77 Median
208
w
c
[
o6
0.4 1\
\
02 h
0.0 y L\ )
0 2 4 6 8
Al

Figure 6: Probability density functions (PDFs) of the aridity index (Al), computed as the ratio of
reference evapotranspiration from LSA SAF (ET ., .,.) to precipitation (P), for all selected
basins over the period 2004-2020. The analysis is based on three regridded (0.25°) precipitation
datasets: GIRAFE (blue), E-OBS (yed), and MSWEP ( ). The grey-shaded area represents the
distribution of median Al values derived from the three individual datasets. Vertical solid lines
indicate the median Al for each dataset.

The evaluation is made in terms of bias, mean absolute difference (MAD) and unbiased root
mean square difference (URMSD):

N ETp- ETwe
Bias = 20— P = W8 :Il W8
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where N is the number of estimations, ETp, corresponds to evapotranspiration values for
various independent products (CM SAF, LSA SAF, GLEAM, GLDAS 2.1 and ERA5-Land) and
ETwg, represents the evapotranspiration values calculated using equation 1 (ETws can be
replaced by ETrq).
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Figure 7: Location of the GRDC station Diisseldorf (red dot) and its associated river basin (blue
polygon) derived from GRDC shapefiles (area of 147680 km?). The basin, part of the Rhine River
system, is classified as large (area > 90 000 km?) and energy-limited (Al < 1).

Analyzing a single basin provides a valuable opportunity to examine key hydrological
components individually, gaining information about their magnitudes and variability. This
approach not only enhances the understanding of each component separately but also helps
to identify inconsistencies between different data sources or estimation methods. For instance,
discrepancies between water balance-derived evapotranspiration (ETws and ETeq) and
satellite-based or reanalysis estimates can indicate biases in precipitation, discharge, or water
storage change components. In the same way, variations among precipitation datasets or
GRACE-derived storage changes from different processing centers can reveal uncertainties
related in data source/processing choices. This analysis clarifies how precipitation, discharge,
and change in water storage are combined to estimate the overall water balance
evapotranspiration, ultimately improving confidence in remote sensing based and reanalysis
product-based evapotranspiration estimates.

The Rhine River (Diisseldorf GRDC station, basin area of 147680 km? Figure 7), holds
significant importance due to its hydrological significance, economic impact, and role in climate
studies, offering insights into water management challenges and climate change impacts in a
major European river basin (Gérgen et al., 2010; Bosshard et al., 2014; Stahl et al., 2022).
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Figure 8: Monthly time-series of key hydrological components for the Rhine River at Diisseldorf
(2003-2020). The panels display, from top to bottom: (1) observed discharge (Qcroc); (2)
precipitation (P) from multiple datasets (GIRAFE, E-OBS, MSWEP), including their mean (P
Average , red solid line); (3) water storage change (g) estimated from GRACE solutions (CSR,
JPL, GFZ), with their ensemble mean (red solid line); (4) evapotranspiration (ET) estimates from
different datasets (CM SAF, LSA SAF, GLEAM, ERA5-Land, GLDAS 2.1), including their mean
(red solid line); and (5) water balance-derived evapotranspiration with (ETws) and without (ETrq)
including the water storage component, along with the monthly averages of key hydrological
variables used in their computation: discharge (Qcroc; red solid line), mean water storage
(?GRACEAverage; yellow solid line), precipitation (P , bar-plot in blue) and the

evapotranspiration (ET, )-

Figure 8 presents the monthly time series of key hydrological components for the Rhine River
at Dusseldorf from 2003 to 2020. The first panel illustrates the observed discharge (Qcroc),
which exhibits variability, with peak values exceeding 75 mm month™ during high-flow periods
and minimum values around 20 mm month™" (5" percentile (perc) = 17.9, mm month™"). The
second panel shows monthly precipitation estimates from three datasets (GIRAFE, E-OBS,
MSWEP), with the mean (Paverage). Precipitations exhibit substantial month-to-month variability,
with 5" and 95" percentile of the distribution being & and 135 mm month™ (including all
products), respectively. The third panel presents the change in terrestrial water storage (%),
estimated from GRACE solutions (CSR, JPL, GFZ) and averaged. Most variations are ranged

between +45 mm month™ (more than =90% of the data) with minimal and maximal values

obtained in June (=-32 mm month™") and November (=38 mm month™"). The estimated change
27
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Figure 9: Scatter plots comparing monthly evapotranspiration estimates from the CM SAF

product (ETcm sar in mm month™') with water balance-derived evapotranspiration estimates with

(ETws in mm month™’; left panels) and without (ETrq in mm month™; right panels) considering %

for all basins. GIRAFE (top panels), MSWEP (middle panels), and E-OBS (bottom panels)

precipitation products are considered for the calculation of ETwe and ETpa. The dashed black

line represents the 1:1 relationship. Statistical metrics, including the coefficient of determination

(R?), unbiased root mean square deviation (URMSD), bias, mean absolute deviation (MAD), the

number of observations (N), and the linear relationships, are provided in each panel.
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in water storage varies according to the GRACE solution. Across the three datasets, the
average maximum difference is of 10 mm month™, while the standard deviation is on average
of 5.5 mm month™. For all methods, several gaps are observed between 2011 and 2018. As
explained in the section 2.4, missing values are primarily due to data gaps between the
GRACE and GRACE-FO missions, as well as the exclusion of months with missing or poorly
centered observations, which are required for the finite difference approach. The fourth panel
presents evapotranspiration (ET) estimates from various datasets (CM SAF, LSA SAF,
GLEAM, ERA5-Land, GLDAS 2.1). A clear seasonal pattern is observed, with the maximum
values of about 110 mm month™ in summer and the minimum values of about 0 mm month™
in winter. While the ET values tend to be in the same order of magnitude, the highest
differences are observed in summer. The final panel shows precipitation, discharge, GRACE-
derived storage change, and evapotranspiration. Two estimates of water balance-derived
evapotranspiration are included: ETws and ETpq. These comparisons provide insights into
potential discrepancies between datasets and the water balance approach.

With a specific focus on evapotranspiration, we observe similar temporal dynamics between
ETws and ETcwm sar, While ETpq shows a less consistent pattern. However, ETws presents
significant data gaps. This similarity in the temporal courses is confirmed by the 1:1 comparison

in , Where ETow sar is compared with ETwe and ETpq, based on GIRAFE (ETaRTE
and ETEEAE), MSWEP (ETwa'= and ETpg" = ) and E-OBS (ET{g°° and ETES"°)

ds . . . -
products. When ) not considered, bias values are between (ETEC?BS

month™ (ETEQE),
0.43 (ETEEATE).

) and -34.9 mm

the correlation is weak with R? values between 0. (ETEE?BS) and

ds
Conversely, when s

, bias values , but stronger relationships (=0.57) are observed, and
uRMSD and MAD tend to decrease. Only MAD for GIRAFE remain nearly unchanged.
Notably, the best R? is obtained with the GIRAFE (CM SAF) dataset with a value of 0.83.

GIRAFE

xtremely low values are observed for ETyyg" —, which could bias the relationship,
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case of GIRAFE, this underestimation is partly due to limitations in the GIRAFE v1 precipitation
dataset, which has a reduced ability to detect precipitation in mid-to-high latitudes during snow
or ice conditions. This issue arises from limitations in the passive microwave (PMW) input data
and can lead to an underestimation of precipitation in these areas. A dedicated quality flag is
available to help users identify and exclude potentially affected grid cells.

Jo further investigate the robustness of the observed relationships, we extended the R®
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analysis across all basins using different ET datasets, both with and without applying the
GIRAFE snow flag. This was done to evaluate whether the improved agreement seen when
using GIRAFE precipitation is consistent across datasets and basins, and to assess the
potential role of snow-related biases.

Figure 10 displays the probability density functions (PDFs) of R? values between independent=
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Figure 10: Probability density functions (PDFs) of R?> values between independent
evapotranspiration (ET) products (CM SAF, GLEAM, LSA SAF, ERA5-Land, GLDAS 2.1) and ET
derived from the water balance-derived evapotranspiration estimates based using three different
precipitation datasets: GIRAFE (top row, ETS R F), MSWEP (middle row, ETia "), and E-OBS
(bottom row, ETE055).Left panels show results without applying a snow flag, while right panels
include only values where the GIRAFE snow flag is set to 0. Each color represents one ET
product, with N the number of basins considered.
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One possible hypothesis for this consistent increase in R? is that GIRAFE precipitation and the«
ET products share a dependence on satellite-based observations, which involve retrievals
through the atmosphere and are influenced by large-scale atmospheric conditions (e.q.,
radiation, cloud cover, convective activity), which,can introduce similar patterns,in their outputs
regardless of true variability. This can lead to higher R? values due to consistent seasonal
signals in both precipitation and ET estimates. Another complementary hypothesis is that the
higher R? values are driven by the stronger seasonal amplitude observed in the GIRAFE
precipitation dataset. Among the three precipitation products, GIRAFE exhibits a markedly
more pronounced seasonal cycle (see Figure 21,in Appendix), which more closely matches
the seasonal variability in ET products. This stronger seasonal cycle in GIRAFE might reflect
real climate patterns, but it could also be exaggerated, for example due to underestimation of
winter precipitation. In either case, the stronger seasonal cycle aligns more closely with the
dominant mode of variability in ET, which is also strongly seasonal, thereby inflating R? values.
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This interpretation is supported by a comparison of the annual cycle R? between precipitation
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respectively. A similar pattern is observed across all basins and ET products, (results not
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shown), indicating that the stronger seasonal alignment between GIRAFE and ET products is
not limited to a specific region. However, this hypothesis does not imply improved agreement
in_anomalies or short-term variability. Indeed, when comparing anomalies between ETwg
based on GIRAFE and ETgwm sar, correlations are close to zero (not shown here). This suggests
that the higher R? values may primarily reflect climatological alignment, such as annual cycles,
rather than a more accurate representation of interannual or sub-seasonal dynamics.,
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This consistent improvement in correlation across datasets supports the potential use the«
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ET\C/;VIBRAFEVS. ETcm sar relationship in practical applications, such as over the Dusseldorf basin.
Indeed. fhis relationship could serve, for instance, as a basis for a gap-filling method or for<,
extending time series of another component of the water balance equation, as illustrated in |

Figure 11, This figure shows the temporal course of % over the Dusseldorf basin, derived from

both GRACE solutions (CSR, JPL, GFZ and their ensemble mean) and computed from the
water balance equation (Eq. 1) using the GIRAFE precipitation, GRDC discharge and

evapotranspiration estimated from established linear relationship between ET\?\,'BRAFE and ETcm

sar (ETWE = = 1.2 « ETowsar = 42). The water balance-derived % captures the temporal

dynamics well and aligns closely with GRACE estimations, especially during periods with data
gaps, suggesting its usefulness for gap-filling. It seems important to note that there is no
significant bias, which would not be the case if CM SAF evapotranspiration were used directly.
While promising, this approach remains a simplified representation of storage dynamics and
requires further refinement to improve its robustness and applicability. Despite its encouraging

result, this approach is a simplified representation ofi—? and should be applied with caution.

Indeed, it needs to be applied in a well-defined context in which the user is fully aware of the
associated uncertainties and limitations. Its reliability depends on various factors as the
selected GRACE solution used, the precipitation input to estimate ETws, and the
characteristics of the study basin. The empirical relationship itself is subject to uncertainty and
may not be applicable to all regions or climatic regimes. Note that the approach has also been
tested after removing spurious clusters of points near zero, and the conclusions remain valid
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, users should define the acceptable error threshold for
their specific application and check whether the error associated with the use of this gap-filling
method falls within those limits.

In the following sections, we extend the comparison of ET estimates from various independent
products with both ETws and ETpq, analyzing the results according to seasonal variability,
basin size, and climatic regimes of the basin.
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Figure 11: Temporal evolution of monthly % (mm month™") estimates over the Diisseldorf basin,

based on GRACE satellite observations and the water balance method. GRACE-derived %
includes individual solutions from CSR (blue dashed line), JPL (orange dashed line), and GFZ
(green dashed line), along with their ensemble mean (solid red line). The water balance-based
estimate (%wa dashed violet line), is calculated as P - ETws — Q, where ETws is derived from CM

SAF ET data using the empirical relationship ETws = ETcmsar

As observed in the previous section, strong seasonality is observed for the various datasets
considered in the study. This seasonal sensitivity highlights the importance of conducting time-
dependent analyses. Figure 12 displays the monthly mean annual cycle of ET derived from
three different estimation approaches for the stations of each river in our dataset
with basin areas exceeding 90 000 km?. For each basin, the blue, orange, and green solid lines
represent the mean ET values derived from independent products (CM SAF, LSA SAF,
GLEAM, ERAS5-Land, GLDAS 2.1), from the water balance method with and without

considering % based on the three precipitation products, respectively. Shaded areas indicate
the corresponding standard deviations showing the intra-product variability. Note that the

standard deviation values for ETws and ETpq are identical, as they only depend on the choice
of precipitation input used in their computation.

Across all basins, the highest intra-product variability, reflected by the standard deviation, is
observed in summer for ET derived from independent products with average values around
32
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15.3,# 3 mm month™. At the opposite, variability is lowest for ETws and ETpq during the same
period. Most of the variability is observed in winter and autumn, with standard deviation values
around 18, mm month™* when differences between values from GIRAFE and values from other
products are higher (results not shown here). Overall, intra-product variability is higher for
water balance-derived ET, with an average standard deviation of 14.7.mm month™', compared
to mm month™" for ET from independent sources. This highlights the strong influence of the
selected precipitation product on estimations. In addition, the magnitude of intra-product
variability for ETwe and ETeq is more dependent on the basin than for independent sources.
For instance, the standard deviation in summer is only mm month™" at the station,
compared to 16.3 mm month™ at the Lobith station. With regard to the product differences, as
noted in the previous section, it appears that accounting for changes in water storage is crucial
for temporal course analysis. The ET values from independent products are, for most of the
cases, higher than those from ETws (on average 1.4 times higher), with the magnitude of this
difference varying seasonally and with the basin. However, the general temporal pattern
remains similar. In contrast, ETpq provides higher values in winter and autumn with values on
average 2.7,and 1.04 times higher, respectively. In summer and spring, it shows much lower
values, being 1.5 and 2.2 times lower on average. Consequently, the distinct bell-shaped curve
observed for ET and ETws is no longer clearly apparent. The water storage change term plays
a critical role, especially in summer, where its contribution is more important and can greatly
impact the water balance closure.
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Figure 12: Monthly mean annual cycle (MMAC) of evapotranspiration (ET; mm month™)
estimated from different approaches for the largest river basins from our database. Each
panel represents a different basin, illustrating the average (solid line) and the standard deviation
(shaded area) of the evapotranspiration MMAC. The estimates are derived from independent
datasets (in blue) and from the water balance equation using different precipitation products,
with (orange) and without (green) considering changes in water storage.
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Figure 13 and Figure 14 present the monthly variability of the imbalance (€, Eq. 2) or excluding
(Figure 14) the change in water storage (i—f). The imbalance is computed for each of the
independent ET datasets: CM SAF, LSA SAF, GLEAM, ERA5-Land, and GLDAS 2.1. The

analysis focuses on the river stations in the database, with each subplot
representing a different basin and illustrating the seasonal cycle of the imbalance. Overall,
negative imbalances dominate across all basins for both ET\C,;V'BRAFEand ETS‘('QRAFE, with only a

few exceptions in certain months. On average, the imbalance is approximately -28 mm
month™", with average values ranging from -15 mm month™ for CM SAF to -35 mm month™
for GLDAS 2.1 datasets. Thus, while the average imbalance may remain stable, the intra-
annual variability and monthly magnitude of the imbalance vary across basins, both with and
without accounting for changes in water storage. Those results reflect the combined influence
of the temporal scale of analysis, input data uncertainty, potential errors in water balance
components, discrepancies among independent ET products, and the effects of basin area
and climatic regime.
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Figure 13: Monthly mean annual cycle of the imbalance (€), calculated using Eq. 2, where each
curve corresponds to a different independent ET dataset (CM SAF in red, LSA SAF in green,
GLEAM in grey, ERA5-Land in yellow, and GLDAS 2.1 in violet). The GIRAFE dataset is used as
input for precipitation. Results are shown for the river basins in the dataset, with each
panel representing a different basin. The dashed blue line indicates the zero-imbalance
reference.
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Figure 14: Same as Figure 13, but calculated without including the change in water storage (?)
in Eq. 2.

In the following section, this analysis is extended to the full dataset by considering not only the
largest river basins, but also examining the influence of precipitation sources, basin size, and
climate regime on the observed imbalances.

The averaged imbalance was calculated for each of the basin time series using Eq. 2,
based on different precipitation products (E-OBS, GIRAFE, MSWEP) and various ET sources
(CM SAF, LSA SAF, GLEAM, ERA5-Land, and GLDAS 2.1). Figure 15 shows the distribution
of the monthly mean imbalance (¢; Eq. 2) across each station in the database, comparing the
impact of the precipitation product for the five independent ET products. Results are shown for
the three precipitation datasets with or without the consideration of water storage changes.
Overall, results tend to show negative imbalances, except while comparing with ETcm sar. The
choice of precipitation dataset appears to have the largest impact on the mean imbalance,

while the inclusion of the water storage term (%) has essentially no impact on the monthly
mean imbalance when aggregated over the full dataset. This suggests that at this temporal
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scale (mean across multiple years for each basin), changes in water storage tend not to be
- . . . . . . . das
significant in analyzing the imbalance. Differences due to the inclusion or exclusion Of; are

thus of secondary importance in this context. This observation aligns with findings in the
literature (e.g., Zhang et al. (2023a)), but we refine this assumption by focusing specifically on
the global imbalance from each basin and not the intra-annual variability discussed in the
previous section. While assuming negligible storage changes may be valid in certain contexts,
this assumption remains elusive and appears to be limited to well-defined study cases.
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Figure 15: Boxplots of the monthly imbalance (€; Eq. 2) averaged over the full time series for
each of the basins (N = ). The imbalance is computed using three different precipitation
datasets: E-OBS (top panel), GIRAFE (middle panel) and MSWEP (bottom panel).
Evapotranspiration estimates are taken from CM SAF, LSA SAF, GLEAM, ERA5-Land, and
GLDAS 2.1. The left panels show results including the water storage change component (dd—‘:'),
while the right panels exclude it. The dashed red line indicates the zero-imbalance reference.

The second-order effect comes from the variability between independent ET products, which
nevertheless significantly influence the imbalance values. Among these, results for CM SAF
ET dataset tend to provide higher imbalance values than other sources with median values,
on average 12.5 mm month™ higher. Such results were expected as they reflect the lower
values observed by Moutier et al. (2023a) over Europe while making inter-comparisons
between ETcm sar and other products. Importantly, the choice of the precipitation dataset
strongly determines the magnitude of the imbalance. MSWEP consistently produces the
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smallest average imbalances across most of the ET products and configurations. On average
median values are of -34.4_ mm month™" for GIRAFE, -5.3 mm month™' for E-OBS, and -1.
mm month™ for MSWEP. This suggests that MSWEP may offer the most consistent agreement
in a water balance framework at this scale. However, the best-performing precipitation dataset
still depends on the independent ET source considered, indicating no universally optimal
combination. For instance, when using the ETcwm sar dataset, the best performances for ETws
are obtained while using E-OBS as precipitation dataset to get a median value of 5.3, mm
month™ when it is of 9.2 mm month™ while using MSWEP as precipitation dataset.

While the precipitation dataset appears to dominate the behaviour of the imbalance at the
global scale, these aggregated results may mask important patterns. Therefore, we
investigated how the imbalance varies according to basin size and climate regime, using
various precipitation datasets.
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Figure 16: Boxplots of the monthly imbalance (€; Eq. 2) averaged over the full time series of each
basin using Eq. 2, based on different precipitation products: E-OBS (top panel), GIRAFE (middle
panel) and MSWEP (bottom panel). Evapotranspiration estimates are taken from CM SAF, LSA
SAF, GLEAM, ERA5-Land, and GLDAS 2.1. Each panel contains two boxplots per dataset,
distinguishing between different basin characteristics. Left panels categorize basins based on
the aridity index (Al), with energy-limited (wet) basins and water-limited (dry) basins. The bottom
panels differentiate between large basins (2 90 000 km?) and small basins (< 90 000 km?). The
dashed red line indicates the zero-imbalance reference.

Figure 16 presents the distribution of monthly imbalance values computed using three
precipitation products (E-OBS, GIRAFE, MSWEP), across different subsets: water-limited
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versus energy-limited basins and large versus small basins, for all independent ET datasets
(CM SAF, LSA SAF, GLEAM, ERA5-Land, GLDAS 2.1). As previously observed, the choice
of the precipitation product remains the primary driver of the imbalance magnitude and
imbalance values for ETcm sar tend to be higher. Nevertheless, basin characteristics also
introduce significant differences. The most important distinction is observed between water-
limited and energy-limited basins while using the GIRAFE dataset. The difference in median
imbalance for water-limited and energy-limited basins is between 10 and 19, mm month™ for
the LSA SAF and the CM SAF datasets, respectively. For E-OBS and MSWEP, a smaller
difference around 5.5 mm month™ observed for ETcwm sar, while other ET datasets
show median differences within + 2 mm month™. These results suggest that ETcwm sar
estimations tend to be more sensitive to the climatic conditions of the basin as compared to
other datasets. In contrast, the influence of basin size (large vs. small) appears to be of
secondary importance for all configurations. Only the imbalance based on GIRAFE and ET
from CM SAF GLEAM, are slightly impacted , with median differences
between large and small basins of 7.mm month™, respectively. These variations are
smaller than those observed between ET products, highlighting that inter-product variability
dominates. This limited sensitivity of the imbalance value according to the basin area is
expected, as the primary goal of focusing on large basins is to ensure more reliable estimations

of %. Moreover, this finding aligns with previous studies such as Zhang et al. (2012) and Zhang

et al. (2023a), who reported no significant differences in results when separating basins into
small (5000 km?) and large (> 5000 km?) subsets. However, as observed in Figure 15, taking
into account the water storage term or not does not led to significant changes in the resulting
imbalance values when aggregated at the basin scale. It is worth noting that it remains difficult
to identify a single best-performing independent ET product based on basin size or climate
regime. The relative performance of each product depends firstly on the precipitation dataset
used and secondly on the climate regime for certain cases, indicating a complex interaction
between input datasets and local conditions. Notably, when using the GIRAFE dataset and/or
ETcwm sar, the climate regime of the basin plays a crucial role in shaping the water balance

L . . . ds
closure performance. In contrast, basin size plays a minor role, and the effect of including o
remains limited at this aggregation scale.

To further explore the influence of water storage changes without focusing the analysis on the
imbalance, we present a statistical comparison between the monthly CM SAF
evapotranspiration product (ETcum sar) and the water balance-derived estimates computed both
with (ETws) and without (ETpq) the change in water storage component for the three
precipitation datasets, using all available match-ups across all basins (Figure 17).

Specifically, with and without considering %, bias values are approximately 28 mm month™

(GIRAFE), —2 mm month™ (E-OBS), and -7 mm month™" (MSWEP). Accounting for %

increases the coefficient of determination (R?) from 0.18 to 0.43 for GIRAFE, from 0.07 to 0.34

for E-OBS, and from 0.08 to 0.36 for MSWEP. Thus, the highest agreement is observed with
38
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the GIRAFE precipitation product. When limiting the analysis to the river basins

(where % estimates are considered more reliable) the R? reached values of 0.76 with GIRAFE

(see in the Appendix). This analysis highlights the added value of including water
storage changes in the water balance, particularly in configurations where
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Figure 17: Density scatter plots comparing monthly evapotranspiration estimates from the CM
SAF product (ETcm saF in mm month™') with water balance-derived evapotranspiration estimates
with (ETws in mm month™; top panels) and without (ETpa in mm month™; bottom panels)
considering %for all basins. GIRAFE (left panels), E-OBS (middle panels), and MSWEP (right
panels) precipitation products are considered for the calculation of ETws and ETra. The color
scale indicates point density, with warmer colors representing higher densities. The dashed
black line represents the 1:1 relationship. Statistical metrics, including the coefficient of
determination (R?), unbiased root mean square deviation (URMSD), bias, mean absolute
deviation (MAD), and the number of observations (N), are provided in each panel.

storage dynamics have a greater influence on evapotranspiration estimates. Moreover, the
stronger performance observed for larger basins suggests that global statistics may mask
patterns.

To investigate this further, similar statistical analysis has been applied, using the GIRAFE
precipitation, to all other evapotranspiration sources (LSA SAF, GLEAM, ERA5-Land, and
GLDAS 2.1) and across five different basin subsets: all basins, water-limited basins (Al > 1),
energy-limited basins (Al < 1), small basins (< 90 000 km?), and large basins (= 90 000 km?).
Figure 18 summarizes the results using heatmaps for several performance metrics, including
MAD, bias, R?, uRMSD, and N. Across all basin subsets, CM SAF consistently outperforms
other datasets in terms of bias and MAD. The best performances are observed in water-limited
basins, where CM SAF shows a bias of 9 mm month™ and MAD of 22 mm month™. For similar
subset, other products exhibit bias between 21 and 30 mm month”" and MAD values between
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27 and 33 mm month™". It is worth noting that incorporating water storage changes (?) does

not significantly reduce MAD or bias, suggesting that the main discrepancies between ET from
the water balance and satellite/reanalysis products are not primarily due to the omission of the
storage term. Instead, errors in precipitation (P), discharge (Q), or biases in the ET datasets
themselves are likely responsible for most of the differences.
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Figure 18: Heatmaps of statistical metrics assessing the agreement between monthly
evapotranspiration estimates from different datasets (CM SAF, GLEAM, GLDAS 2.1, ERA5-Land,
and LSA SAF) and water balance-derived evapotranspiration estimates considering (ETws) or
not (ETea) % and based on the GIRAFE precipitation product. Statistics are made for all matchup-
ups include in different subsets: All, water-limited (Al > 1), energy-limited (Al < 1), small (<90 000
km?) and large (2 90 000 km?). The panels display (top-left) the coefficient of determination (R),
(top-middle) bias (mm month™"), (top-right) unbiased root mean square deviation (URMSD, mm
month™), (bottom-left) median absolute deviation (MAD, mm month™"), and (bottom-right) the
number of observations (N). Warmer colors indicate higher values, while cooler colors represent
lower values.

In terms of uURMSD, results vary between 20 mm month™ for ETwg in large basins and 42 mm
month™ for ETpq in energy-limited basins. uRMSD values are generally slightly better for ETws
compared to ETpq, but marginal improvements of 5 mm month™ can still be observed in
specific cases. No independent ET product consistently outperforms others across all subsets
for this metric.

Regarding R?, values are generally in the same order of magnitude across independent
datasets within each subset, but become significantly higher when water storage variations

are included (ETwg). The improvement in R? (especially for large basins) shows that adding §
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improves the ability to capture the temporal variability of ET. This reinforces the idea that
storage is an important component to analyze inter-annual and seasonal fluctuations, even if

its effect is not significant on cumulative ET values (no impact on the bias). This improvement

of R? is most notable in large basins (0.74 for ETya%and 0.35 for ETpa®), although small

basins also benefit, but with less improvement and lower absolute values (0.41,for ETys and

0.17 for ETE‘E,a“). This observation for small basins is potentially due to their faster hydrological

response times and less significant storage capacity, meaning that short-term precipitation and
discharge dominate the water balance. Finally, water-limited basins tend to produce higher R?
values than energy-limited ones. For instance, in the case of the CM SAF dataset, R? are 0.43
and 0.63, for energy-limited basins, respectively. Additionally, the
improvement of the R? is more pronounced for water-limited basins than energy-limited ones.

This is potentially due to the fact that the influence of% on the evapotranspiration in energy-

limited basins is less direct because ET is primarily controlled by energy availability rather than
water storage. Indeed, the temporal course in energy-limited basins is mainly driven by the
availability in energy. Overall, the R? values obtained in this study are of the same order of
magnitude as those reported in previous works such as (Ruhoff et al., 2022; Zhang et al.,
2023a). In addition, Ruhoff et al. (2022) also observed better consistency in water-limited
conditions. However, contrasting results were found by Zhang et al. (2023a), who observed
higher R? values in energy-limited basins. This discrepancy can be attributed to several factors.
First, each basin has its own unique hydrological and climatic characteristics that may affect
the estimations performance. Second, differences in the input datasets used in the water
balance equation (precipitation, discharge, or water storage) which can lead to different results.
Third, a key limitation in classifying basins as water- or energy-limited lies in the use of the
aridity index, which is sensitive to both its mathematical formulation and the choice of input
datasets (e.g., reference evapotranspiration and precipitation sources). As a result, a basin
classified as water-limited in one study could be considered energy-limited in another,
potentially leading to differing interpretations of the same region’s water balance behaviour.

It is also important to note that calculating R? values for every basin and then averaging them
for each subset results in higher aggregated R? values (see in the Appendix). For
example, in the large basin subset and when considering water storage change, the mean R?
reaches approximately 0.82 (0.74 in Figure 18). In addition, the difference in R? values between
water-limited and energy-limited basins diminishes to about 0.06,(0.67,vs. 0.61, respectively)
when compared against ETcwm sar.
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This study presents a comprehensive evaluation of the CM SAF LANDFLUX Ed. 1
evapotranspiration (ET) product within a water balance framework, using data from
European river basins. One of the key objectives is to assess the potential of the CM SAF ET
product for hydrological basin applications, particularly in the context of water balance closure.
Several ET datasets (CM SAF, LSA SAF, ERA5-Land, GLDAS 2.1, and GLEAM) and three
precipitation products (GIRAFE, E-OBS, and MSWEP) were assessed to analyze water
balance closure performance, quantify the residual (imbalance), and explore the sensitivity of
estimates to basin characteristics and input choices.

A major focus of this study was the role of water storage changes (%), derived from GRACE

data, in the water balance equation. While the inclusion of % had a limited effect on the long-

term average imbalance across all basins and the full study period, it is crucial to take it into
account for accurately capturing intra-annual variations and catching the temporal course of
independent evapotranspiration products such as CM SAF. For instance, when considering all
available match-ups, the correlation (R?) between CM SAF ET and water-balance-derived ET

was relatively low without accounting for % (e.g., R? = 0.18 with GIRAFE). However, when §
was more robust relationship was obtained (R? = 0.43, overall and up

to R = 0.76 for largest river basins).

More broadly, the choice of precipitation dataset was the primary driver of imbalance,
reaffirming the first-order importance of accurate precipitation estimates in closing the water
balance and underlining the challenges in estimating precipitation, especially regarding snow
cases for GIRAFE. However, the best-performing configuration depends on the combination
of ET and precipitation products. For example, GIRAFE showed the strongest consistency (i.e.,
higher R?) with independent ET products, whereas MSWEP tended to minimize the average
imbalance across most ET products. These findings indicate that no universally optimal
combination exists. Therefore, the selection of input products should be guided by the specific
objectives or/and the users’ needs. Furthermore, the variations of the results depending on the
chosen input indicate that independent ET datasets, such as the CM SAF ET product, may
offer greater reliability than water-balance derived ET estimates.

The influence of basin size on imbalance was limited, especially when compared to the climatic
regime. Differences in performance were more pronounced between energy-limited and water-
limited basins. For example, when using GIRAFE precipitation and CM SAF ET, the median
imbalance differed by up to 19, mm month™" between the two climate regimes. However, the
classification of basins by aridity index (Al) itself is sensitive to the choice of input datasets
(e.g., reference evapotranspiration and precipitation sources), and thus this climate-based
distinction must be interpreted with caution.

Overall, the CM SAF LANDFLUX Ed. 1 product demonstrated strong potential for hydrological
applications, especially when combined with the GIRAFE precipitation dataset. While MSWEP
emerged as a suitable compromise for minimizing long-term water balance imbalances, the
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combination of CM SAF ET and GIRAFE precipitation proved to be the best-performing pair
for capturing temporal dynamics, showing both high correlation and low mean absolute
differences. Building on this, we have shown the potential of a gap-filling approach using an
empirical linear relationship between CM SAF ET and water-balance ET derived from GIRAFE

data. This approach captures the temporal variability ofg well, particularly for filing GRACE

data gaps. The analysis was conducted for a typical example at the Disseldorf station in the
Rhine River. However, it must be applied carefully, considering the basin characteristics,
precipitation accuracy, and quality of available data. Users should always define their
acceptable uncertainty thresholds before applying such empirical corrections.

Additionally, the CM SAF LANDFLUX Ed. 1 evapotranspiration product, which combines high
temporal and spatial resolution over nearly 40 years, has proven to be a reliable, well
performing, and accessible tool, making it highly suitable for large-scale hydrological and
climatological studies. The results highlight its potential for both scientific research and
operational water resource management. The study also illustrates the value of integrating
satellite-based datasets and encourages the continued refinement of the methodologies for
gap-filling, uncertainty quantification, and application-specific optimization.
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Figure 19: Probability density functions (PDFs) of monthly precipitation (P) estimates for all
selected basins over the period 2004-2020, based on three regridded (0.25°) datasets: GIRAFE

(blue), MSWEP (

), and E-OBS (

)- The three panels correspond to different thresholds on

the number of snow days used to filter the GIRAFE data: no snow flag (top) and 0 show days
(bottom). The number of matchups (N) varies accordingly. Vertical solid lines indicate the median
precipitation values for each dataset.
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discharge (Q), while the top right panel displays the average monthly change in water
storage (dS/dt) derived from GRACE data. The middle left panel presents
evapotranspiration (ET) estimates from five independent datasets: CM SAF, LSA SAF,
GLEAM, ERAS5-Land, and GLDAS 2.1. The middle right panel shows monthly
precipitation from three datasets: GIRAFE, E-OBS, and MSWEP. The bottom left panel

displays ET derived from the water balance approach, calculated using different

combinations of precipitation (P) datasets with (ETwg) and without (ETrq) considering

changes in water storage,
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Figure 22: Density scatter plots comparing monthly evapotranspiration estimates from the CM

SAF product (ETcm sar in mm month™") with water balance-derived evapotranspiration estimates
with (ETwes in mm month™; top panels) and without (ETpa in mm month™; bottom panels)

considering %for matchups from the 'six largest river basins from our database. GIRAFE (left

panels), E-OBS (middle panels), and MSWEP (right panels) precipitation products are considered
for the calculation of ETwe and ETra. The color scale indicates point density, with warmer colors
representing higher densities. The dashed black line represents the 1:1 relationship. Statistical
metrics, including the coefficient of determination (R?), unbiased root mean square deviation
(uRMSD), bias, mean absolute deviation (MAD), and the number of observations (N), are provided
in each panel.
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Figure 23: Heatmaps of statistical metrics
evapotranspiration estimates from different datasets (CM SAF, GLEAM, GLDAS 2.1, ERA5-Land,
and LSA SAF) and water balance-derived evapotranspiration estimates considering (ETws) or

not (ETraq) % and based on the GIRAFE precipitation product. Statistics are made for each basin

and averaged for different subsets: All, water-limited (Al > 1), energy-limited (Al < 1), small (< 90
000 km?) and large (= 90 000 km?). The panels display (top-left) the coefficient of determination
(R), (top-middle) bias (mm month ~"), (top-right) unbiased root mean square deviation (uURMSD,
mm month™), (bottom-left) median absolute deviation (MAD, mm month™"), and (bottom-right)
the number of observations (N). Warmer colors indicate higher values, while cooler colors
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extracted from the dataset. The columns include the GRDC station number (grdc_no), river and
station names, country code (ISO 3166), geographical coordinates (latitude and longitude in
decimal degrees), catchment area (in km?), and gauge altitude (in meters above sea level).

Lat Lon Area Altitude
drc_no River Station Count o o
adre- YooeN B km (m)
6279500 Prypyats’ Mozyr BY 52.05 29.27 101000 113.0
. Neu

6340110  Elbe river DE 5323 10.89 131950 5.68

Darchau
6357010  Oderriver  onensaat DE 5287 1414 109564 0.16
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64350060 Rhine river  Lobith NL 51.84 611 160800 8.53
6544100  Tisa Senta RS 4593 2008 140130 74 Formatted Table
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AD Applicable Document

AGRMET AGRicultural METeorological modeling system

Al Aridity Index

CDOP Continuous Development and Operations Phase

CDR Climate Data Record

CFC Cloud Fractional Cover

CM SAF EUMETSAT Satellite Application Facility on Climate
Monitoring

CMIP Coupled Model Intercomparison Project

CSR Center for Space Research

DWD Deutscher Wetterdienst

E-OBS Ensemble of Gridded Observations

ECA&D European Climate Assessment & Dataset

ECMWF European Centre for Medium-Range Weather Forecasts

ERA5-Land ECMWF Reanalysis 5th Generation (Land)

ET Evapotranspiration

EUMETSAT European Organisation for the Exploitation of
Meteorological Satellites

GEWEX Global Energy and Water Exchanges

GFz GeoForschungsZentrum

GIRAFE Global Interpolated RainFall Estimation

GLDAS Global Land Data Assimilation System
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GLEAM Global Land Evaporation Amsterdam Model

GPCP Global Precipitation Climatology Project

GRACE Gravity Recovery And Climate Experiment

GRACE-FO GRACE Follow-On

GRDC Global Runoff Data Centre

H Sensible Heat

H-TESSEL Hydrology Tiled ECMWF Scheme for Surface Exchanges

over Land

IPCC Intergovernmental Panel on Climate Change

IR Infrared

ISO International Organization for Standardization

JPL Jet Propulsion Laboratory

LAI Leaf Area Index

LE Latent Heat

LSA SAF Satellite Application Facility on Land Surface Analysis

LST Land Surface Temperature

MAD Mean Absolute Deviation

MMAC Monthly Mean Annual Cycle

MSWEP Multi-Source Weighted-Ensemble Precipitation

MVIRI Meteosat Visible and InfraRed Imager

NASA National Aeronautics and Space Administration

NRT Near Real Time

NWP Numerical Weather Prediction

P Precipitation

PALS Protocol for the Analysis of Land Surface models
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Perc Percentile
PLUMBER Land sUrface Model Benchmarking Evaluation pRoject
PMW Passive Microwave
PT Priestley-Taylor
Q Discharge
R? Coefficient of Determination
RD Reference Document
SAF Satellite Application Facility
SEVIRI Spinning Enhanced Visible and InfraRed Imager
SM Soil Moisture
SRB Surface Radiation Balance
TAPEER Tropical Amount of Precipitation with an Estimate of
ERrors
uRMSD Unbiased Root Mean Square Deviation
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